首页 > 最新文献

Nature cardiovascular research最新文献

英文 中文
Correlative imaging integrates electrophysiology with three-dimensional murine heart reconstruction to reveal electrical coupling between cell types 相关成像将电生理学与三维小鼠心脏重建相结合,揭示细胞类型之间的电耦合。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-10-06 DOI: 10.1038/s44161-025-00728-9
Francesco Giardini, Camilla Olianti, Gerard A. Marchal, Fernando Campos, Valentina Romanelli, Joshua Steyer, Josef Madl, Roberto Piersanti, Giulia Arecchi, Induja Perumal Vanaja, Valentina Biasci, Eva A. Rog-Zielinska, Gabriella Nesi, Leslie M. Loew, Elisabetta Cerbai, Stephen P. Chelko, Francesco Regazzoni, Axel Loewe, Martin J. Bishop, Marco Mongillo, Peter Kohl, Tania Zaglia, Callum M. Zgierski-Johnston, Leonardo Sacconi
Cardiac fibrosis contributes to electrical conduction disturbances, yet its specific impact on conduction remains unclear, hindering predictive insight into cardiac electrophysiology and arrhythmogenesis. Arrhythmogenic cardiomyopathy is associated with fibrotic remodeling, and it accounts for most cases of stress-related arrhythmic sudden death. Here we develop a correlative imaging approach to integrate macroscale cardiac electrophysiology with three-dimensional microscale reconstructions of the ventricles. We apply this tool to a desmoglein-2 mutant mouse model to characterize the dynamics of conduction wavefronts and relate them to the underlying structural substrate. We observed that conduction through fibrotic tissue areas shows a frequency-dependent behavior, where conduction fails at high stimulation frequencies; this promotes reentrant arrhythmias, even in regions that were electrophysiologically inconspicuous at lower stimulation rates. We found that fibrotic areas undergo electrophysiological remodeling that acts as a low-pass filter for conduction, quantitatively explained by computational models informed by structural data. Collectively, our study provides a structure–function mapping pipeline and describes a pro-arrhythmogenic mechanism in arrhythmogenic cardiomyopathy. Giardini et al. present an imaging method that combines quantitative measurements of cardiac electrophysiology with high-resolution three-dimensional structural reconstructions, enabling the detection of arrhythmogenic electrical coupling between cardiomyocytes and non-myocytes in murine hearts.
心脏纤维化有助于电传导障碍,但其对传导的具体影响尚不清楚,阻碍了对心脏电生理和心律失常发生的预测性认识。心律失常性心肌病与纤维化重构有关,它是大多数与压力相关的心律失常猝死病例的病因。在这里,我们开发了一种相关的成像方法,将宏观心脏电生理与心室的三维微观重建相结合。我们将该工具应用于粘粒蛋白2突变小鼠模型,以表征传导波前的动力学,并将其与潜在的结构基质联系起来。我们观察到,通过纤维化组织区域的传导表现出频率依赖行为,在高刺激频率下传导失败;这促进了可重入性心律失常,即使在低刺激率下电生理上不明显的区域也是如此。我们发现纤维化区域经历电生理重塑,作为传导的低通滤波器,通过结构数据的计算模型定量解释。总的来说,我们的研究提供了一个结构-功能映射管道,并描述了致心律失常心肌病的促心律失常机制。
{"title":"Correlative imaging integrates electrophysiology with three-dimensional murine heart reconstruction to reveal electrical coupling between cell types","authors":"Francesco Giardini, Camilla Olianti, Gerard A. Marchal, Fernando Campos, Valentina Romanelli, Joshua Steyer, Josef Madl, Roberto Piersanti, Giulia Arecchi, Induja Perumal Vanaja, Valentina Biasci, Eva A. Rog-Zielinska, Gabriella Nesi, Leslie M. Loew, Elisabetta Cerbai, Stephen P. Chelko, Francesco Regazzoni, Axel Loewe, Martin J. Bishop, Marco Mongillo, Peter Kohl, Tania Zaglia, Callum M. Zgierski-Johnston, Leonardo Sacconi","doi":"10.1038/s44161-025-00728-9","DOIUrl":"10.1038/s44161-025-00728-9","url":null,"abstract":"Cardiac fibrosis contributes to electrical conduction disturbances, yet its specific impact on conduction remains unclear, hindering predictive insight into cardiac electrophysiology and arrhythmogenesis. Arrhythmogenic cardiomyopathy is associated with fibrotic remodeling, and it accounts for most cases of stress-related arrhythmic sudden death. Here we develop a correlative imaging approach to integrate macroscale cardiac electrophysiology with three-dimensional microscale reconstructions of the ventricles. We apply this tool to a desmoglein-2 mutant mouse model to characterize the dynamics of conduction wavefronts and relate them to the underlying structural substrate. We observed that conduction through fibrotic tissue areas shows a frequency-dependent behavior, where conduction fails at high stimulation frequencies; this promotes reentrant arrhythmias, even in regions that were electrophysiologically inconspicuous at lower stimulation rates. We found that fibrotic areas undergo electrophysiological remodeling that acts as a low-pass filter for conduction, quantitatively explained by computational models informed by structural data. Collectively, our study provides a structure–function mapping pipeline and describes a pro-arrhythmogenic mechanism in arrhythmogenic cardiomyopathy. Giardini et al. present an imaging method that combines quantitative measurements of cardiac electrophysiology with high-resolution three-dimensional structural reconstructions, enabling the detection of arrhythmogenic electrical coupling between cardiomyocytes and non-myocytes in murine hearts.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 11","pages":"1466-1486"},"PeriodicalIF":10.8,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44161-025-00728-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145240523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial multiomics of acute myocardial infarction reveals immune cell infiltration through the endocardium 急性心肌梗死的空间多组学揭示免疫细胞通过心内膜浸润。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-10-03 DOI: 10.1038/s44161-025-00717-y
Florian Wünnemann, Florian Sicklinger, Kresimir Bestak, Jose Nimo, Tobias Thiemann, Junedh M. Amrute, Mathias Nordbeck, Niklas Hartmann, Miguel A. Ibarra-Arellano, Jovan Tanevski, Margot Chazotte, Clara Heine, Norbert Frey, Kory J. Lavine, Fabian Coscia, Julio Saez-Rodriguez, Florian Leuschner, Denis Schapiro
Myocardial infarction (MI) continues to be a leading cause of death worldwide. Even though it is well established that the complex interplay between different cell types determines the overall healing response after MI, the precise changes in the tissue architecture are still poorly understood. In this study, we generated an integrative cellular map of the acute phase after murine MI using a combination of imaging-based transcriptomics (Molecular Cartography) and antibody-based highly multiplexed imaging (Sequential Immunofluorescence). This enabled us to evaluate cell type compositions and changes at subcellular resolution over time. We observed the recruitment of leukocytes to the infarcted heart through the endocardium and performed unbiased spatial proteomic analysis using Deep Visual Proteomics (DVP) to investigate the underlying mechanisms. DVP identified von Willebrand factor (vWF) as an upregulated mediator of inflammation 24 hours after MI, and functional blocking of vWF reduced the infiltration of C-C chemokine receptor 2 (Ccr2)-positive monocytes and worsened cardiac function after MI. Wünnemann et al. generate a subcellular resolution spatial map of the murine heart after myocardial infarction, revealing that immune cells can infiltrate the organ through the endocardium.
心肌梗死(MI)仍然是世界范围内死亡的主要原因。尽管已经确定不同细胞类型之间的复杂相互作用决定了心肌梗死后的整体愈合反应,但组织结构的确切变化仍然知之甚少。在这项研究中,我们使用基于成像的转录组学(分子制图)和基于抗体的高复用成像(顺序免疫荧光)相结合,生成了小鼠心肌梗死急性期的综合细胞图谱。这使我们能够评估细胞类型组成和亚细胞分辨率随时间的变化。我们观察到白细胞通过心内膜向梗死心脏募集,并使用深度视觉蛋白质组学(Deep Visual Proteomics, DVP)进行了无偏倚的空间蛋白质组学分析,以探讨其潜在机制。DVP发现心肌梗死后24小时von Willebrand factor (vWF)是一种上调的炎症介质,功能性阻断vWF可减少心肌梗死后C-C趋化因子受体2 (Ccr2)阳性单核细胞的浸润,并使心功能恶化。
{"title":"Spatial multiomics of acute myocardial infarction reveals immune cell infiltration through the endocardium","authors":"Florian Wünnemann, Florian Sicklinger, Kresimir Bestak, Jose Nimo, Tobias Thiemann, Junedh M. Amrute, Mathias Nordbeck, Niklas Hartmann, Miguel A. Ibarra-Arellano, Jovan Tanevski, Margot Chazotte, Clara Heine, Norbert Frey, Kory J. Lavine, Fabian Coscia, Julio Saez-Rodriguez, Florian Leuschner, Denis Schapiro","doi":"10.1038/s44161-025-00717-y","DOIUrl":"10.1038/s44161-025-00717-y","url":null,"abstract":"Myocardial infarction (MI) continues to be a leading cause of death worldwide. Even though it is well established that the complex interplay between different cell types determines the overall healing response after MI, the precise changes in the tissue architecture are still poorly understood. In this study, we generated an integrative cellular map of the acute phase after murine MI using a combination of imaging-based transcriptomics (Molecular Cartography) and antibody-based highly multiplexed imaging (Sequential Immunofluorescence). This enabled us to evaluate cell type compositions and changes at subcellular resolution over time. We observed the recruitment of leukocytes to the infarcted heart through the endocardium and performed unbiased spatial proteomic analysis using Deep Visual Proteomics (DVP) to investigate the underlying mechanisms. DVP identified von Willebrand factor (vWF) as an upregulated mediator of inflammation 24 hours after MI, and functional blocking of vWF reduced the infiltration of C-C chemokine receptor 2 (Ccr2)-positive monocytes and worsened cardiac function after MI. Wünnemann et al. generate a subcellular resolution spatial map of the murine heart after myocardial infarction, revealing that immune cells can infiltrate the organ through the endocardium.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1345-1362"},"PeriodicalIF":10.8,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44161-025-00717-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145226306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidative phosphorylation is required for fish heart regeneration 氧化磷酸化是鱼心脏再生所必需的。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-10-02 DOI: 10.1038/s44161-025-00723-0
Oxidative phosphorylation was considered detrimental for heart regeneration, as it produces reactive oxygen species that block cardiomyocyte proliferation by causing DNA damage. However, harnessing natural variation in the regenerative capacity of seven wild-type zebrafish strains has revealed that the activation of oxidative metabolism after proliferation is essential for cardiomyocyte maturation and successful regeneration.
氧化磷酸化被认为对心脏再生有害,因为它产生活性氧,通过引起DNA损伤来阻止心肌细胞增殖。然而,利用7种野生型斑马鱼品系再生能力的自然变异表明,增殖后氧化代谢的激活对心肌细胞成熟和成功再生至关重要。
{"title":"Oxidative phosphorylation is required for fish heart regeneration","authors":"","doi":"10.1038/s44161-025-00723-0","DOIUrl":"10.1038/s44161-025-00723-0","url":null,"abstract":"Oxidative phosphorylation was considered detrimental for heart regeneration, as it produces reactive oxygen species that block cardiomyocyte proliferation by causing DNA damage. However, harnessing natural variation in the regenerative capacity of seven wild-type zebrafish strains has revealed that the activation of oxidative metabolism after proliferation is essential for cardiomyocyte maturation and successful regeneration.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1219-1220"},"PeriodicalIF":10.8,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145214729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vutrisiran improves cardiac structure and function in individuals with transthyretin amyloidosis with cardiomyopathy Vutrisiran改善甲状腺转蛋白淀粉样变合并心肌病患者的心脏结构和功能。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-10-02 DOI: 10.1038/s44161-025-00736-9
Gerburg Schwaerzer
{"title":"Vutrisiran improves cardiac structure and function in individuals with transthyretin amyloidosis with cardiomyopathy","authors":"Gerburg Schwaerzer","doi":"10.1038/s44161-025-00736-9","DOIUrl":"10.1038/s44161-025-00736-9","url":null,"abstract":"","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1210-1210"},"PeriodicalIF":10.8,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145214749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ANTXR1 blockade enhances cardiac function in preclinical models of heart failure ANTXR1阻断可增强心衰临床前模型的心功能。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-10-02 DOI: 10.1038/s44161-025-00725-y
Nicola Boccella, GuoJun Yu, Steven Seaman, Yang Feng, Jaewon Lee, Francesco Tomassoni-Ardori, Liping Yang, Kuo-Sheng Hsu, James M. Dunleavey, Jodi Becker, Mary Beth Hilton, Karen Morris, Niza Borchin, Daeho So, Pradip Bajgain, Sudhirkumar Yanpallewar, Ryan T. Gross, Krish C. Dewan, Dawn E. Bowles, Darren A. Yuen, Lino Tessarollo, Brad St. Croix
Heart disease, a leading cause of mortality worldwide, is in urgent need of improved therapies. Fibrosis, an accumulation of collagen-rich extracellular matrix in response to injury, is a hallmark of heart disease, but clinical agents that can interfere with the fibrotic pathway do not yet exist. Here we show that ANTXR1/TEM8, a pathology-induced transmembrane protein required for collagen removal, exacerbates injury in multiple models of heart failure. Genetic disruption of Antxr1 and treatment with human neutralizing antibodies prevented heart deterioration following acute myocardial infarction. ANTXR1 pharmacological blockade also improved heart function in models of pressure overload and obesity-induced heart disease with preserved ejection fraction. Improved heart function was accompanied by enhanced exercise tolerance. Mechanistic studies revealed an ANTXR1-antibody-driven improvement in post-infarct scar formation followed by attenuation of late-stage, chronic TGFβ-mediated extracellular matrix remodeling. Thus, ANTXR1-mediated collagen turnover during heart failure is both maladaptive and druggable, providing avenues for therapeutic intervention. Boccella, Yu and colleagues reveal that the transmembrane protein ANTXR1 regulates post-infarction fibrotic remodeling, and its inhibition blocks collagen turnover and improves heart function.
心脏病是世界范围内导致死亡的主要原因,迫切需要改进治疗方法。纤维化是一种富含胶原蛋白的细胞外基质对损伤的反应,是心脏病的一个标志,但目前还不存在能够干扰纤维化途径的临床药物。本研究表明,病理诱导的胶原蛋白去除所需的跨膜蛋白ANTXR1/TEM8加重了多种心力衰竭模型的损伤。Antxr1基因破坏和人类中和抗体治疗可防止急性心肌梗死后心脏恶化。ANTXR1药物阻断也改善了压力过载和肥胖引起的射血分数保留的心脏病模型的心脏功能。心脏功能的改善伴随着运动耐受性的增强。机制研究显示,antxr1抗体驱动的梗死后瘢痕形成改善,随后是晚期慢性tgf β介导的细胞外基质重塑的衰减。因此,心衰期间antxr1介导的胶原蛋白转换既不适应又可药物化,为治疗干预提供了途径。
{"title":"ANTXR1 blockade enhances cardiac function in preclinical models of heart failure","authors":"Nicola Boccella, GuoJun Yu, Steven Seaman, Yang Feng, Jaewon Lee, Francesco Tomassoni-Ardori, Liping Yang, Kuo-Sheng Hsu, James M. Dunleavey, Jodi Becker, Mary Beth Hilton, Karen Morris, Niza Borchin, Daeho So, Pradip Bajgain, Sudhirkumar Yanpallewar, Ryan T. Gross, Krish C. Dewan, Dawn E. Bowles, Darren A. Yuen, Lino Tessarollo, Brad St. Croix","doi":"10.1038/s44161-025-00725-y","DOIUrl":"10.1038/s44161-025-00725-y","url":null,"abstract":"Heart disease, a leading cause of mortality worldwide, is in urgent need of improved therapies. Fibrosis, an accumulation of collagen-rich extracellular matrix in response to injury, is a hallmark of heart disease, but clinical agents that can interfere with the fibrotic pathway do not yet exist. Here we show that ANTXR1/TEM8, a pathology-induced transmembrane protein required for collagen removal, exacerbates injury in multiple models of heart failure. Genetic disruption of Antxr1 and treatment with human neutralizing antibodies prevented heart deterioration following acute myocardial infarction. ANTXR1 pharmacological blockade also improved heart function in models of pressure overload and obesity-induced heart disease with preserved ejection fraction. Improved heart function was accompanied by enhanced exercise tolerance. Mechanistic studies revealed an ANTXR1-antibody-driven improvement in post-infarct scar formation followed by attenuation of late-stage, chronic TGFβ-mediated extracellular matrix remodeling. Thus, ANTXR1-mediated collagen turnover during heart failure is both maladaptive and druggable, providing avenues for therapeutic intervention. Boccella, Yu and colleagues reveal that the transmembrane protein ANTXR1 regulates post-infarction fibrotic remodeling, and its inhibition blocks collagen turnover and improves heart function.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 11","pages":"1521-1538"},"PeriodicalIF":10.8,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44161-025-00725-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145214631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxidative phosphorylation is required for cardiomyocyte re-differentiation and long-term fish heart regeneration 氧化磷酸化是心肌细胞再分化和长期心脏再生所必需的。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-10-01 DOI: 10.1038/s44161-025-00718-x
Konstantinos Lekkos, Zhilian Hu, Phong D. Nguyen, Hessel Honkoop, Esra Sengul, Rita Alonaizan, Jana Koth, Jun Ying, Madeleine E. Lemieux, Alisha Kenward, Sean Keeley, Bastiaan Spanjaard, Brett W. C. Kennedy, Xin Sun, Katherine Banecki, Helen G. Potts, Gennaro Ruggiero, James Montgomery, Daniela Panáková, Jan Philipp Junker, Lisa C. Heather, Xiaonan Wang, Juan Manuel Gonzalez-Rosa, Jeroen Bakkers, Mathilda T. M. Mommersteeg
In contrast to humans, fish can fully regenerate their hearts after cardiac injury. However, not all fish have the same regenerative potential, allowing comparative inter-species and intra-species analysis to identify the mechanisms controlling successful heart regeneration. Here we report a differential regenerative response to cardiac cryo-injury among different wild-type zebrafish strains. Correlating these data with single-cell and bulk RNA sequencing data, we identify oxidative phosphorylation (OXPHOS) as a positive regulator of long-term regenerative outcome. OXPHOS levels, driven by glycolysis through the malate-aspartate shuttle, increase as soon as cardiomyocyte proliferation decreases, and this increase is required for cardiomyocyte re-differentiation and successful long-term regeneration. Reduced upregulation of OXPHOS in Astyanax mexicanus cavefish results in the absence of a dynamic temporal sarcomere gene expression program during cardiomyocyte re-differentiation. These findings challenge the assumption that OXPHOS inhibits regeneration and reveal targetable pathways to enhance heart repair in humans after myocardial infarction. Lekkos et al. show that a metabolic switch toward oxidative phosphorylation is required for cardiomyocyte re-differentiation and heart regeneration after injury in fish.
与人类不同,鱼在心脏受伤后可以完全再生心脏。然而,并不是所有的鱼类都具有相同的再生潜力,因此可以通过物种间和物种内的比较分析来确定控制成功心脏再生的机制。在这里,我们报告了不同野生型斑马鱼株对心脏低温损伤的不同再生反应。将这些数据与单细胞和大量RNA测序数据相关联,我们确定氧化磷酸化(OXPHOS)是长期再生结果的积极调节因子。在苹果酸-天冬氨酸穿梭的糖酵解作用下,OXPHOS水平随着心肌细胞增殖的减少而增加,这种增加是心肌细胞再分化和成功的长期再生所必需的。在Astyanax mexicanus洞穴鱼中,OXPHOS上调的减少导致心肌细胞再分化过程中动态颞肌节基因表达程序的缺失。这些发现挑战了OXPHOS抑制再生的假设,并揭示了心肌梗死后增强人类心脏修复的可靶向途径。
{"title":"Oxidative phosphorylation is required for cardiomyocyte re-differentiation and long-term fish heart regeneration","authors":"Konstantinos Lekkos, Zhilian Hu, Phong D. Nguyen, Hessel Honkoop, Esra Sengul, Rita Alonaizan, Jana Koth, Jun Ying, Madeleine E. Lemieux, Alisha Kenward, Sean Keeley, Bastiaan Spanjaard, Brett W. C. Kennedy, Xin Sun, Katherine Banecki, Helen G. Potts, Gennaro Ruggiero, James Montgomery, Daniela Panáková, Jan Philipp Junker, Lisa C. Heather, Xiaonan Wang, Juan Manuel Gonzalez-Rosa, Jeroen Bakkers, Mathilda T. M. Mommersteeg","doi":"10.1038/s44161-025-00718-x","DOIUrl":"10.1038/s44161-025-00718-x","url":null,"abstract":"In contrast to humans, fish can fully regenerate their hearts after cardiac injury. However, not all fish have the same regenerative potential, allowing comparative inter-species and intra-species analysis to identify the mechanisms controlling successful heart regeneration. Here we report a differential regenerative response to cardiac cryo-injury among different wild-type zebrafish strains. Correlating these data with single-cell and bulk RNA sequencing data, we identify oxidative phosphorylation (OXPHOS) as a positive regulator of long-term regenerative outcome. OXPHOS levels, driven by glycolysis through the malate-aspartate shuttle, increase as soon as cardiomyocyte proliferation decreases, and this increase is required for cardiomyocyte re-differentiation and successful long-term regeneration. Reduced upregulation of OXPHOS in Astyanax mexicanus cavefish results in the absence of a dynamic temporal sarcomere gene expression program during cardiomyocyte re-differentiation. These findings challenge the assumption that OXPHOS inhibits regeneration and reveal targetable pathways to enhance heart repair in humans after myocardial infarction. Lekkos et al. show that a metabolic switch toward oxidative phosphorylation is required for cardiomyocyte re-differentiation and heart regeneration after injury in fish.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1363-1380"},"PeriodicalIF":10.8,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44161-025-00718-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145208348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted glycophagy ATG8 therapy reverses diabetic heart disease in mice and in human engineered cardiac tissues 靶向糖吞噬ATG8治疗在小鼠和人类工程心脏组织中逆转糖尿病性心脏病。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-29 DOI: 10.1038/s44161-025-00726-x
K. M. Mellor, U. Varma, P. Koutsifeli, C. L. Curl, J. V. Janssens, L. J. Daniels, G. B. Bernasochi, A. J. A. Raaijmakers, M. Annandale, X. Li, S. L. James, D. J. Taylor, K. Raedschelders, K. L. Weeks, R. J. Mills, R. G. Parton, X. Hu, J. R. Bell, T. J. O’Brien, R. Katare, E. R. Porrello, J. E. Hudson, R. P. Xiao, J. E. Van Eyk, R. A. Gottlieb, L. M. D. Delbridge
Diabetic heart disease is highly prevalent and is associated with the early development of impaired diastolic relaxation. The mechanisms of diabetic heart disease are poorly understood, and it is a condition for which there are no targeted therapies. Recently, disrupted glycogen autophagy (glycophagy) and glycogen accumulation have been identified in the diabetic heart. Glycophagy involves glycogen receptor binding and linking with an ATG8 protein to locate and degrade glycogen within an intracellular phagolysosome. Here we show that glycogen receptor protein starch binding domain protein 1 (STBD1) is mobilized early in the cardiac glycogen response to metabolic challenge in vivo, and that deficiency of a specific ATG8 family protein, γ-aminobutyric acid type A receptor-associated protein-like 1 (GABARAPL1), is associated with diastolic dysfunction in diabetes. Gabarapl1 gene delivery treatment remediated cardiomyocyte and cardiac diastolic dysfunction in type 2 diabetic mice and the diastolic performance of ‘diabetic’ human induced pluripotent stem cell-derived cardiac organoids. We identify glycophagy dysregulation as a mechanism and potential treatment target for diabetic heart disease. Mellor et al. report that deficiency of GABARAPL1, an ATG8-specific linking protein, impairs diastolic function in diabetic mice. This effect can be reversed by gene delivery of the gene encoding GABARAPL1 in diabetic mice and a human organoid model of type 2 diabetes.
糖尿病性心脏病非常普遍,并与舒张舒张受损的早期发展有关。糖尿病性心脏病的发病机制尚不清楚,而且目前还没有针对性的治疗方法。最近,在糖尿病心脏中发现了糖原自噬(glycophagy)和糖原积累的中断。糖吞噬涉及糖原受体与ATG8蛋白结合,在细胞内吞噬溶酶体中定位和降解糖原。本研究表明糖原受体蛋白淀粉结合域蛋白1 (STBD1)在体内对代谢挑战的心脏糖原反应的早期被动员,并且特异性ATG8家族蛋白γ-氨基丁酸a型受体相关蛋白样1 (GABARAPL1)的缺乏与糖尿病舒张功能障碍有关。Gabarapl1基因递送治疗可修复2型糖尿病小鼠的心肌细胞和心脏舒张功能障碍,以及“糖尿病”人类诱导的多能干细胞衍生的心脏类器官的舒张功能。我们确定糖吞噬失调是糖尿病性心脏病的机制和潜在的治疗靶点。
{"title":"Targeted glycophagy ATG8 therapy reverses diabetic heart disease in mice and in human engineered cardiac tissues","authors":"K. M. Mellor, U. Varma, P. Koutsifeli, C. L. Curl, J. V. Janssens, L. J. Daniels, G. B. Bernasochi, A. J. A. Raaijmakers, M. Annandale, X. Li, S. L. James, D. J. Taylor, K. Raedschelders, K. L. Weeks, R. J. Mills, R. G. Parton, X. Hu, J. R. Bell, T. J. O’Brien, R. Katare, E. R. Porrello, J. E. Hudson, R. P. Xiao, J. E. Van Eyk, R. A. Gottlieb, L. M. D. Delbridge","doi":"10.1038/s44161-025-00726-x","DOIUrl":"10.1038/s44161-025-00726-x","url":null,"abstract":"Diabetic heart disease is highly prevalent and is associated with the early development of impaired diastolic relaxation. The mechanisms of diabetic heart disease are poorly understood, and it is a condition for which there are no targeted therapies. Recently, disrupted glycogen autophagy (glycophagy) and glycogen accumulation have been identified in the diabetic heart. Glycophagy involves glycogen receptor binding and linking with an ATG8 protein to locate and degrade glycogen within an intracellular phagolysosome. Here we show that glycogen receptor protein starch binding domain protein 1 (STBD1) is mobilized early in the cardiac glycogen response to metabolic challenge in vivo, and that deficiency of a specific ATG8 family protein, γ-aminobutyric acid type A receptor-associated protein-like 1 (GABARAPL1), is associated with diastolic dysfunction in diabetes. Gabarapl1 gene delivery treatment remediated cardiomyocyte and cardiac diastolic dysfunction in type 2 diabetic mice and the diastolic performance of ‘diabetic’ human induced pluripotent stem cell-derived cardiac organoids. We identify glycophagy dysregulation as a mechanism and potential treatment target for diabetic heart disease. Mellor et al. report that deficiency of GABARAPL1, an ATG8-specific linking protein, impairs diastolic function in diabetic mice. This effect can be reversed by gene delivery of the gene encoding GABARAPL1 in diabetic mice and a human organoid model of type 2 diabetes.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 11","pages":"1487-1500"},"PeriodicalIF":10.8,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145194142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association of air pollution exposure and genetic susceptibility with increased risk of thoracic aortic aneurysm and dissection 空气污染暴露和遗传易感性与胸主动脉瘤和夹层风险增加的关系。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-26 DOI: 10.1038/s44161-025-00719-w
Yudiyang Ma, Jianing Wang, Linxi Tang, Feipeng Cui, Lei Zheng, Meiqi Xing, Yaohua Tian
Thoracic aortic aneurysm and dissection (TAAD) represent a serious health threat, yet the role of air pollution exposure on its development has been underexplored. Here we investigate the relationships between air pollutants and TAAD incidence. In a Cox’s proportional hazards model, hazard ratios (95% confidence intervals) of TAAD for an interquartile range increase in air pollutants were 2.15 (1.96, 2.35) for particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5; per 2.15 μg m−3 increase), 1.76 (1.61, 1.92) for PM10 (per 2.99 μg m−3 increase), 1.45 (1.34, 1.58) for NO2 (per 6.97 μg m−3 increase) and 1.40 (1.29, 1.51) for NOx (per 11.58 μg m−3 increase). These estimates remained consistent when using inverse probability weighting and generalized propensity score methods. Furthermore, this study revealed potential joint effects and interactions between air pollutants and genetic susceptibility on TAAD risk, especially the multiplicative and additive interactions between PM2.5 and genetic susceptibility. Air pollution exposure is associated with an increased TAAD risk and genetic susceptibility modifies this association. Ma et al. demonstrate that air pollution is associated with an increased risk of thoracic aortic aneurysm and dissection (TAAD), and that genetic susceptibility to TAAD amplifies this risk through multiplicative and additive interactions.
胸主动脉瘤及夹层(TAAD)是一种严重的健康威胁,但空气污染暴露在其发展中的作用尚未得到充分探讨。本文研究了空气污染物与TAAD发病率之间的关系。在Cox比例风险模型中,空气污染物在四分位数范围内增加的TAAD风险比(95%置信区间)分别为:空气动力学直径≤2.5 μm的颗粒物(PM2.5;每增加2.15 μg m-3)为2.15 (1.96,2.35),PM10(每增加2.99 μg m-3)为1.76 (1.61,1.92),NO2(每增加6.97 μg m-3)为1.45 (1.34,1.58),NOx(每增加11.58 μg m-3)为1.40(1.29,1.51)。当使用逆概率加权和广义倾向评分方法时,这些估计保持一致。此外,本研究揭示了空气污染物与遗传易感性对TAAD风险的潜在联合效应和相互作用,特别是PM2.5与遗传易感性之间的乘法和加性相互作用。空气污染暴露与TAAD风险增加有关,遗传易感性改变了这种关联。
{"title":"Association of air pollution exposure and genetic susceptibility with increased risk of thoracic aortic aneurysm and dissection","authors":"Yudiyang Ma, Jianing Wang, Linxi Tang, Feipeng Cui, Lei Zheng, Meiqi Xing, Yaohua Tian","doi":"10.1038/s44161-025-00719-w","DOIUrl":"10.1038/s44161-025-00719-w","url":null,"abstract":"Thoracic aortic aneurysm and dissection (TAAD) represent a serious health threat, yet the role of air pollution exposure on its development has been underexplored. Here we investigate the relationships between air pollutants and TAAD incidence. In a Cox’s proportional hazards model, hazard ratios (95% confidence intervals) of TAAD for an interquartile range increase in air pollutants were 2.15 (1.96, 2.35) for particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5; per 2.15 μg m−3 increase), 1.76 (1.61, 1.92) for PM10 (per 2.99 μg m−3 increase), 1.45 (1.34, 1.58) for NO2 (per 6.97 μg m−3 increase) and 1.40 (1.29, 1.51) for NOx (per 11.58 μg m−3 increase). These estimates remained consistent when using inverse probability weighting and generalized propensity score methods. Furthermore, this study revealed potential joint effects and interactions between air pollutants and genetic susceptibility on TAAD risk, especially the multiplicative and additive interactions between PM2.5 and genetic susceptibility. Air pollution exposure is associated with an increased TAAD risk and genetic susceptibility modifies this association. Ma et al. demonstrate that air pollution is associated with an increased risk of thoracic aortic aneurysm and dissection (TAAD), and that genetic susceptibility to TAAD amplifies this risk through multiplicative and additive interactions.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1397-1408"},"PeriodicalIF":10.8,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145180705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction of PGC-1α and GDF15 in the stressed heart 应激心脏中PGC-1α和GDF15的相互作用。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-26 DOI: 10.1038/s44161-025-00729-8
Rong Tian
Upregulation of PGC-1α in the mouse heart during exercise training maintains mitochondrial homeostasis and promotes physiological hypertrophy by suppressing the stress-induced production of GDF15 in cardiomyocytes independently of its circulating levels. Identification of this cell-autonomous signaling circuit provides novel insights into the functional role of GDF15 in health and diseases. Future studies are warranted to investigate the interaction of PGC-1α and GDF15 in other stress conditions and in human subjects.
运动训练期间小鼠心脏中PGC-1α的上调维持线粒体稳态,并通过抑制应激诱导的心肌细胞中GDF15的产生而促进生理性肥大,而不依赖于其循环水平。这种细胞自主信号通路的鉴定为GDF15在健康和疾病中的功能作用提供了新的见解。未来的研究需要进一步研究PGC-1α和GDF15在其他应激条件下和人类受试者中的相互作用。
{"title":"Interaction of PGC-1α and GDF15 in the stressed heart","authors":"Rong Tian","doi":"10.1038/s44161-025-00729-8","DOIUrl":"10.1038/s44161-025-00729-8","url":null,"abstract":"Upregulation of PGC-1α in the mouse heart during exercise training maintains mitochondrial homeostasis and promotes physiological hypertrophy by suppressing the stress-induced production of GDF15 in cardiomyocytes independently of its circulating levels. Identification of this cell-autonomous signaling circuit provides novel insights into the functional role of GDF15 in health and diseases. Future studies are warranted to investigate the interaction of PGC-1α and GDF15 in other stress conditions and in human subjects.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1216-1218"},"PeriodicalIF":10.8,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145180765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Human ocular fluid outflow on-chip reveals trabecular meshwork-mediated Schlemm’s canal endothelial dysfunction in steroid-induced glaucoma 作者更正:芯片上的人眼液流出显示激素性青光眼中小梁网介导的施莱姆管内皮功能障碍。
IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-09-26 DOI: 10.1038/s44161-025-00730-1
Renhao Lu, Anna M. Kolarzyk, W. Daniel Stamer, Esak Lee
{"title":"Author Correction: Human ocular fluid outflow on-chip reveals trabecular meshwork-mediated Schlemm’s canal endothelial dysfunction in steroid-induced glaucoma","authors":"Renhao Lu, Anna M. Kolarzyk, W. Daniel Stamer, Esak Lee","doi":"10.1038/s44161-025-00730-1","DOIUrl":"10.1038/s44161-025-00730-1","url":null,"abstract":"","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 10","pages":"1439-1439"},"PeriodicalIF":10.8,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s44161-025-00730-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145180686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature cardiovascular research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1