首页 > 最新文献

Nature cardiovascular research最新文献

英文 中文
Quantitative proteomics of formalin-fixed, paraffin-embedded cardiac specimens uncovers protein signatures of specialized regions and patient groups 福尔马林固定,石蜡包埋心脏标本的定量蛋白质组学揭示了特定区域和患者群体的蛋白质特征。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-26 DOI: 10.1038/s44161-025-00721-2
Jonathan S. Achter, Thomas H. L. Jensen, Paola Pisano, Johan S. Bundgaard, Daniel Raaschou-Oddershede, Kasper Rossing, Michael Wierer, Alicia Lundby
Proteomic technologies have advanced our understanding of disease mechanisms, patient stratification and targeted therapies. However, applying cardiac proteomics in translational research requires overcoming the barrier of tissue accessibility. Formalin-fixed, paraffin-embedded (FFPE) heart tissue, widely preserved in pathology collections, remains a largely untapped resource. Here we demonstrate that proteomic profiles are well preserved in FFPE human heart specimens and compatible with high-resolution, quantitative analysis. Quantifying approximately 4,000 proteins per sample, we show this approach effectively distinguishes disease states and subanatomical regions, revealing distinct underlying protein signatures. Specifically, the human sinoatrial node exhibited enrichment of collagen VI and G protein-coupled receptor signaling. Myocardial biopsies from patients with arrhythmogenic cardiomyopathy were characterized by fibrosis and metabolic/cytoskeletal derangements, clearly separating them from donor heart biopsies. This study establishes FFPE heart tissue as a robust resource for cardiac proteomics, enabling retrospective molecular profiling at scale and unlocking archived specimens for disease discovery and precision cardiology. Achter et al. established a protocol for quantitative proteomic profiling of formalin-fixed, paraffin-embedded human cardiac tissues, benchmarked against fresh-frozen samples. They applied it to stratify patients with arrhythmogenic cardiomyopathy and performed deep proteomic analysis of the human sinoatrial node.
蛋白质组学技术提高了我们对疾病机制、患者分层和靶向治疗的理解。然而,将心脏蛋白质组学应用于转化研究需要克服组织可及性的障碍。福尔马林固定,石蜡包埋(FFPE)心脏组织,广泛保存在病理收藏,仍然是一个很大程度上未开发的资源。在这里,我们证明了FFPE人类心脏标本的蛋白质组学特征得到了很好的保存,并且与高分辨率的定量分析相兼容。每个样本量化约4000个蛋白质,我们表明这种方法有效地区分疾病状态和亚解剖区域,揭示不同的潜在蛋白质特征。具体来说,人窦房结表现出胶原VI和G蛋白偶联受体信号的富集。心律失常性心肌病患者的心肌活检表现为纤维化和代谢/细胞骨架紊乱,与供体心脏活检明显不同。这项研究确立了FFPE心脏组织作为心脏蛋白质组学的强大资源,使大规模的回顾性分子分析成为可能,并为疾病发现和精确心脏病学解锁存档标本。
{"title":"Quantitative proteomics of formalin-fixed, paraffin-embedded cardiac specimens uncovers protein signatures of specialized regions and patient groups","authors":"Jonathan S. Achter, Thomas H. L. Jensen, Paola Pisano, Johan S. Bundgaard, Daniel Raaschou-Oddershede, Kasper Rossing, Michael Wierer, Alicia Lundby","doi":"10.1038/s44161-025-00721-2","DOIUrl":"10.1038/s44161-025-00721-2","url":null,"abstract":"Proteomic technologies have advanced our understanding of disease mechanisms, patient stratification and targeted therapies. However, applying cardiac proteomics in translational research requires overcoming the barrier of tissue accessibility. Formalin-fixed, paraffin-embedded (FFPE) heart tissue, widely preserved in pathology collections, remains a largely untapped resource. Here we demonstrate that proteomic profiles are well preserved in FFPE human heart specimens and compatible with high-resolution, quantitative analysis. Quantifying approximately 4,000 proteins per sample, we show this approach effectively distinguishes disease states and subanatomical regions, revealing distinct underlying protein signatures. Specifically, the human sinoatrial node exhibited enrichment of collagen VI and G protein-coupled receptor signaling. Myocardial biopsies from patients with arrhythmogenic cardiomyopathy were characterized by fibrosis and metabolic/cytoskeletal derangements, clearly separating them from donor heart biopsies. This study establishes FFPE heart tissue as a robust resource for cardiac proteomics, enabling retrospective molecular profiling at scale and unlocking archived specimens for disease discovery and precision cardiology. Achter et al. established a protocol for quantitative proteomic profiling of formalin-fixed, paraffin-embedded human cardiac tissues, benchmarked against fresh-frozen samples. They applied it to stratify patients with arrhythmogenic cardiomyopathy and performed deep proteomic analysis of the human sinoatrial node.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1409-1423"},"PeriodicalIF":10.8,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44161-025-00721-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145180745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing cerebral microvascular volumetric with high-resolution 4D cerebral blood volume MRI at 7 T 7 T高分辨率4D脑血容量MRI评估脑微血管容量。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-25 DOI: 10.1038/s44161-025-00722-1
Fanhua Guo, Chenyang Zhao, Qinyang Shou, Ning Jin, Kay Jann, Xingfeng Shao, Danny JJ Wang
Arterial pulsation is crucial for promoting neurofluid circulation. Most previous studies quantified pulsatility via blood velocity-based indices in large arteries. Here we propose an innovative method to quantify the microvascular volumetric pulsatility index (mvPI) across cortical layers and white matter (WM) using high-resolution four-dimensional (4D) vascular space occupancy (VASO) and arterial spin labeling (ASL) magnetic resonance imaging (MRI) at 7 T with simultaneous pulse recording. We assessed aging-related changes in mvPI in 11 young (28.4 ± 5.8 years) and 12 older (60.2 ± 6.8 years) participants and compared mvPI with large artery pulsatility assessed by 4D-flow MRI. mvPI peaked in the pial surface (0.18 ± 0.04). Deep WM mvPI was significantly higher in older participants (P = 0.006) than young ones. Deep WM mvPI correlated with large artery velocity PI (r = 0.56, P = 0.0099). We performed test–retest scans, non-parametric reliability test and simulations to demonstrate the reproducibility and accuracy of the method. In conclusion, our non-invasive method enables in vivo fine-grained measurement of mvPI, with implications for glymphatic function, aging and neurodegenerative diseases. Guo, Zhao and colleagues use high-resolution 7 T MRI to measure the pulsatility of cerebral small vessels and uncover age-related differences in vascular dynamics, which offer new insights into mechanisms of brain aging and vascular risks.
动脉搏动对促进神经液循环至关重要。大多数先前的研究都是通过以血流速度为基础的大动脉指标来量化脉搏。在此,我们提出了一种创新的方法,利用高分辨率四维(4D)血管空间占用(VASO)和动脉自旋标记(ASL)磁共振成像(MRI)在7 T时同时记录脉搏,量化皮层层和白质(WM)的微血管体积脉动指数(mvPI)。我们评估了11名年轻人(28.4±5.8岁)和12名老年人(60.2±6.8岁)的mvPI与年龄相关的变化,并将mvPI与4d血流MRI评估的大动脉脉搏进行了比较。mvPI在枕面最高(0.18±0.04)。老年参与者的深度WM mvPI显著高于年轻参与者(P = 0.006)。深部WM mvPI与大动脉流速PI相关(r = 0.56, P = 0.0099)。我们进行了测试-重测试扫描、非参数可靠性测试和模拟,以证明该方法的重复性和准确性。总之,我们的非侵入性方法能够在体内细粒度测量mvPI,对淋巴功能、衰老和神经退行性疾病具有重要意义。
{"title":"Assessing cerebral microvascular volumetric with high-resolution 4D cerebral blood volume MRI at 7 T","authors":"Fanhua Guo, Chenyang Zhao, Qinyang Shou, Ning Jin, Kay Jann, Xingfeng Shao, Danny JJ Wang","doi":"10.1038/s44161-025-00722-1","DOIUrl":"10.1038/s44161-025-00722-1","url":null,"abstract":"Arterial pulsation is crucial for promoting neurofluid circulation. Most previous studies quantified pulsatility via blood velocity-based indices in large arteries. Here we propose an innovative method to quantify the microvascular volumetric pulsatility index (mvPI) across cortical layers and white matter (WM) using high-resolution four-dimensional (4D) vascular space occupancy (VASO) and arterial spin labeling (ASL) magnetic resonance imaging (MRI) at 7 T with simultaneous pulse recording. We assessed aging-related changes in mvPI in 11 young (28.4 ± 5.8 years) and 12 older (60.2 ± 6.8 years) participants and compared mvPI with large artery pulsatility assessed by 4D-flow MRI. mvPI peaked in the pial surface (0.18 ± 0.04). Deep WM mvPI was significantly higher in older participants (P = 0.006) than young ones. Deep WM mvPI correlated with large artery velocity PI (r = 0.56, P = 0.0099). We performed test–retest scans, non-parametric reliability test and simulations to demonstrate the reproducibility and accuracy of the method. In conclusion, our non-invasive method enables in vivo fine-grained measurement of mvPI, with implications for glymphatic function, aging and neurodegenerative diseases. Guo, Zhao and colleagues use high-resolution 7 T MRI to measure the pulsatility of cerebral small vessels and uncover age-related differences in vascular dynamics, which offer new insights into mechanisms of brain aging and vascular risks.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1424-1438"},"PeriodicalIF":10.8,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44161-025-00722-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145152332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardiac adaptation to endurance exercise training requires suppression of GDF15 via PGC-1α 心脏对耐力运动训练的适应需要通过PGC-1α抑制GDF15。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-24 DOI: 10.1038/s44161-025-00712-3
Sumeet A. Khetarpal, Haobo Li, Tevis Vitale, James Rhee, Saketh Challa, Claire Castro, Steffen Pabel, Yizhi Sun, Jing Liu, Dina Bogoslavski, Ariana Vargas-Castillo, Amanda L. Smythers, Katherine A. Blackmore, Louisa Grauvogel, Melanie J. Mittenbühler, Melin J. Khandekar, Casie Curtin, Jose Max Narvaez-Paliza, Chunyan Wang, Nicholas E. Houstis, Hans-Georg Sprenger, Sean J. Jurgens, Kiran J. Biddinger, Alexandra Kuznetsov, Rebecca Freeman, Patrick T. Ellinor, Matthias Nahrendorf, Joao A. Paulo, Steven P. Gygi, Phillip A. Dumesic, Aarti Asnani, Krishna G. Aragam, Pere Puigserver, Jason D. Roh, Bruce M. Spiegelman, Anthony Rosenzweig
Endurance exercise promotes adaptive growth and improved function of myocytes, which is supported by increased mitochondrial activity. In skeletal muscle, these benefits are in part transcriptionally coordinated by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). The importance of PGC-1α to exercise-induced adaptations in the heart has been unclear. Here we show that deleting PGC-1α specifically in cardiomyocytes prevents the expected benefits from exercise training and instead leads to heart failure after just 6 weeks of training. Consistent with this, in humans, rare genetic variants in PPARGC1A, which encodes PGC-1α, are associated with increased risk of heart failure. In this model, we identify growth differentiation factor 15 (GDF15) as a key heart-secreted mediator that contributes to this dysfunction. Blocking cardiac Gdf15 expression improves cardiac performance and exercise capacity in these mice. Finally, in human heart tissue, lower cardiomyocyte PPARGC1A expression is associated with higher GDF15 expression and reduced cardiomyocyte density. These findings uncover a crucial role for cardiomyocyte PGC-1α in enabling healthy cardiac adaptation to exercise in part through suppression of GDF15. Khetarpal et al. show that the metabolic regulator PGC-1α is essential in heart muscle cells for exercise-driven cardiac growth, and that suppression of the stress-induced myokine GDF15 is required to enable cardiomyocyte adaptations to training.
耐力运动促进适应性生长和改善肌细胞的功能,这是由增加线粒体活性支持的。在骨骼肌中,这些益处部分是由过氧化物酶体增殖物激活受体γ辅助激活因子1- α (PGC-1α)转录协调的。PGC-1α在心脏运动诱导的适应性中的重要性尚不清楚。在这里,我们表明,在心肌细胞中特异性地删除PGC-1α会阻止运动训练带来的预期益处,反而会在仅仅6周的训练后导致心力衰竭。与此一致的是,在人类中,编码PGC-1α的PPARGC1A的罕见遗传变异与心力衰竭的风险增加有关。在这个模型中,我们确定生长分化因子15 (GDF15)是导致这种功能障碍的关键心脏分泌介质。阻断心脏Gdf15表达可改善这些小鼠的心脏功能和运动能力。最后,在人类心脏组织中,心肌细胞PPARGC1A的低表达与GDF15的高表达和心肌细胞密度的降低相关。这些发现揭示了心肌细胞PGC-1α在部分通过抑制GDF15使健康心脏适应运动中的关键作用。
{"title":"Cardiac adaptation to endurance exercise training requires suppression of GDF15 via PGC-1α","authors":"Sumeet A. Khetarpal, Haobo Li, Tevis Vitale, James Rhee, Saketh Challa, Claire Castro, Steffen Pabel, Yizhi Sun, Jing Liu, Dina Bogoslavski, Ariana Vargas-Castillo, Amanda L. Smythers, Katherine A. Blackmore, Louisa Grauvogel, Melanie J. Mittenbühler, Melin J. Khandekar, Casie Curtin, Jose Max Narvaez-Paliza, Chunyan Wang, Nicholas E. Houstis, Hans-Georg Sprenger, Sean J. Jurgens, Kiran J. Biddinger, Alexandra Kuznetsov, Rebecca Freeman, Patrick T. Ellinor, Matthias Nahrendorf, Joao A. Paulo, Steven P. Gygi, Phillip A. Dumesic, Aarti Asnani, Krishna G. Aragam, Pere Puigserver, Jason D. Roh, Bruce M. Spiegelman, Anthony Rosenzweig","doi":"10.1038/s44161-025-00712-3","DOIUrl":"10.1038/s44161-025-00712-3","url":null,"abstract":"Endurance exercise promotes adaptive growth and improved function of myocytes, which is supported by increased mitochondrial activity. In skeletal muscle, these benefits are in part transcriptionally coordinated by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). The importance of PGC-1α to exercise-induced adaptations in the heart has been unclear. Here we show that deleting PGC-1α specifically in cardiomyocytes prevents the expected benefits from exercise training and instead leads to heart failure after just 6 weeks of training. Consistent with this, in humans, rare genetic variants in PPARGC1A, which encodes PGC-1α, are associated with increased risk of heart failure. In this model, we identify growth differentiation factor 15 (GDF15) as a key heart-secreted mediator that contributes to this dysfunction. Blocking cardiac Gdf15 expression improves cardiac performance and exercise capacity in these mice. Finally, in human heart tissue, lower cardiomyocyte PPARGC1A expression is associated with higher GDF15 expression and reduced cardiomyocyte density. These findings uncover a crucial role for cardiomyocyte PGC-1α in enabling healthy cardiac adaptation to exercise in part through suppression of GDF15. Khetarpal et al. show that the metabolic regulator PGC-1α is essential in heart muscle cells for exercise-driven cardiac growth, and that suppression of the stress-induced myokine GDF15 is required to enable cardiomyocyte adaptations to training.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1277-1294"},"PeriodicalIF":10.8,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145139652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: BMAL1–HIF2A mediates diurnal cardioprotection during myocardial injury 发布者更正:BMAL1-HIF2A介导心肌损伤期间的昼夜心脏保护。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-23 DOI: 10.1038/s44161-025-00731-0
Elisa Martini
{"title":"Publisher Correction: BMAL1–HIF2A mediates diurnal cardioprotection during myocardial injury","authors":"Elisa Martini","doi":"10.1038/s44161-025-00731-0","DOIUrl":"10.1038/s44161-025-00731-0","url":null,"abstract":"","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1440-1440"},"PeriodicalIF":10.8,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44161-025-00731-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145133085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardiac lymphatics retain LYVE-1-dependent macrophages during neonatal mouse heart regeneration 新生小鼠心脏再生过程中,心脏淋巴管保留lyve -1依赖性巨噬细胞。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-17 DOI: 10.1038/s44161-025-00711-4
Benjamin G. Chapman, Konstantinos Klaourakis, Carla de Villiers, Mala Gunadasa-Rohling, Maria-Alexa Cosma, Susanna T. E. Cooper, Kshitij Mohan, Michael Weinberger, Carolyn A. Carr, David R. Greaves, David G. Jackson, Daniela Pezzolla, Robin P. Choudhury, Joaquim M. Vieira, Paul R. Riley
In adult mice, myocardial infarction (MI) activates the cardiac lymphatics, which undergo sprouting angiogenesis (lymphangiogenesis), drain interstitial fluid and traffic macrophages to mediastinal lymph nodes (MLNs). This prevents edema and reduces inflammatory/fibrotic immune cell content to improve cardiac function. Here we investigated the role of cardiac lymphatics and macrophage clearance across the neonatal mouse regenerative window. The response to injury revealed limited lymphangiogenesis and clearance of macrophages from postnatal day 1 compared to postnatal day 7 infarcted hearts. This coincides with the maturation of lymphatic endothelial cell junctions from impermeable to permeable and with altered signaling between lymphatic endothelial cells and macrophages. Mice lacking the lymphatic endothelial receptor-1 (LYVE-1), where macrophage lymphatic trafficking is impaired in adults, experienced worse long-term outcomes after MI induced at postnatal day 1, suggesting an alternative role for LYVE-1 in macrophages. Macrophage-specific deletion of Lyve1 during neonatal heart injury impaired heart regeneration. This study demonstrates that immature cardiac lymphatics are impermeable to clearance in early neonates, ensuring retention of pro-regenerative LYVE-1-dependent macrophages. Chapman, Klaourakis and colleagues reveal that a lymphatic vasculature with poor clearance capacity in perinatal, regeneration-competent mouse hearts is required to retain pro-reparative macrophages and allow cardiac regeneration.
在成年小鼠中,心肌梗死(MI)激活心脏淋巴管,使其进行新生血管生成(淋巴管生成),排出间质液并将巨噬细胞输送到纵隔淋巴结(MLNs)。这可以防止水肿,减少炎症/纤维化免疫细胞含量,改善心功能。在这里,我们研究了心脏淋巴管和巨噬细胞清除在新生小鼠再生窗口中的作用。对损伤的反应显示,与出生后第7天梗死的心脏相比,出生后第1天的淋巴管生成和巨噬细胞清除有限。这与淋巴内皮细胞连接从不可渗透到可渗透的成熟以及淋巴内皮细胞和巨噬细胞之间信号传导的改变相一致。缺乏淋巴内皮受体-1 (LYVE-1)的小鼠,巨噬细胞淋巴运输在成人中受损,在出生后第1天诱导心肌梗死后的长期预后更差,这表明LYVE-1在巨噬细胞中起着另一种作用。新生儿心脏损伤中巨噬细胞特异性缺失Lyve1损害心脏再生。这项研究表明,在早期新生儿中,未成熟的心脏淋巴无法被清除,从而确保了促进再生的lyve -1依赖性巨噬细胞的保留。
{"title":"Cardiac lymphatics retain LYVE-1-dependent macrophages during neonatal mouse heart regeneration","authors":"Benjamin G. Chapman, Konstantinos Klaourakis, Carla de Villiers, Mala Gunadasa-Rohling, Maria-Alexa Cosma, Susanna T. E. Cooper, Kshitij Mohan, Michael Weinberger, Carolyn A. Carr, David R. Greaves, David G. Jackson, Daniela Pezzolla, Robin P. Choudhury, Joaquim M. Vieira, Paul R. Riley","doi":"10.1038/s44161-025-00711-4","DOIUrl":"10.1038/s44161-025-00711-4","url":null,"abstract":"In adult mice, myocardial infarction (MI) activates the cardiac lymphatics, which undergo sprouting angiogenesis (lymphangiogenesis), drain interstitial fluid and traffic macrophages to mediastinal lymph nodes (MLNs). This prevents edema and reduces inflammatory/fibrotic immune cell content to improve cardiac function. Here we investigated the role of cardiac lymphatics and macrophage clearance across the neonatal mouse regenerative window. The response to injury revealed limited lymphangiogenesis and clearance of macrophages from postnatal day 1 compared to postnatal day 7 infarcted hearts. This coincides with the maturation of lymphatic endothelial cell junctions from impermeable to permeable and with altered signaling between lymphatic endothelial cells and macrophages. Mice lacking the lymphatic endothelial receptor-1 (LYVE-1), where macrophage lymphatic trafficking is impaired in adults, experienced worse long-term outcomes after MI induced at postnatal day 1, suggesting an alternative role for LYVE-1 in macrophages. Macrophage-specific deletion of Lyve1 during neonatal heart injury impaired heart regeneration. This study demonstrates that immature cardiac lymphatics are impermeable to clearance in early neonates, ensuring retention of pro-regenerative LYVE-1-dependent macrophages. Chapman, Klaourakis and colleagues reveal that a lymphatic vasculature with poor clearance capacity in perinatal, regeneration-competent mouse hearts is required to retain pro-reparative macrophages and allow cardiac regeneration.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1258-1276"},"PeriodicalIF":10.8,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44161-025-00711-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145081798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maintaining the LYVE1 line through macrophage and lymphatic interplay in the regenerating neonatal heart 通过巨噬细胞和淋巴相互作用维持新生心脏再生中的LYVE1细胞系。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-17 DOI: 10.1038/s44161-025-00707-0
Tim Koopmans, Eva van Rooij
The lymphatic vasculature has emerged as a key component of the heart’s response to injury, influencing both regeneration and maladaptive remodeling. Research now highlights the role of lymphatic clearance in shaping the composition of tissue-resident macrophages within the neonatal heart.
淋巴血管系统已成为心脏对损伤反应的关键组成部分,影响再生和不适应重塑。现在的研究强调淋巴清除在新生儿心脏组织内巨噬细胞组成形成中的作用。
{"title":"Maintaining the LYVE1 line through macrophage and lymphatic interplay in the regenerating neonatal heart","authors":"Tim Koopmans, Eva van Rooij","doi":"10.1038/s44161-025-00707-0","DOIUrl":"10.1038/s44161-025-00707-0","url":null,"abstract":"The lymphatic vasculature has emerged as a key component of the heart’s response to injury, influencing both regeneration and maladaptive remodeling. Research now highlights the role of lymphatic clearance in shaping the composition of tissue-resident macrophages within the neonatal heart.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1211-1213"},"PeriodicalIF":10.8,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145082088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smooth muscle expression of RNA editing enzyme ADAR1 controls activation of the RNA sensor MDA5 in atherosclerosis 在动脉粥样硬化中,平滑肌中RNA编辑酶ADAR1的表达控制RNA传感器MDA5的激活。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-16 DOI: 10.1038/s44161-025-00710-5
Chad S. Weldy, Qin Li, João P. Monteiro, Tim S. Peters, Hongchao Guo, Drew Galls, Wenduo Gu, Paul P. Cheng, Markus Ramste, Daniel Li, Brian T. Palmisano, Disha Sharma, Matthew D. Worssam, Quanyi Zhao, Amruta Bhate, Ramendra K. Kundu, Trieu Nguyen, Michal Mokry, Clint L. Miller, Sander W. van der Laan, Jin Billy Li, Thomas Quertermous
Although genetic risk in coronary artery disease (CAD) is linked to changes in gene expression, recent discoveries have revealed a major role for A-to-I RNA editing in CAD. ADAR1 edits immunogenic double-stranded RNA (dsRNA), preventing activation of the dsRNA sensor MDA5 (IFIH1) and downstream interferon-stimulated gene signaling. Using human plaque analysis and human coronary artery smooth muscle cells (SMCs), here, we show that SMCs uniquely require RNA editing and that MDA5 activation regulates SMC phenotype. In a conditional SMC-specific Adar deletion mouse model on an atherosclerosis-prone background, combined with Ifih1 deletion and single-cell RNA sequencing, we demonstrate that ADAR1 preserves vascular integrity and limits atherosclerosis and calcification by suppressing MDA5 activation. Analysis of the Athero-Express carotid endarterectomy cohort further shows that interferon-stimulated gene expression correlates with SMC modulation, plaque instability and calcification. These findings reveal a fundamental mechanism of CAD, where cell type and context-specific RNA editing modulates genetic risk and vascular disease progression. Weldy et al. show that smooth muscle expression of the RNA editing enzyme ADAR1 regulates activation of the double-stranded RNA sensor MDA5 in a novel mechanism of atherosclerosis.
尽管冠状动脉疾病(CAD)的遗传风险与基因表达的变化有关,但最近的发现揭示了a -to- i RNA编辑在CAD中的主要作用。ADAR1编辑免疫原性双链RNA (dsRNA),阻止dsRNA传感器MDA5 (IFIH1)的激活和下游干扰素刺激的基因信号传导。通过人类斑块分析和人类冠状动脉平滑肌细胞(SMCs),我们发现SMCs独特地需要RNA编辑,MDA5激活调节SMC表型。在动脉粥样硬化易发背景下的条件smc特异性Adar缺失小鼠模型中,结合Ifih1缺失和单细胞RNA测序,我们证明ADAR1通过抑制MDA5的激活来保持血管完整性并限制动脉粥样硬化和钙化。对Athero-Express颈动脉内膜切除术队列的分析进一步表明,干扰素刺激的基因表达与SMC调节、斑块不稳定和钙化相关。这些发现揭示了CAD的基本机制,其中细胞类型和上下文特异性RNA编辑调节遗传风险和血管疾病进展。
{"title":"Smooth muscle expression of RNA editing enzyme ADAR1 controls activation of the RNA sensor MDA5 in atherosclerosis","authors":"Chad S. Weldy, Qin Li, João P. Monteiro, Tim S. Peters, Hongchao Guo, Drew Galls, Wenduo Gu, Paul P. Cheng, Markus Ramste, Daniel Li, Brian T. Palmisano, Disha Sharma, Matthew D. Worssam, Quanyi Zhao, Amruta Bhate, Ramendra K. Kundu, Trieu Nguyen, Michal Mokry, Clint L. Miller, Sander W. van der Laan, Jin Billy Li, Thomas Quertermous","doi":"10.1038/s44161-025-00710-5","DOIUrl":"10.1038/s44161-025-00710-5","url":null,"abstract":"Although genetic risk in coronary artery disease (CAD) is linked to changes in gene expression, recent discoveries have revealed a major role for A-to-I RNA editing in CAD. ADAR1 edits immunogenic double-stranded RNA (dsRNA), preventing activation of the dsRNA sensor MDA5 (IFIH1) and downstream interferon-stimulated gene signaling. Using human plaque analysis and human coronary artery smooth muscle cells (SMCs), here, we show that SMCs uniquely require RNA editing and that MDA5 activation regulates SMC phenotype. In a conditional SMC-specific Adar deletion mouse model on an atherosclerosis-prone background, combined with Ifih1 deletion and single-cell RNA sequencing, we demonstrate that ADAR1 preserves vascular integrity and limits atherosclerosis and calcification by suppressing MDA5 activation. Analysis of the Athero-Express carotid endarterectomy cohort further shows that interferon-stimulated gene expression correlates with SMC modulation, plaque instability and calcification. These findings reveal a fundamental mechanism of CAD, where cell type and context-specific RNA editing modulates genetic risk and vascular disease progression. Weldy et al. show that smooth muscle expression of the RNA editing enzyme ADAR1 regulates activation of the double-stranded RNA sensor MDA5 in a novel mechanism of atherosclerosis.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1241-1257"},"PeriodicalIF":10.8,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44161-025-00710-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145076770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell compendium of muscle microenvironment in peripheral artery disease reveals altered endothelial diversity and LYVE1+ macrophage activation 外周动脉病变的肌肉微环境单细胞概要显示内皮多样性和LYVE1+巨噬细胞激活的改变。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-15 DOI: 10.1038/s44161-025-00709-y
Guillermo Turiel, Thibaut Desgeorges, Evi Masschelein, Zheng Fan, David Lussi, Christophe M. Capelle, Giulia Bernardini, Raphaela Ardicoglu, Katharina Schönberger, Manuela Birrer, Sandro F. Fucentese, Jing Zhang, Daniela Latorre, Stephan Engelberger, Katrien De Bock
Peripheral artery disease (PAD) results from atherosclerosis and chronic narrowing of lower limb arteries, leading to decreased muscle perfusion. Current treatments are suboptimal, partly due to limited understanding of PAD muscle pathology. Here we used single-cell RNA sequencing and spatial transcriptomics to analyze the composition of the muscle microenvironment in non-ischemic patients and patients with PAD. We identified ATF3/ATF4+ endothelial cells (ECs) that exhibit altered angiogenic and immune regulatory profiles during PAD and confirmed that ATF4 signaling in ECs is required for effective ischemia recovery. In addition, capillary ECs display features of endothelial-to-mesenchymal transition. Furthermore, LYVE1hiMHCIIlow macrophages are the dominant macrophage population in human muscle, adopting a more pro-inflammatory profile during PAD. Finally, we analyzed alterations in intercellular communication within the muscle microenvironment during PAD and confirmed that EC-derived factors can influence macrophage polarization. This dataset deeply characterizes the PAD muscle microenvironment and provides a resource for exploration of targeted therapies. Using single-cell and spatial transcriptomics on muscle samples from non-ischemic patients and patients with peripheral artery disease (PAD), Turiel et al. identify cellular and molecular changes in the muscle microenvironment during PAD, focusing on endothelial cell–macrophage interactions.
外周动脉疾病(PAD)是由动脉粥样硬化和下肢动脉慢性狭窄引起的,导致肌肉灌注减少。目前的治疗是次优的,部分原因是由于对PAD肌肉病理的了解有限。在这里,我们使用单细胞RNA测序和空间转录组学来分析非缺血性患者和PAD患者肌肉微环境的组成。我们发现ATF3/ATF4+内皮细胞(ECs)在PAD期间表现出血管生成和免疫调节谱的改变,并证实ECs中的ATF4信号对于有效的缺血恢复是必需的。此外,毛细血管内皮细胞表现出内皮向间质转化的特征。此外,LYVE1hiMHCIIlow巨噬细胞是人类肌肉中的主要巨噬细胞群,在PAD期间表现出更强的促炎特征。最后,我们分析了PAD期间肌肉微环境中细胞间通讯的变化,并证实了ec衍生因子可以影响巨噬细胞极化。该数据集深入表征了PAD肌肉微环境,并为探索靶向治疗提供了资源。
{"title":"Single-cell compendium of muscle microenvironment in peripheral artery disease reveals altered endothelial diversity and LYVE1+ macrophage activation","authors":"Guillermo Turiel, Thibaut Desgeorges, Evi Masschelein, Zheng Fan, David Lussi, Christophe M. Capelle, Giulia Bernardini, Raphaela Ardicoglu, Katharina Schönberger, Manuela Birrer, Sandro F. Fucentese, Jing Zhang, Daniela Latorre, Stephan Engelberger, Katrien De Bock","doi":"10.1038/s44161-025-00709-y","DOIUrl":"10.1038/s44161-025-00709-y","url":null,"abstract":"Peripheral artery disease (PAD) results from atherosclerosis and chronic narrowing of lower limb arteries, leading to decreased muscle perfusion. Current treatments are suboptimal, partly due to limited understanding of PAD muscle pathology. Here we used single-cell RNA sequencing and spatial transcriptomics to analyze the composition of the muscle microenvironment in non-ischemic patients and patients with PAD. We identified ATF3/ATF4+ endothelial cells (ECs) that exhibit altered angiogenic and immune regulatory profiles during PAD and confirmed that ATF4 signaling in ECs is required for effective ischemia recovery. In addition, capillary ECs display features of endothelial-to-mesenchymal transition. Furthermore, LYVE1hiMHCIIlow macrophages are the dominant macrophage population in human muscle, adopting a more pro-inflammatory profile during PAD. Finally, we analyzed alterations in intercellular communication within the muscle microenvironment during PAD and confirmed that EC-derived factors can influence macrophage polarization. This dataset deeply characterizes the PAD muscle microenvironment and provides a resource for exploration of targeted therapies. Using single-cell and spatial transcriptomics on muscle samples from non-ischemic patients and patients with peripheral artery disease (PAD), Turiel et al. identify cellular and molecular changes in the muscle microenvironment during PAD, focusing on endothelial cell–macrophage interactions.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1221-1240"},"PeriodicalIF":10.8,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44161-025-00709-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145071307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heart failure-specific cardiac fibroblasts contribute to cardiac dysfunction via the MYC–CXCL1–CXCR2 axis 心力衰竭特异性心脏成纤维细胞通过MYC-CXCL1-CXCR2轴促进心功能障碍。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-10 DOI: 10.1038/s44161-025-00698-y
Jin Komuro, Hisayuki Hashimoto, Toshiomi Katsuki, Dai Kusumoto, Manami Katoh, Toshiyuki Ko, Masamichi Ito, Mikako Katagiri, Masayuki Kubota, Shintaro Yamada, Takahiro Nakamura, Yohei Akiba, Thukaa Kouka, Kaoruko Komuro, Mai Kimura, Shogo Ito, Seitaro Nomura, Issei Komuro, Keiichi Fukuda, Shinsuke Yuasa, Masaki Ieda
Heart failure (HF) is a growing global health issue. While most studies focus on cardiomyocytes, here we highlight the role of cardiac fibroblasts (CFs) in HF. Single-cell RNA sequencing of mouse hearts under pressure overload identified six CF subclusters, with one specific to the HF stage. This HF-specific CF population highly expresses the transcription factor Myc. Deleting Myc in CFs improves cardiac function without reducing fibrosis. MYC directly regulates the expression of the chemokine CXCL1, which is elevated in HF-specific CFs and downregulated in Myc-deficient CFs. The CXCL1 receptor, CXCR2, is expressed in cardiomyocytes, and blocking the CXCL1–CXCR2 axis mitigates HF. CXCL1 impairs contractility in neonatal rat and human iPSC-derived cardiomyocytes. Human CFs from failing hearts also express MYC and CXCL1, unlike those from controls. These findings reveal that HF-specific CFs contribute to HF via the MYC–CXCL1–CXCR2 pathway, offering a promising therapeutic target beyond cardiomyocytes. Komuro et al. identify a heart failure-specific subpopulation of cardiac fibroblasts that promotes cardiac dysfunction via the MYC–CXCL1–CXCR2 axis, highlighting a potential therapeutic target beyond cardiomyocytes.
心力衰竭(HF)是一个日益严重的全球健康问题。虽然大多数研究都集中在心肌细胞上,但在这里,我们强调心脏成纤维细胞(CFs)在HF中的作用。压力过载小鼠心脏的单细胞RNA测序鉴定出6个CF亚簇,其中一个是HF期特异性的。这个hf特异性CF群体高度表达转录因子Myc。在CFs中删除Myc可改善心功能,但不减少纤维化。MYC直接调节趋化因子CXCL1的表达,CXCL1在hf特异性CFs中升高,在MYC缺陷CFs中下调。CXCL1受体CXCR2在心肌细胞中表达,阻断CXCL1-CXCR2轴可减轻HF。CXCL1损害新生大鼠和人ipsc衍生心肌细胞的收缩性。与对照组不同,来自衰竭心脏的人类CFs也表达MYC和CXCL1。这些发现表明,HF特异性cf通过MYC-CXCL1-CXCR2途径促进HF,提供了一个有希望的心肌细胞外的治疗靶点。
{"title":"Heart failure-specific cardiac fibroblasts contribute to cardiac dysfunction via the MYC–CXCL1–CXCR2 axis","authors":"Jin Komuro, Hisayuki Hashimoto, Toshiomi Katsuki, Dai Kusumoto, Manami Katoh, Toshiyuki Ko, Masamichi Ito, Mikako Katagiri, Masayuki Kubota, Shintaro Yamada, Takahiro Nakamura, Yohei Akiba, Thukaa Kouka, Kaoruko Komuro, Mai Kimura, Shogo Ito, Seitaro Nomura, Issei Komuro, Keiichi Fukuda, Shinsuke Yuasa, Masaki Ieda","doi":"10.1038/s44161-025-00698-y","DOIUrl":"10.1038/s44161-025-00698-y","url":null,"abstract":"Heart failure (HF) is a growing global health issue. While most studies focus on cardiomyocytes, here we highlight the role of cardiac fibroblasts (CFs) in HF. Single-cell RNA sequencing of mouse hearts under pressure overload identified six CF subclusters, with one specific to the HF stage. This HF-specific CF population highly expresses the transcription factor Myc. Deleting Myc in CFs improves cardiac function without reducing fibrosis. MYC directly regulates the expression of the chemokine CXCL1, which is elevated in HF-specific CFs and downregulated in Myc-deficient CFs. The CXCL1 receptor, CXCR2, is expressed in cardiomyocytes, and blocking the CXCL1–CXCR2 axis mitigates HF. CXCL1 impairs contractility in neonatal rat and human iPSC-derived cardiomyocytes. Human CFs from failing hearts also express MYC and CXCL1, unlike those from controls. These findings reveal that HF-specific CFs contribute to HF via the MYC–CXCL1–CXCR2 pathway, offering a promising therapeutic target beyond cardiomyocytes. Komuro et al. identify a heart failure-specific subpopulation of cardiac fibroblasts that promotes cardiac dysfunction via the MYC–CXCL1–CXCR2 axis, highlighting a potential therapeutic target beyond cardiomyocytes.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 9","pages":"1135-1151"},"PeriodicalIF":10.8,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12436193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145034874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cerebrospinal fluid draining lymphatics in health and disease: advances and controversies 脑脊液引流淋巴在健康与疾病中的应用:进展与争议。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-08 DOI: 10.1038/s44161-025-00705-2
Donald M. McDonald, Kari Alitalo, Christer Betsholtz, Britta Engelhardt, Steven T. Proulx, Julie Siegenthaler, Gou Young Koh
The meninges, consisting of the dura, arachnoid and pia mater that surround the brain and spinal cord, have been recognized from the earliest anatomical studies. First identified in 1787, lymphatic vessels in the dura are now receiving greater attention as their contribution to cerebrospinal fluid (CSF) clearance in diverse neurological conditions is being investigated. New methods have increased the understanding of dural lymphatics, but much is still being learned about their heterogeneity, intracranial and extracranial connections, and factors that govern their functions and maintenance. Current research is striving to understand the regulation of CSF drainage and influence of brain antigen and immune cell transit through dural lymphatics on aging impairments and the severity of neurodegenerative and neuroimmune diseases, traumatic brain injury, stroke and other neurological disorders. Achieving these goals should lead to safe and effective methods for manipulating CSF clearance through dural lymphatics for therapeutic benefit. McDonald et al. review studies of lymphatic vessels in the dural layer of the meninges and discuss the role of lymphatics in the function and maintenance of the central nervous system, aging, neuroimmunity and the progression of neurological disorders such as Alzheimer’s disease and Parkinson’s disease.
由硬脑膜、蛛网膜和硬脑膜组成的脑膜环绕着大脑和脊髓,从最早的解剖学研究中就被发现了。硬脑膜中的淋巴管于1787年首次被发现,现在受到了更多的关注,因为它们在各种神经系统疾病中对脑脊液(CSF)清除的作用正在研究中。新方法增加了对硬脑膜淋巴管的了解,但关于它们的异质性、颅内和颅外连接以及控制其功能和维持的因素仍有很多需要了解。目前的研究正在努力了解脑脊液引流的调节以及脑膜淋巴管中脑抗原和免疫细胞转运对衰老损伤以及神经退行性和神经免疫疾病、创伤性脑损伤、中风和其他神经系统疾病的严重程度的影响。实现这些目标应该导致安全有效的方法来操纵脑脊液清除通过硬脑膜淋巴治疗获益。
{"title":"Cerebrospinal fluid draining lymphatics in health and disease: advances and controversies","authors":"Donald M. McDonald, Kari Alitalo, Christer Betsholtz, Britta Engelhardt, Steven T. Proulx, Julie Siegenthaler, Gou Young Koh","doi":"10.1038/s44161-025-00705-2","DOIUrl":"10.1038/s44161-025-00705-2","url":null,"abstract":"The meninges, consisting of the dura, arachnoid and pia mater that surround the brain and spinal cord, have been recognized from the earliest anatomical studies. First identified in 1787, lymphatic vessels in the dura are now receiving greater attention as their contribution to cerebrospinal fluid (CSF) clearance in diverse neurological conditions is being investigated. New methods have increased the understanding of dural lymphatics, but much is still being learned about their heterogeneity, intracranial and extracranial connections, and factors that govern their functions and maintenance. Current research is striving to understand the regulation of CSF drainage and influence of brain antigen and immune cell transit through dural lymphatics on aging impairments and the severity of neurodegenerative and neuroimmune diseases, traumatic brain injury, stroke and other neurological disorders. Achieving these goals should lead to safe and effective methods for manipulating CSF clearance through dural lymphatics for therapeutic benefit. McDonald et al. review studies of lymphatic vessels in the dural layer of the meninges and discuss the role of lymphatics in the function and maintenance of the central nervous system, aging, neuroimmunity and the progression of neurological disorders such as Alzheimer’s disease and Parkinson’s disease.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 9","pages":"1047-1065"},"PeriodicalIF":10.8,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145024902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature cardiovascular research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1