首页 > 最新文献

Nature cardiovascular research最新文献

英文 中文
Oxidative phosphorylation is required for cardiomyocyte re-differentiation and long-term fish heart regeneration 氧化磷酸化是心肌细胞再分化和长期心脏再生所必需的。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-10-01 DOI: 10.1038/s44161-025-00718-x
Konstantinos Lekkos, Zhilian Hu, Phong D. Nguyen, Hessel Honkoop, Esra Sengul, Rita Alonaizan, Jana Koth, Jun Ying, Madeleine E. Lemieux, Alisha Kenward, Sean Keeley, Bastiaan Spanjaard, Brett W. C. Kennedy, Xin Sun, Katherine Banecki, Helen G. Potts, Gennaro Ruggiero, James Montgomery, Daniela Panáková, Jan Philipp Junker, Lisa C. Heather, Xiaonan Wang, Juan Manuel Gonzalez-Rosa, Jeroen Bakkers, Mathilda T. M. Mommersteeg
In contrast to humans, fish can fully regenerate their hearts after cardiac injury. However, not all fish have the same regenerative potential, allowing comparative inter-species and intra-species analysis to identify the mechanisms controlling successful heart regeneration. Here we report a differential regenerative response to cardiac cryo-injury among different wild-type zebrafish strains. Correlating these data with single-cell and bulk RNA sequencing data, we identify oxidative phosphorylation (OXPHOS) as a positive regulator of long-term regenerative outcome. OXPHOS levels, driven by glycolysis through the malate-aspartate shuttle, increase as soon as cardiomyocyte proliferation decreases, and this increase is required for cardiomyocyte re-differentiation and successful long-term regeneration. Reduced upregulation of OXPHOS in Astyanax mexicanus cavefish results in the absence of a dynamic temporal sarcomere gene expression program during cardiomyocyte re-differentiation. These findings challenge the assumption that OXPHOS inhibits regeneration and reveal targetable pathways to enhance heart repair in humans after myocardial infarction. Lekkos et al. show that a metabolic switch toward oxidative phosphorylation is required for cardiomyocyte re-differentiation and heart regeneration after injury in fish.
与人类不同,鱼在心脏受伤后可以完全再生心脏。然而,并不是所有的鱼类都具有相同的再生潜力,因此可以通过物种间和物种内的比较分析来确定控制成功心脏再生的机制。在这里,我们报告了不同野生型斑马鱼株对心脏低温损伤的不同再生反应。将这些数据与单细胞和大量RNA测序数据相关联,我们确定氧化磷酸化(OXPHOS)是长期再生结果的积极调节因子。在苹果酸-天冬氨酸穿梭的糖酵解作用下,OXPHOS水平随着心肌细胞增殖的减少而增加,这种增加是心肌细胞再分化和成功的长期再生所必需的。在Astyanax mexicanus洞穴鱼中,OXPHOS上调的减少导致心肌细胞再分化过程中动态颞肌节基因表达程序的缺失。这些发现挑战了OXPHOS抑制再生的假设,并揭示了心肌梗死后增强人类心脏修复的可靶向途径。
{"title":"Oxidative phosphorylation is required for cardiomyocyte re-differentiation and long-term fish heart regeneration","authors":"Konstantinos Lekkos, Zhilian Hu, Phong D. Nguyen, Hessel Honkoop, Esra Sengul, Rita Alonaizan, Jana Koth, Jun Ying, Madeleine E. Lemieux, Alisha Kenward, Sean Keeley, Bastiaan Spanjaard, Brett W. C. Kennedy, Xin Sun, Katherine Banecki, Helen G. Potts, Gennaro Ruggiero, James Montgomery, Daniela Panáková, Jan Philipp Junker, Lisa C. Heather, Xiaonan Wang, Juan Manuel Gonzalez-Rosa, Jeroen Bakkers, Mathilda T. M. Mommersteeg","doi":"10.1038/s44161-025-00718-x","DOIUrl":"10.1038/s44161-025-00718-x","url":null,"abstract":"In contrast to humans, fish can fully regenerate their hearts after cardiac injury. However, not all fish have the same regenerative potential, allowing comparative inter-species and intra-species analysis to identify the mechanisms controlling successful heart regeneration. Here we report a differential regenerative response to cardiac cryo-injury among different wild-type zebrafish strains. Correlating these data with single-cell and bulk RNA sequencing data, we identify oxidative phosphorylation (OXPHOS) as a positive regulator of long-term regenerative outcome. OXPHOS levels, driven by glycolysis through the malate-aspartate shuttle, increase as soon as cardiomyocyte proliferation decreases, and this increase is required for cardiomyocyte re-differentiation and successful long-term regeneration. Reduced upregulation of OXPHOS in Astyanax mexicanus cavefish results in the absence of a dynamic temporal sarcomere gene expression program during cardiomyocyte re-differentiation. These findings challenge the assumption that OXPHOS inhibits regeneration and reveal targetable pathways to enhance heart repair in humans after myocardial infarction. Lekkos et al. show that a metabolic switch toward oxidative phosphorylation is required for cardiomyocyte re-differentiation and heart regeneration after injury in fish.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1363-1380"},"PeriodicalIF":10.8,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44161-025-00718-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145208348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted glycophagy ATG8 therapy reverses diabetic heart disease in mice and in human engineered cardiac tissues 靶向糖吞噬ATG8治疗在小鼠和人类工程心脏组织中逆转糖尿病性心脏病。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-29 DOI: 10.1038/s44161-025-00726-x
K. M. Mellor, U. Varma, P. Koutsifeli, C. L. Curl, J. V. Janssens, L. J. Daniels, G. B. Bernasochi, A. J. A. Raaijmakers, M. Annandale, X. Li, S. L. James, D. J. Taylor, K. Raedschelders, K. L. Weeks, R. J. Mills, R. G. Parton, X. Hu, J. R. Bell, T. J. O’Brien, R. Katare, E. R. Porrello, J. E. Hudson, R. P. Xiao, J. E. Van Eyk, R. A. Gottlieb, L. M. D. Delbridge
Diabetic heart disease is highly prevalent and is associated with the early development of impaired diastolic relaxation. The mechanisms of diabetic heart disease are poorly understood, and it is a condition for which there are no targeted therapies. Recently, disrupted glycogen autophagy (glycophagy) and glycogen accumulation have been identified in the diabetic heart. Glycophagy involves glycogen receptor binding and linking with an ATG8 protein to locate and degrade glycogen within an intracellular phagolysosome. Here we show that glycogen receptor protein starch binding domain protein 1 (STBD1) is mobilized early in the cardiac glycogen response to metabolic challenge in vivo, and that deficiency of a specific ATG8 family protein, γ-aminobutyric acid type A receptor-associated protein-like 1 (GABARAPL1), is associated with diastolic dysfunction in diabetes. Gabarapl1 gene delivery treatment remediated cardiomyocyte and cardiac diastolic dysfunction in type 2 diabetic mice and the diastolic performance of ‘diabetic’ human induced pluripotent stem cell-derived cardiac organoids. We identify glycophagy dysregulation as a mechanism and potential treatment target for diabetic heart disease. Mellor et al. report that deficiency of GABARAPL1, an ATG8-specific linking protein, impairs diastolic function in diabetic mice. This effect can be reversed by gene delivery of the gene encoding GABARAPL1 in diabetic mice and a human organoid model of type 2 diabetes.
糖尿病性心脏病非常普遍,并与舒张舒张受损的早期发展有关。糖尿病性心脏病的发病机制尚不清楚,而且目前还没有针对性的治疗方法。最近,在糖尿病心脏中发现了糖原自噬(glycophagy)和糖原积累的中断。糖吞噬涉及糖原受体与ATG8蛋白结合,在细胞内吞噬溶酶体中定位和降解糖原。本研究表明糖原受体蛋白淀粉结合域蛋白1 (STBD1)在体内对代谢挑战的心脏糖原反应的早期被动员,并且特异性ATG8家族蛋白γ-氨基丁酸a型受体相关蛋白样1 (GABARAPL1)的缺乏与糖尿病舒张功能障碍有关。Gabarapl1基因递送治疗可修复2型糖尿病小鼠的心肌细胞和心脏舒张功能障碍,以及“糖尿病”人类诱导的多能干细胞衍生的心脏类器官的舒张功能。我们确定糖吞噬失调是糖尿病性心脏病的机制和潜在的治疗靶点。
{"title":"Targeted glycophagy ATG8 therapy reverses diabetic heart disease in mice and in human engineered cardiac tissues","authors":"K. M. Mellor, U. Varma, P. Koutsifeli, C. L. Curl, J. V. Janssens, L. J. Daniels, G. B. Bernasochi, A. J. A. Raaijmakers, M. Annandale, X. Li, S. L. James, D. J. Taylor, K. Raedschelders, K. L. Weeks, R. J. Mills, R. G. Parton, X. Hu, J. R. Bell, T. J. O’Brien, R. Katare, E. R. Porrello, J. E. Hudson, R. P. Xiao, J. E. Van Eyk, R. A. Gottlieb, L. M. D. Delbridge","doi":"10.1038/s44161-025-00726-x","DOIUrl":"10.1038/s44161-025-00726-x","url":null,"abstract":"Diabetic heart disease is highly prevalent and is associated with the early development of impaired diastolic relaxation. The mechanisms of diabetic heart disease are poorly understood, and it is a condition for which there are no targeted therapies. Recently, disrupted glycogen autophagy (glycophagy) and glycogen accumulation have been identified in the diabetic heart. Glycophagy involves glycogen receptor binding and linking with an ATG8 protein to locate and degrade glycogen within an intracellular phagolysosome. Here we show that glycogen receptor protein starch binding domain protein 1 (STBD1) is mobilized early in the cardiac glycogen response to metabolic challenge in vivo, and that deficiency of a specific ATG8 family protein, γ-aminobutyric acid type A receptor-associated protein-like 1 (GABARAPL1), is associated with diastolic dysfunction in diabetes. Gabarapl1 gene delivery treatment remediated cardiomyocyte and cardiac diastolic dysfunction in type 2 diabetic mice and the diastolic performance of ‘diabetic’ human induced pluripotent stem cell-derived cardiac organoids. We identify glycophagy dysregulation as a mechanism and potential treatment target for diabetic heart disease. Mellor et al. report that deficiency of GABARAPL1, an ATG8-specific linking protein, impairs diastolic function in diabetic mice. This effect can be reversed by gene delivery of the gene encoding GABARAPL1 in diabetic mice and a human organoid model of type 2 diabetes.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 11","pages":"1487-1500"},"PeriodicalIF":10.8,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145194142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association of air pollution exposure and genetic susceptibility with increased risk of thoracic aortic aneurysm and dissection 空气污染暴露和遗传易感性与胸主动脉瘤和夹层风险增加的关系。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-26 DOI: 10.1038/s44161-025-00719-w
Yudiyang Ma, Jianing Wang, Linxi Tang, Feipeng Cui, Lei Zheng, Meiqi Xing, Yaohua Tian
Thoracic aortic aneurysm and dissection (TAAD) represent a serious health threat, yet the role of air pollution exposure on its development has been underexplored. Here we investigate the relationships between air pollutants and TAAD incidence. In a Cox’s proportional hazards model, hazard ratios (95% confidence intervals) of TAAD for an interquartile range increase in air pollutants were 2.15 (1.96, 2.35) for particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5; per 2.15 μg m−3 increase), 1.76 (1.61, 1.92) for PM10 (per 2.99 μg m−3 increase), 1.45 (1.34, 1.58) for NO2 (per 6.97 μg m−3 increase) and 1.40 (1.29, 1.51) for NOx (per 11.58 μg m−3 increase). These estimates remained consistent when using inverse probability weighting and generalized propensity score methods. Furthermore, this study revealed potential joint effects and interactions between air pollutants and genetic susceptibility on TAAD risk, especially the multiplicative and additive interactions between PM2.5 and genetic susceptibility. Air pollution exposure is associated with an increased TAAD risk and genetic susceptibility modifies this association. Ma et al. demonstrate that air pollution is associated with an increased risk of thoracic aortic aneurysm and dissection (TAAD), and that genetic susceptibility to TAAD amplifies this risk through multiplicative and additive interactions.
胸主动脉瘤及夹层(TAAD)是一种严重的健康威胁,但空气污染暴露在其发展中的作用尚未得到充分探讨。本文研究了空气污染物与TAAD发病率之间的关系。在Cox比例风险模型中,空气污染物在四分位数范围内增加的TAAD风险比(95%置信区间)分别为:空气动力学直径≤2.5 μm的颗粒物(PM2.5;每增加2.15 μg m-3)为2.15 (1.96,2.35),PM10(每增加2.99 μg m-3)为1.76 (1.61,1.92),NO2(每增加6.97 μg m-3)为1.45 (1.34,1.58),NOx(每增加11.58 μg m-3)为1.40(1.29,1.51)。当使用逆概率加权和广义倾向评分方法时,这些估计保持一致。此外,本研究揭示了空气污染物与遗传易感性对TAAD风险的潜在联合效应和相互作用,特别是PM2.5与遗传易感性之间的乘法和加性相互作用。空气污染暴露与TAAD风险增加有关,遗传易感性改变了这种关联。
{"title":"Association of air pollution exposure and genetic susceptibility with increased risk of thoracic aortic aneurysm and dissection","authors":"Yudiyang Ma, Jianing Wang, Linxi Tang, Feipeng Cui, Lei Zheng, Meiqi Xing, Yaohua Tian","doi":"10.1038/s44161-025-00719-w","DOIUrl":"10.1038/s44161-025-00719-w","url":null,"abstract":"Thoracic aortic aneurysm and dissection (TAAD) represent a serious health threat, yet the role of air pollution exposure on its development has been underexplored. Here we investigate the relationships between air pollutants and TAAD incidence. In a Cox’s proportional hazards model, hazard ratios (95% confidence intervals) of TAAD for an interquartile range increase in air pollutants were 2.15 (1.96, 2.35) for particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5; per 2.15 μg m−3 increase), 1.76 (1.61, 1.92) for PM10 (per 2.99 μg m−3 increase), 1.45 (1.34, 1.58) for NO2 (per 6.97 μg m−3 increase) and 1.40 (1.29, 1.51) for NOx (per 11.58 μg m−3 increase). These estimates remained consistent when using inverse probability weighting and generalized propensity score methods. Furthermore, this study revealed potential joint effects and interactions between air pollutants and genetic susceptibility on TAAD risk, especially the multiplicative and additive interactions between PM2.5 and genetic susceptibility. Air pollution exposure is associated with an increased TAAD risk and genetic susceptibility modifies this association. Ma et al. demonstrate that air pollution is associated with an increased risk of thoracic aortic aneurysm and dissection (TAAD), and that genetic susceptibility to TAAD amplifies this risk through multiplicative and additive interactions.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1397-1408"},"PeriodicalIF":10.8,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145180705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction of PGC-1α and GDF15 in the stressed heart 应激心脏中PGC-1α和GDF15的相互作用。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-26 DOI: 10.1038/s44161-025-00729-8
Rong Tian
Upregulation of PGC-1α in the mouse heart during exercise training maintains mitochondrial homeostasis and promotes physiological hypertrophy by suppressing the stress-induced production of GDF15 in cardiomyocytes independently of its circulating levels. Identification of this cell-autonomous signaling circuit provides novel insights into the functional role of GDF15 in health and diseases. Future studies are warranted to investigate the interaction of PGC-1α and GDF15 in other stress conditions and in human subjects.
运动训练期间小鼠心脏中PGC-1α的上调维持线粒体稳态,并通过抑制应激诱导的心肌细胞中GDF15的产生而促进生理性肥大,而不依赖于其循环水平。这种细胞自主信号通路的鉴定为GDF15在健康和疾病中的功能作用提供了新的见解。未来的研究需要进一步研究PGC-1α和GDF15在其他应激条件下和人类受试者中的相互作用。
{"title":"Interaction of PGC-1α and GDF15 in the stressed heart","authors":"Rong Tian","doi":"10.1038/s44161-025-00729-8","DOIUrl":"10.1038/s44161-025-00729-8","url":null,"abstract":"Upregulation of PGC-1α in the mouse heart during exercise training maintains mitochondrial homeostasis and promotes physiological hypertrophy by suppressing the stress-induced production of GDF15 in cardiomyocytes independently of its circulating levels. Identification of this cell-autonomous signaling circuit provides novel insights into the functional role of GDF15 in health and diseases. Future studies are warranted to investigate the interaction of PGC-1α and GDF15 in other stress conditions and in human subjects.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1216-1218"},"PeriodicalIF":10.8,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145180765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Human ocular fluid outflow on-chip reveals trabecular meshwork-mediated Schlemm’s canal endothelial dysfunction in steroid-induced glaucoma 作者更正:芯片上的人眼液流出显示激素性青光眼中小梁网介导的施莱姆管内皮功能障碍。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-26 DOI: 10.1038/s44161-025-00730-1
Renhao Lu, Anna M. Kolarzyk, W. Daniel Stamer, Esak Lee
{"title":"Author Correction: Human ocular fluid outflow on-chip reveals trabecular meshwork-mediated Schlemm’s canal endothelial dysfunction in steroid-induced glaucoma","authors":"Renhao Lu, Anna M. Kolarzyk, W. Daniel Stamer, Esak Lee","doi":"10.1038/s44161-025-00730-1","DOIUrl":"10.1038/s44161-025-00730-1","url":null,"abstract":"","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1439-1439"},"PeriodicalIF":10.8,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44161-025-00730-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145180686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative proteomics of formalin-fixed, paraffin-embedded cardiac specimens uncovers protein signatures of specialized regions and patient groups 福尔马林固定,石蜡包埋心脏标本的定量蛋白质组学揭示了特定区域和患者群体的蛋白质特征。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-26 DOI: 10.1038/s44161-025-00721-2
Jonathan S. Achter, Thomas H. L. Jensen, Paola Pisano, Johan S. Bundgaard, Daniel Raaschou-Oddershede, Kasper Rossing, Michael Wierer, Alicia Lundby
Proteomic technologies have advanced our understanding of disease mechanisms, patient stratification and targeted therapies. However, applying cardiac proteomics in translational research requires overcoming the barrier of tissue accessibility. Formalin-fixed, paraffin-embedded (FFPE) heart tissue, widely preserved in pathology collections, remains a largely untapped resource. Here we demonstrate that proteomic profiles are well preserved in FFPE human heart specimens and compatible with high-resolution, quantitative analysis. Quantifying approximately 4,000 proteins per sample, we show this approach effectively distinguishes disease states and subanatomical regions, revealing distinct underlying protein signatures. Specifically, the human sinoatrial node exhibited enrichment of collagen VI and G protein-coupled receptor signaling. Myocardial biopsies from patients with arrhythmogenic cardiomyopathy were characterized by fibrosis and metabolic/cytoskeletal derangements, clearly separating them from donor heart biopsies. This study establishes FFPE heart tissue as a robust resource for cardiac proteomics, enabling retrospective molecular profiling at scale and unlocking archived specimens for disease discovery and precision cardiology. Achter et al. established a protocol for quantitative proteomic profiling of formalin-fixed, paraffin-embedded human cardiac tissues, benchmarked against fresh-frozen samples. They applied it to stratify patients with arrhythmogenic cardiomyopathy and performed deep proteomic analysis of the human sinoatrial node.
蛋白质组学技术提高了我们对疾病机制、患者分层和靶向治疗的理解。然而,将心脏蛋白质组学应用于转化研究需要克服组织可及性的障碍。福尔马林固定,石蜡包埋(FFPE)心脏组织,广泛保存在病理收藏,仍然是一个很大程度上未开发的资源。在这里,我们证明了FFPE人类心脏标本的蛋白质组学特征得到了很好的保存,并且与高分辨率的定量分析相兼容。每个样本量化约4000个蛋白质,我们表明这种方法有效地区分疾病状态和亚解剖区域,揭示不同的潜在蛋白质特征。具体来说,人窦房结表现出胶原VI和G蛋白偶联受体信号的富集。心律失常性心肌病患者的心肌活检表现为纤维化和代谢/细胞骨架紊乱,与供体心脏活检明显不同。这项研究确立了FFPE心脏组织作为心脏蛋白质组学的强大资源,使大规模的回顾性分子分析成为可能,并为疾病发现和精确心脏病学解锁存档标本。
{"title":"Quantitative proteomics of formalin-fixed, paraffin-embedded cardiac specimens uncovers protein signatures of specialized regions and patient groups","authors":"Jonathan S. Achter, Thomas H. L. Jensen, Paola Pisano, Johan S. Bundgaard, Daniel Raaschou-Oddershede, Kasper Rossing, Michael Wierer, Alicia Lundby","doi":"10.1038/s44161-025-00721-2","DOIUrl":"10.1038/s44161-025-00721-2","url":null,"abstract":"Proteomic technologies have advanced our understanding of disease mechanisms, patient stratification and targeted therapies. However, applying cardiac proteomics in translational research requires overcoming the barrier of tissue accessibility. Formalin-fixed, paraffin-embedded (FFPE) heart tissue, widely preserved in pathology collections, remains a largely untapped resource. Here we demonstrate that proteomic profiles are well preserved in FFPE human heart specimens and compatible with high-resolution, quantitative analysis. Quantifying approximately 4,000 proteins per sample, we show this approach effectively distinguishes disease states and subanatomical regions, revealing distinct underlying protein signatures. Specifically, the human sinoatrial node exhibited enrichment of collagen VI and G protein-coupled receptor signaling. Myocardial biopsies from patients with arrhythmogenic cardiomyopathy were characterized by fibrosis and metabolic/cytoskeletal derangements, clearly separating them from donor heart biopsies. This study establishes FFPE heart tissue as a robust resource for cardiac proteomics, enabling retrospective molecular profiling at scale and unlocking archived specimens for disease discovery and precision cardiology. Achter et al. established a protocol for quantitative proteomic profiling of formalin-fixed, paraffin-embedded human cardiac tissues, benchmarked against fresh-frozen samples. They applied it to stratify patients with arrhythmogenic cardiomyopathy and performed deep proteomic analysis of the human sinoatrial node.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1409-1423"},"PeriodicalIF":10.8,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44161-025-00721-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145180745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing cerebral microvascular volumetric with high-resolution 4D cerebral blood volume MRI at 7 T 7 T高分辨率4D脑血容量MRI评估脑微血管容量。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-25 DOI: 10.1038/s44161-025-00722-1
Fanhua Guo, Chenyang Zhao, Qinyang Shou, Ning Jin, Kay Jann, Xingfeng Shao, Danny JJ Wang
Arterial pulsation is crucial for promoting neurofluid circulation. Most previous studies quantified pulsatility via blood velocity-based indices in large arteries. Here we propose an innovative method to quantify the microvascular volumetric pulsatility index (mvPI) across cortical layers and white matter (WM) using high-resolution four-dimensional (4D) vascular space occupancy (VASO) and arterial spin labeling (ASL) magnetic resonance imaging (MRI) at 7 T with simultaneous pulse recording. We assessed aging-related changes in mvPI in 11 young (28.4 ± 5.8 years) and 12 older (60.2 ± 6.8 years) participants and compared mvPI with large artery pulsatility assessed by 4D-flow MRI. mvPI peaked in the pial surface (0.18 ± 0.04). Deep WM mvPI was significantly higher in older participants (P = 0.006) than young ones. Deep WM mvPI correlated with large artery velocity PI (r = 0.56, P = 0.0099). We performed test–retest scans, non-parametric reliability test and simulations to demonstrate the reproducibility and accuracy of the method. In conclusion, our non-invasive method enables in vivo fine-grained measurement of mvPI, with implications for glymphatic function, aging and neurodegenerative diseases. Guo, Zhao and colleagues use high-resolution 7 T MRI to measure the pulsatility of cerebral small vessels and uncover age-related differences in vascular dynamics, which offer new insights into mechanisms of brain aging and vascular risks.
动脉搏动对促进神经液循环至关重要。大多数先前的研究都是通过以血流速度为基础的大动脉指标来量化脉搏。在此,我们提出了一种创新的方法,利用高分辨率四维(4D)血管空间占用(VASO)和动脉自旋标记(ASL)磁共振成像(MRI)在7 T时同时记录脉搏,量化皮层层和白质(WM)的微血管体积脉动指数(mvPI)。我们评估了11名年轻人(28.4±5.8岁)和12名老年人(60.2±6.8岁)的mvPI与年龄相关的变化,并将mvPI与4d血流MRI评估的大动脉脉搏进行了比较。mvPI在枕面最高(0.18±0.04)。老年参与者的深度WM mvPI显著高于年轻参与者(P = 0.006)。深部WM mvPI与大动脉流速PI相关(r = 0.56, P = 0.0099)。我们进行了测试-重测试扫描、非参数可靠性测试和模拟,以证明该方法的重复性和准确性。总之,我们的非侵入性方法能够在体内细粒度测量mvPI,对淋巴功能、衰老和神经退行性疾病具有重要意义。
{"title":"Assessing cerebral microvascular volumetric with high-resolution 4D cerebral blood volume MRI at 7 T","authors":"Fanhua Guo, Chenyang Zhao, Qinyang Shou, Ning Jin, Kay Jann, Xingfeng Shao, Danny JJ Wang","doi":"10.1038/s44161-025-00722-1","DOIUrl":"10.1038/s44161-025-00722-1","url":null,"abstract":"Arterial pulsation is crucial for promoting neurofluid circulation. Most previous studies quantified pulsatility via blood velocity-based indices in large arteries. Here we propose an innovative method to quantify the microvascular volumetric pulsatility index (mvPI) across cortical layers and white matter (WM) using high-resolution four-dimensional (4D) vascular space occupancy (VASO) and arterial spin labeling (ASL) magnetic resonance imaging (MRI) at 7 T with simultaneous pulse recording. We assessed aging-related changes in mvPI in 11 young (28.4 ± 5.8 years) and 12 older (60.2 ± 6.8 years) participants and compared mvPI with large artery pulsatility assessed by 4D-flow MRI. mvPI peaked in the pial surface (0.18 ± 0.04). Deep WM mvPI was significantly higher in older participants (P = 0.006) than young ones. Deep WM mvPI correlated with large artery velocity PI (r = 0.56, P = 0.0099). We performed test–retest scans, non-parametric reliability test and simulations to demonstrate the reproducibility and accuracy of the method. In conclusion, our non-invasive method enables in vivo fine-grained measurement of mvPI, with implications for glymphatic function, aging and neurodegenerative diseases. Guo, Zhao and colleagues use high-resolution 7 T MRI to measure the pulsatility of cerebral small vessels and uncover age-related differences in vascular dynamics, which offer new insights into mechanisms of brain aging and vascular risks.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1424-1438"},"PeriodicalIF":10.8,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44161-025-00722-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145152332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardiac adaptation to endurance exercise training requires suppression of GDF15 via PGC-1α 心脏对耐力运动训练的适应需要通过PGC-1α抑制GDF15。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-24 DOI: 10.1038/s44161-025-00712-3
Sumeet A. Khetarpal, Haobo Li, Tevis Vitale, James Rhee, Saketh Challa, Claire Castro, Steffen Pabel, Yizhi Sun, Jing Liu, Dina Bogoslavski, Ariana Vargas-Castillo, Amanda L. Smythers, Katherine A. Blackmore, Louisa Grauvogel, Melanie J. Mittenbühler, Melin J. Khandekar, Casie Curtin, Jose Max Narvaez-Paliza, Chunyan Wang, Nicholas E. Houstis, Hans-Georg Sprenger, Sean J. Jurgens, Kiran J. Biddinger, Alexandra Kuznetsov, Rebecca Freeman, Patrick T. Ellinor, Matthias Nahrendorf, Joao A. Paulo, Steven P. Gygi, Phillip A. Dumesic, Aarti Asnani, Krishna G. Aragam, Pere Puigserver, Jason D. Roh, Bruce M. Spiegelman, Anthony Rosenzweig
Endurance exercise promotes adaptive growth and improved function of myocytes, which is supported by increased mitochondrial activity. In skeletal muscle, these benefits are in part transcriptionally coordinated by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). The importance of PGC-1α to exercise-induced adaptations in the heart has been unclear. Here we show that deleting PGC-1α specifically in cardiomyocytes prevents the expected benefits from exercise training and instead leads to heart failure after just 6 weeks of training. Consistent with this, in humans, rare genetic variants in PPARGC1A, which encodes PGC-1α, are associated with increased risk of heart failure. In this model, we identify growth differentiation factor 15 (GDF15) as a key heart-secreted mediator that contributes to this dysfunction. Blocking cardiac Gdf15 expression improves cardiac performance and exercise capacity in these mice. Finally, in human heart tissue, lower cardiomyocyte PPARGC1A expression is associated with higher GDF15 expression and reduced cardiomyocyte density. These findings uncover a crucial role for cardiomyocyte PGC-1α in enabling healthy cardiac adaptation to exercise in part through suppression of GDF15. Khetarpal et al. show that the metabolic regulator PGC-1α is essential in heart muscle cells for exercise-driven cardiac growth, and that suppression of the stress-induced myokine GDF15 is required to enable cardiomyocyte adaptations to training.
耐力运动促进适应性生长和改善肌细胞的功能,这是由增加线粒体活性支持的。在骨骼肌中,这些益处部分是由过氧化物酶体增殖物激活受体γ辅助激活因子1- α (PGC-1α)转录协调的。PGC-1α在心脏运动诱导的适应性中的重要性尚不清楚。在这里,我们表明,在心肌细胞中特异性地删除PGC-1α会阻止运动训练带来的预期益处,反而会在仅仅6周的训练后导致心力衰竭。与此一致的是,在人类中,编码PGC-1α的PPARGC1A的罕见遗传变异与心力衰竭的风险增加有关。在这个模型中,我们确定生长分化因子15 (GDF15)是导致这种功能障碍的关键心脏分泌介质。阻断心脏Gdf15表达可改善这些小鼠的心脏功能和运动能力。最后,在人类心脏组织中,心肌细胞PPARGC1A的低表达与GDF15的高表达和心肌细胞密度的降低相关。这些发现揭示了心肌细胞PGC-1α在部分通过抑制GDF15使健康心脏适应运动中的关键作用。
{"title":"Cardiac adaptation to endurance exercise training requires suppression of GDF15 via PGC-1α","authors":"Sumeet A. Khetarpal, Haobo Li, Tevis Vitale, James Rhee, Saketh Challa, Claire Castro, Steffen Pabel, Yizhi Sun, Jing Liu, Dina Bogoslavski, Ariana Vargas-Castillo, Amanda L. Smythers, Katherine A. Blackmore, Louisa Grauvogel, Melanie J. Mittenbühler, Melin J. Khandekar, Casie Curtin, Jose Max Narvaez-Paliza, Chunyan Wang, Nicholas E. Houstis, Hans-Georg Sprenger, Sean J. Jurgens, Kiran J. Biddinger, Alexandra Kuznetsov, Rebecca Freeman, Patrick T. Ellinor, Matthias Nahrendorf, Joao A. Paulo, Steven P. Gygi, Phillip A. Dumesic, Aarti Asnani, Krishna G. Aragam, Pere Puigserver, Jason D. Roh, Bruce M. Spiegelman, Anthony Rosenzweig","doi":"10.1038/s44161-025-00712-3","DOIUrl":"10.1038/s44161-025-00712-3","url":null,"abstract":"Endurance exercise promotes adaptive growth and improved function of myocytes, which is supported by increased mitochondrial activity. In skeletal muscle, these benefits are in part transcriptionally coordinated by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). The importance of PGC-1α to exercise-induced adaptations in the heart has been unclear. Here we show that deleting PGC-1α specifically in cardiomyocytes prevents the expected benefits from exercise training and instead leads to heart failure after just 6 weeks of training. Consistent with this, in humans, rare genetic variants in PPARGC1A, which encodes PGC-1α, are associated with increased risk of heart failure. In this model, we identify growth differentiation factor 15 (GDF15) as a key heart-secreted mediator that contributes to this dysfunction. Blocking cardiac Gdf15 expression improves cardiac performance and exercise capacity in these mice. Finally, in human heart tissue, lower cardiomyocyte PPARGC1A expression is associated with higher GDF15 expression and reduced cardiomyocyte density. These findings uncover a crucial role for cardiomyocyte PGC-1α in enabling healthy cardiac adaptation to exercise in part through suppression of GDF15. Khetarpal et al. show that the metabolic regulator PGC-1α is essential in heart muscle cells for exercise-driven cardiac growth, and that suppression of the stress-induced myokine GDF15 is required to enable cardiomyocyte adaptations to training.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1277-1294"},"PeriodicalIF":10.8,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145139652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: BMAL1–HIF2A mediates diurnal cardioprotection during myocardial injury 发布者更正:BMAL1-HIF2A介导心肌损伤期间的昼夜心脏保护。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-23 DOI: 10.1038/s44161-025-00731-0
Elisa Martini
{"title":"Publisher Correction: BMAL1–HIF2A mediates diurnal cardioprotection during myocardial injury","authors":"Elisa Martini","doi":"10.1038/s44161-025-00731-0","DOIUrl":"10.1038/s44161-025-00731-0","url":null,"abstract":"","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1440-1440"},"PeriodicalIF":10.8,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44161-025-00731-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145133085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardiac lymphatics retain LYVE-1-dependent macrophages during neonatal mouse heart regeneration 新生小鼠心脏再生过程中,心脏淋巴管保留lyve -1依赖性巨噬细胞。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-17 DOI: 10.1038/s44161-025-00711-4
Benjamin G. Chapman, Konstantinos Klaourakis, Carla de Villiers, Mala Gunadasa-Rohling, Maria-Alexa Cosma, Susanna T. E. Cooper, Kshitij Mohan, Michael Weinberger, Carolyn A. Carr, David R. Greaves, David G. Jackson, Daniela Pezzolla, Robin P. Choudhury, Joaquim M. Vieira, Paul R. Riley
In adult mice, myocardial infarction (MI) activates the cardiac lymphatics, which undergo sprouting angiogenesis (lymphangiogenesis), drain interstitial fluid and traffic macrophages to mediastinal lymph nodes (MLNs). This prevents edema and reduces inflammatory/fibrotic immune cell content to improve cardiac function. Here we investigated the role of cardiac lymphatics and macrophage clearance across the neonatal mouse regenerative window. The response to injury revealed limited lymphangiogenesis and clearance of macrophages from postnatal day 1 compared to postnatal day 7 infarcted hearts. This coincides with the maturation of lymphatic endothelial cell junctions from impermeable to permeable and with altered signaling between lymphatic endothelial cells and macrophages. Mice lacking the lymphatic endothelial receptor-1 (LYVE-1), where macrophage lymphatic trafficking is impaired in adults, experienced worse long-term outcomes after MI induced at postnatal day 1, suggesting an alternative role for LYVE-1 in macrophages. Macrophage-specific deletion of Lyve1 during neonatal heart injury impaired heart regeneration. This study demonstrates that immature cardiac lymphatics are impermeable to clearance in early neonates, ensuring retention of pro-regenerative LYVE-1-dependent macrophages. Chapman, Klaourakis and colleagues reveal that a lymphatic vasculature with poor clearance capacity in perinatal, regeneration-competent mouse hearts is required to retain pro-reparative macrophages and allow cardiac regeneration.
在成年小鼠中,心肌梗死(MI)激活心脏淋巴管,使其进行新生血管生成(淋巴管生成),排出间质液并将巨噬细胞输送到纵隔淋巴结(MLNs)。这可以防止水肿,减少炎症/纤维化免疫细胞含量,改善心功能。在这里,我们研究了心脏淋巴管和巨噬细胞清除在新生小鼠再生窗口中的作用。对损伤的反应显示,与出生后第7天梗死的心脏相比,出生后第1天的淋巴管生成和巨噬细胞清除有限。这与淋巴内皮细胞连接从不可渗透到可渗透的成熟以及淋巴内皮细胞和巨噬细胞之间信号传导的改变相一致。缺乏淋巴内皮受体-1 (LYVE-1)的小鼠,巨噬细胞淋巴运输在成人中受损,在出生后第1天诱导心肌梗死后的长期预后更差,这表明LYVE-1在巨噬细胞中起着另一种作用。新生儿心脏损伤中巨噬细胞特异性缺失Lyve1损害心脏再生。这项研究表明,在早期新生儿中,未成熟的心脏淋巴无法被清除,从而确保了促进再生的lyve -1依赖性巨噬细胞的保留。
{"title":"Cardiac lymphatics retain LYVE-1-dependent macrophages during neonatal mouse heart regeneration","authors":"Benjamin G. Chapman, Konstantinos Klaourakis, Carla de Villiers, Mala Gunadasa-Rohling, Maria-Alexa Cosma, Susanna T. E. Cooper, Kshitij Mohan, Michael Weinberger, Carolyn A. Carr, David R. Greaves, David G. Jackson, Daniela Pezzolla, Robin P. Choudhury, Joaquim M. Vieira, Paul R. Riley","doi":"10.1038/s44161-025-00711-4","DOIUrl":"10.1038/s44161-025-00711-4","url":null,"abstract":"In adult mice, myocardial infarction (MI) activates the cardiac lymphatics, which undergo sprouting angiogenesis (lymphangiogenesis), drain interstitial fluid and traffic macrophages to mediastinal lymph nodes (MLNs). This prevents edema and reduces inflammatory/fibrotic immune cell content to improve cardiac function. Here we investigated the role of cardiac lymphatics and macrophage clearance across the neonatal mouse regenerative window. The response to injury revealed limited lymphangiogenesis and clearance of macrophages from postnatal day 1 compared to postnatal day 7 infarcted hearts. This coincides with the maturation of lymphatic endothelial cell junctions from impermeable to permeable and with altered signaling between lymphatic endothelial cells and macrophages. Mice lacking the lymphatic endothelial receptor-1 (LYVE-1), where macrophage lymphatic trafficking is impaired in adults, experienced worse long-term outcomes after MI induced at postnatal day 1, suggesting an alternative role for LYVE-1 in macrophages. Macrophage-specific deletion of Lyve1 during neonatal heart injury impaired heart regeneration. This study demonstrates that immature cardiac lymphatics are impermeable to clearance in early neonates, ensuring retention of pro-regenerative LYVE-1-dependent macrophages. Chapman, Klaourakis and colleagues reveal that a lymphatic vasculature with poor clearance capacity in perinatal, regeneration-competent mouse hearts is required to retain pro-reparative macrophages and allow cardiac regeneration.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1258-1276"},"PeriodicalIF":10.8,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44161-025-00711-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145081798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature cardiovascular research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1