A recent study published in Nature by Lin et al. [1, 2], conducted at Xiamen University identified that lithocholic acid (LCA), a bile acid metabolite, mimics the anti-aging effects of caloric restriction (CR) by activating the TULP3-sirtuin-v-ATPase-AMPK axis. LCA binds to the receptor TUB-like protein 3 (TULP3), triggering allosteric activation of sirtuins (SIRT1-7), which deacetylate lysine residues (K52, K99, K191) on the V1E1 subunit of lysosomal v-ATPase. This deacetylation inhibits v-ATPase activity, activating AMPK through the lysosomal glucose-sensing pathway, fostering muscle rejuvenation in aged mice.
CR has long been associated with enhanced health and longevity in various species including yeasts, worms, flies, and mammals [3]. Although the precise underlying mechanisms of these benefits remain unclear, they potentially involve alterations in multiple metabolic, hormonal, and cellular signaling pathways. AMPK is at the core of this process as a crucial regulator that senses energy levels within cells. Despite the well-documented advantages of CR, long-term adherence to such a dietary regimens is often impractical for individuals [4]. Therefore, identifying pharmacological agents that could effectively mimic CR effects has emerged as a significant research area within the field of aging science. The presented study positions LCA as an effective analog for CR, offering a promising opportunity for therapeutic intervention.
Based on conventional wisdom, AMPK is primarily activated when energy stores are depleted and glucose levels are decreased [5]. However, the authors discovered that in CR mice, blood glucose did not fall to the levels that would reportedly trigger AMPK activation. This observation indicated that AMPK activation during CR was not directly driven by reduced glucose levels. To further explore this phenomenon, the authors added serum from CR mice to cell cultures and observed sustained AMPK activation even under high glucose concentrations (Figure 1A). This result suggests that a factor in the serum of CR mice can activate AMPK glucose level-independently. The authors conducted a comprehensive metabolomic analysis of the serum from CR mice using various mass spectrometric techniques, and registered significant changes in the abundance of 695 metabolites during CR. Notably, only LCA could recapitulate AMPK activation at physiological concentrations (compared to the control serum) (Figure 1B,C). Furthermore, AMPK activation has been observed in mice as well as in other model organisms, such as nematodes and Drosophila, upon LCA supplementation.
The authors further investigated the signaling pathway by which LCA activates AMPK. They observed that AMPK activation via either LCA or CR did not lead to an increase in AMP or cytosolic calcium levels. This finding ruled out traditional AMP- or calcium-dependent activation mechanisms. The authors explored the
扫码关注我们
求助内容:
应助结果提醒方式:
