Recently a research article titled “Nuclear export of circular RNA” was published online in Nature1 as a collaboration between Ngo et al. This study revealed a distinct circular RNA (circRNA) transport mechanism compared to that of linear RNA and identified unique molecular pathways involved in circRNA transport, including key proteins such as Ran-GTP, IGF2BP1, and exportin-2.
CircRNA is a closed-loop structured noncoding RNA formed via pre-messenger RNA (mRNA) back-splicing. It regulates gene expression and participates in translation. CircRNA is associated with varieties of diseases, including those of the autoimmune, heart, liver, Alzheimer's, and cancer. It is important in cellular biology and disease research, and primarily exist in the cytoplasm; however, its translocation mechanism from the nucleus to cytoplasm remains unknown. In view of this, the research team conducted scientific research experiments.
In this study, the research team confirmed that most circRNAs were primarily located in the cytoplasm. They then depleted candidate proteins known to be involved in the transport of various linear RNA subtypes to examine whether the depletion would lead to circRNAs accumulation in the nucleus. The results showed that depletion of ALY, GANP, NXF1, UAP56, URH49, and exportin-5 did not affect circRNA transport. This indicated that bulk transport of circRNAs did not require a conventional mRNA export pathway. In contrast, they found that depleting the receptor CRM1 for ribosomal RNA and small nuclear RNA transport decreased nuclear circRNA content.2 This unusual phenomenon attracted the attention of the research team. To further confirm this phenomenon, the cells were treated with the CRM1 inhibitor Selinexor, which also decreased the nuclear circRNA content and increased the cytoplasmic content.
The research team speculated that the CRM1 depletion could have been due to Ran-GTP consumption during nuclear transport complex assembly.3 Therefore, CRM1 depletion could inhibit the assembly of the nuclear transport complex, thereby enhancing circRNA transport. Thus, they designed two experimental methods: measuring the nuclear and total cellular Ran content after CRM1 depletion using immunofluorescence and treating cells with sorbitol, a Ran-GTP inhibitor. These results confirmed that circRNA export depended on Ran-GTP.
The research team hypothesized that circRNA was transported via a transport protein under Ran-GTP-dependent conditions. Biotinylated SMARCA5 circRNA and linear RNA were used. The Ran content was controlled to identify protein exportin-2 using SMARCA5. Exportin-2 was then depleted in the cells, which increased nuclear circRNA content, but did not affect linear RNA. To ensure that the effect on circRNA export was not the result of the small interfering RNA (siRNA's) off-target effects, the depletion experiment was repeated with a