首页 > 最新文献

Nature cardiovascular research最新文献

英文 中文
Hypoxia sensing in resident cardiac macrophages regulates monocyte fate specification following ischemic heart injury 缺血性心脏损伤后,常驻心脏巨噬细胞的缺氧感知调节单核细胞的命运分化。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-10-21 DOI: 10.1038/s44161-024-00553-6
Farid F. Kadyrov, Andrew L. Koenig, Junedh M. Amrute, Hao Dun, Wenjun Li, Carla J. Weinheimer, Jessica M. Nigro, Attila Kovacs, Andrea L. Bredemeyer, Steven Yang, Shibali Das, Vinay R. Penna, Alekhya Parvathaneni, Lulu Lai, Niklas Hartmann, Benjamin J. Kopecky, Daniel Kreisel, Kory J. Lavine
Myocardial infarction initiates cardiac remodeling and is central to heart failure pathogenesis. Following myocardial ischemia–reperfusion injury, monocytes enter the heart and differentiate into diverse subpopulations of macrophages. Here we show that deletion of Hif1α, a hypoxia response transcription factor, in resident cardiac macrophages led to increased remodeling and overrepresentation of macrophages expressing arginase 1 (Arg1). Arg1+ macrophages displayed an inflammatory gene signature and may represent an intermediate state of monocyte differentiation. Lineage tracing of Arg1+ macrophages revealed a monocyte differentiation trajectory consisting of multiple transcriptionally distinct states. We further showed that deletion of Hif1α in resident cardiac macrophages resulted in arrested progression through this trajectory and accumulation of an inflammatory intermediate state marked by persistent Arg1 expression. Depletion of the Arg1+ trajectory accelerated cardiac remodeling following ischemic injury. Our findings unveil distinct trajectories of monocyte differentiation and identify hypoxia sensing as an important determinant of monocyte differentiation following myocardial infarction. Kadyrov et al. reveal that the hypoxia sensing through HIF1A is an important regulator of monocyte-derived macrophage differentiation, which determines the extent of inflammation and cardiac remodeling after injury.
心肌梗死引发心脏重塑,是心力衰竭发病机制的核心。心肌缺血再灌注损伤后,单核细胞进入心脏并分化成不同的巨噬细胞亚群。在这里,我们发现在常驻心脏巨噬细胞中缺失缺氧反应转录因子 Hif1α 会导致重塑增加,并导致表达精氨酸酶 1(Arg1)的巨噬细胞比例过高。Arg1+ 巨噬细胞显示了炎症基因特征,可能代表了单核细胞分化的中间状态。对 Arg1+ 巨噬细胞的系谱追踪显示,单核细胞分化轨迹由多种转录不同的状态组成。我们进一步发现,在驻留的心脏巨噬细胞中删除 Hif1α 会导致这一轨迹的进展受阻,并积累以持续 Arg1 表达为特征的炎症中间状态。Arg1+轨迹的耗竭加速了缺血性损伤后的心脏重塑。我们的研究结果揭示了单核细胞分化的不同轨迹,并确定缺氧感知是心肌梗死后单核细胞分化的重要决定因素。
{"title":"Hypoxia sensing in resident cardiac macrophages regulates monocyte fate specification following ischemic heart injury","authors":"Farid F. Kadyrov, Andrew L. Koenig, Junedh M. Amrute, Hao Dun, Wenjun Li, Carla J. Weinheimer, Jessica M. Nigro, Attila Kovacs, Andrea L. Bredemeyer, Steven Yang, Shibali Das, Vinay R. Penna, Alekhya Parvathaneni, Lulu Lai, Niklas Hartmann, Benjamin J. Kopecky, Daniel Kreisel, Kory J. Lavine","doi":"10.1038/s44161-024-00553-6","DOIUrl":"10.1038/s44161-024-00553-6","url":null,"abstract":"Myocardial infarction initiates cardiac remodeling and is central to heart failure pathogenesis. Following myocardial ischemia–reperfusion injury, monocytes enter the heart and differentiate into diverse subpopulations of macrophages. Here we show that deletion of Hif1α, a hypoxia response transcription factor, in resident cardiac macrophages led to increased remodeling and overrepresentation of macrophages expressing arginase 1 (Arg1). Arg1+ macrophages displayed an inflammatory gene signature and may represent an intermediate state of monocyte differentiation. Lineage tracing of Arg1+ macrophages revealed a monocyte differentiation trajectory consisting of multiple transcriptionally distinct states. We further showed that deletion of Hif1α in resident cardiac macrophages resulted in arrested progression through this trajectory and accumulation of an inflammatory intermediate state marked by persistent Arg1 expression. Depletion of the Arg1+ trajectory accelerated cardiac remodeling following ischemic injury. Our findings unveil distinct trajectories of monocyte differentiation and identify hypoxia sensing as an important determinant of monocyte differentiation following myocardial infarction. Kadyrov et al. reveal that the hypoxia sensing through HIF1A is an important regulator of monocyte-derived macrophage differentiation, which determines the extent of inflammation and cardiac remodeling after injury.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 11","pages":"1337-1355"},"PeriodicalIF":9.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CCL2-mediated endothelial injury drives cardiac dysfunction in long COVID CCL2 介导的内皮损伤导致长 COVID 的心脏功能障碍
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-10-14 DOI: 10.1038/s44161-024-00543-8
Dilip Thomas, Chikage Noishiki, Sadhana Gaddam, David Wu, Amit Manhas, Yu Liu, Dipti Tripathi, Nimish Kathale, Shaunak S. Adkar, Jaishree Garhyan, Chun Liu, Baohui Xu, Elsie G. Ross, Ronald L. Dalman, Kevin C. Wang, Anthony E. Oro, Karim Sallam, Jason T. Lee, Joseph C. Wu, Nazish Sayed
Evidence linking the endothelium to cardiac injury in long coronavirus disease (COVID) is well documented, but the underlying mechanisms remain unknown. Here we show that cytokines released by endothelial cells (ECs) contribute to long-COVID-associated cardiac dysfunction. Using thrombotic vascular tissues from patients with long COVID and induced pluripotent stem cell-derived ECs (iPSC-ECs), we modeled endotheliitis and observed similar dysfunction and cytokine upregulation, notably CCL2. Cardiac organoids comprising iPSC-ECs and iPSC-derived cardiomyocytes showed cardiac dysfunction after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure, driven by CCL2. Profiling of chromatin accessibility and gene expression at a single-cell resolution linked CCL2 to ‘phenotype switching’ and cardiac dysfunction, validated by high-throughput proteomics. Disease modeling of cardiac organoids and exposure of human ACE2 transgenic mice to SARS-CoV-2 spike proteins revealed that CCL2-induced oxidative stress promoted post-translational modification of cardiac proteins, leading to cardiac dysfunction. These findings suggest that EC-released cytokines contribute to cardiac dysfunction in long COVID, highlighting the importance of early vascular health monitoring in patients with long COVID. Thomas, Noishiki, Gaddam et al. used thrombotic vascular tissues and iPSC-derived cardiac organoids to show that COVID-19-induced endotheliitis and cytokine release disrupt endothelial–cardiomyocyte crosstalk and contribute to cardiac dysfunction in long COVID.
有证据表明,内皮细胞与长程冠状病毒病(COVID)的心脏损伤有关,但其潜在机制仍不清楚。在这里,我们发现内皮细胞(ECs)释放的细胞因子导致了长COVID相关的心脏功能障碍。利用长COVID患者的血栓性血管组织和诱导多能干细胞衍生的EC(iPSC-EC),我们模拟了内皮细胞炎,并观察到类似的功能障碍和细胞因子上调,尤其是CCL2。由iPSC-ECs和iPSC衍生的心肌细胞组成的心脏器官组织在暴露于严重急性呼吸系统综合征冠状病毒2(SARS-CoV-2)后,在CCL2的驱动下显示出心脏功能障碍。单细胞分辨率的染色质可及性和基因表达谱分析将 CCL2 与 "表型转换 "和心脏功能障碍联系起来,高通量蛋白质组学对此进行了验证。心脏器官组织的疾病模型以及人类 ACE2 转基因小鼠暴露于 SARS-CoV-2 尖峰蛋白的情况表明,CCL2 诱导的氧化应激促进了心脏蛋白的翻译后修饰,从而导致心脏功能障碍。这些研究结果表明,EC释放的细胞因子导致了长COVID患者的心功能不全,突出了早期监测长COVID患者血管健康的重要性。Thomas、Noishiki、Gaddam 等人利用血栓性血管组织和 iPSC 衍生的心脏器官组织显示,COVID-19 诱导的内皮细胞炎和细胞因子释放破坏了内皮细胞-心肌细胞的串联,导致了长 COVID 患者的心功能不全。
{"title":"CCL2-mediated endothelial injury drives cardiac dysfunction in long COVID","authors":"Dilip Thomas, Chikage Noishiki, Sadhana Gaddam, David Wu, Amit Manhas, Yu Liu, Dipti Tripathi, Nimish Kathale, Shaunak S. Adkar, Jaishree Garhyan, Chun Liu, Baohui Xu, Elsie G. Ross, Ronald L. Dalman, Kevin C. Wang, Anthony E. Oro, Karim Sallam, Jason T. Lee, Joseph C. Wu, Nazish Sayed","doi":"10.1038/s44161-024-00543-8","DOIUrl":"10.1038/s44161-024-00543-8","url":null,"abstract":"Evidence linking the endothelium to cardiac injury in long coronavirus disease (COVID) is well documented, but the underlying mechanisms remain unknown. Here we show that cytokines released by endothelial cells (ECs) contribute to long-COVID-associated cardiac dysfunction. Using thrombotic vascular tissues from patients with long COVID and induced pluripotent stem cell-derived ECs (iPSC-ECs), we modeled endotheliitis and observed similar dysfunction and cytokine upregulation, notably CCL2. Cardiac organoids comprising iPSC-ECs and iPSC-derived cardiomyocytes showed cardiac dysfunction after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure, driven by CCL2. Profiling of chromatin accessibility and gene expression at a single-cell resolution linked CCL2 to ‘phenotype switching’ and cardiac dysfunction, validated by high-throughput proteomics. Disease modeling of cardiac organoids and exposure of human ACE2 transgenic mice to SARS-CoV-2 spike proteins revealed that CCL2-induced oxidative stress promoted post-translational modification of cardiac proteins, leading to cardiac dysfunction. These findings suggest that EC-released cytokines contribute to cardiac dysfunction in long COVID, highlighting the importance of early vascular health monitoring in patients with long COVID. Thomas, Noishiki, Gaddam et al. used thrombotic vascular tissues and iPSC-derived cardiac organoids to show that COVID-19-induced endotheliitis and cytokine release disrupt endothelial–cardiomyocyte crosstalk and contribute to cardiac dysfunction in long COVID.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 10","pages":"1249-1265"},"PeriodicalIF":9.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial cells as paracrine mediators of long COVID 内皮细胞是长 COVID 的旁分泌介质
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-10-14 DOI: 10.1038/s44161-024-00551-8
Simon R. Foster, James E. Hudson
The molecular mechanisms that underpin the multi-organ dysfunction in long COVID are unknown, particularly within the cardiovascular system. Research finds a critical role for endothelial responses and signaling in driving dysfunction.
长期 COVID 导致多器官功能障碍的分子机制尚不清楚,尤其是心血管系统。研究发现,内皮反应和信号传导在驱动功能障碍方面起着关键作用。
{"title":"Endothelial cells as paracrine mediators of long COVID","authors":"Simon R. Foster, James E. Hudson","doi":"10.1038/s44161-024-00551-8","DOIUrl":"10.1038/s44161-024-00551-8","url":null,"abstract":"The molecular mechanisms that underpin the multi-organ dysfunction in long COVID are unknown, particularly within the cardiovascular system. Research finds a critical role for endothelial responses and signaling in driving dysfunction.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 10","pages":"1181-1183"},"PeriodicalIF":9.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional pausing as a molecular mechanism of sprouting angiogenesis 转录暂停是萌芽血管生成的分子机制。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-10-07 DOI: 10.1038/s44161-024-00547-4
Inês Cebola, Graeme M. Birdsey, Anna M. Randi
In-depth in vivo and in vitro functional analyses, along with a series of genomic assays, reveal RNF20 as a molecular rheostat controlling the balance between endothelial VEGF and Notch signaling during sprouting angiogenesis.
深入的体内和体外功能分析以及一系列基因组测定揭示了 RNF20 是控制血管萌芽生成过程中内皮血管内皮生长因子和 Notch 信号之间平衡的分子调速器。
{"title":"Transcriptional pausing as a molecular mechanism of sprouting angiogenesis","authors":"Inês Cebola, Graeme M. Birdsey, Anna M. Randi","doi":"10.1038/s44161-024-00547-4","DOIUrl":"10.1038/s44161-024-00547-4","url":null,"abstract":"In-depth in vivo and in vitro functional analyses, along with a series of genomic assays, reveal RNF20 as a molecular rheostat controlling the balance between endothelial VEGF and Notch signaling during sprouting angiogenesis.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 10","pages":"1184-1186"},"PeriodicalIF":9.4,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semaglutide may reduce cardiovascular disease and heart failure 塞马鲁肽可减少心血管疾病和心力衰竭。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-10-04 DOI: 10.1038/s44161-024-00556-3
Michelle Korda
{"title":"Semaglutide may reduce cardiovascular disease and heart failure","authors":"Michelle Korda","doi":"10.1038/s44161-024-00556-3","DOIUrl":"10.1038/s44161-024-00556-3","url":null,"abstract":"","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 10","pages":"1180-1180"},"PeriodicalIF":9.4,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic inflammation after ischemic stroke induces maladaptive cardiac remodeling 缺血性中风后的慢性炎症会诱发适应不良的心脏重塑。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-10-01 DOI: 10.1038/s44161-024-00554-5
Andrea Tavosanis
{"title":"Chronic inflammation after ischemic stroke induces maladaptive cardiac remodeling","authors":"Andrea Tavosanis","doi":"10.1038/s44161-024-00554-5","DOIUrl":"10.1038/s44161-024-00554-5","url":null,"abstract":"","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 10","pages":"1179-1179"},"PeriodicalIF":9.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of cardiac genomic elements in humans and non-human primates 人类和非人灵长类动物心脏基因组元素的进化。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-10-01 DOI: 10.1038/s44161-024-00552-7
Analyses of transcription and translation identify newly evolved genes and translated sequences (open reading frames) unique to hearts from human and non-human primates, suggesting that these genetic innovations might influence cardiac development and disease.
对转录和翻译的分析确定了人类和非人灵长类动物心脏特有的新进化基因和翻译序列(开放阅读框),表明这些基因创新可能会影响心脏的发育和疾病。
{"title":"Evolution of cardiac genomic elements in humans and non-human primates","authors":"","doi":"10.1038/s44161-024-00552-7","DOIUrl":"10.1038/s44161-024-00552-7","url":null,"abstract":"Analyses of transcription and translation identify newly evolved genes and translated sequences (open reading frames) unique to hearts from human and non-human primates, suggesting that these genetic innovations might influence cardiac development and disease.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 10","pages":"1187-1188"},"PeriodicalIF":9.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNF20-mediated transcriptional pausing and VEGFA splicing orchestrate vessel growth RNF20 介导的转录暂停和 VEGFA 剪接协调了血管的生长。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-25 DOI: 10.1038/s44161-024-00546-5
Nalan Tetik-Elsherbiny, Adel Elsherbiny, Aadhyaa Setya, Johannes Gahn, Yongqin Tang, Purnima Gupta, Yanliang Dou, Heike Serke, Thomas Wieland, Alexandre Dubrac, Joerg Heineke, Michael Potente, Julio Cordero, Roxana Ola, Gergana Dobreva
Signal-responsive gene expression is essential for vascular development, yet the mechanisms integrating signaling inputs with transcriptional activities are largely unknown. Here we show that RNF20, the primary E3 ubiquitin ligase for histone H2B, plays a multifaceted role in sprouting angiogenesis. RNF20 mediates RNA polymerase (Pol II) promoter-proximal pausing at genes highly paused in endothelial cells, involved in VEGFA signaling, stress response, cell cycle control and mRNA splicing. It also orchestrates large-scale mRNA processing events that alter the bioavailability and function of critical pro-angiogenic factors, such as VEGFA. Mechanistically, RNF20 restricts ERG-dependent Pol II pause release at highly paused genes while binding to Notch1 to promote H2B monoubiquitination at Notch target genes and Notch-dependent gene expression. This balance is crucial, as loss of Rnf20 leads to uncontrolled tip cell specification. Our findings highlight the pivotal role of RNF20 in regulating VEGF–Notch signaling circuits during vessel growth, underscoring its potential for therapeutic modulation of angiogenesis. Tetik-Elsherbiny et al. demonstrate that the E3 ubiquitin ligase RNF20 mediates RNA polymerase II promoter-proximal pausing and alternative splicing, regulating the bioavailability and signaling of pro-angiogenic factors and angiogenesis.
信号响应基因表达对血管发育至关重要,但信号输入与转录活动的整合机制却大多不为人知。在这里,我们发现组蛋白 H2B 的主要 E3 泛素连接酶 RNF20 在萌芽血管生成过程中发挥着多方面的作用。RNF20 在内皮细胞中高度暂停的基因上介导 RNA 聚合酶(Pol II)启动子近端暂停,参与 VEGFA 信号转导、应激反应、细胞周期控制和 mRNA 剪接。它还能协调大规模的 mRNA 处理事件,从而改变 VEGFA 等关键促血管生成因子的生物利用率和功能。从机制上讲,RNF20 在高度暂停的基因上限制 ERG 依赖性 Pol II 暂停释放,同时与 Notch1 结合,促进 Notch 靶基因上的 H2B 单泛素化和 Notch 依赖性基因表达。这种平衡至关重要,因为 Rnf20 的缺失会导致尖端细胞的规格化失控。我们的研究结果凸显了 RNF20 在血管生长过程中调节血管内皮生长因子-Notch 信号回路的关键作用,强调了它在治疗性调节血管生成方面的潜力。
{"title":"RNF20-mediated transcriptional pausing and VEGFA splicing orchestrate vessel growth","authors":"Nalan Tetik-Elsherbiny, Adel Elsherbiny, Aadhyaa Setya, Johannes Gahn, Yongqin Tang, Purnima Gupta, Yanliang Dou, Heike Serke, Thomas Wieland, Alexandre Dubrac, Joerg Heineke, Michael Potente, Julio Cordero, Roxana Ola, Gergana Dobreva","doi":"10.1038/s44161-024-00546-5","DOIUrl":"10.1038/s44161-024-00546-5","url":null,"abstract":"Signal-responsive gene expression is essential for vascular development, yet the mechanisms integrating signaling inputs with transcriptional activities are largely unknown. Here we show that RNF20, the primary E3 ubiquitin ligase for histone H2B, plays a multifaceted role in sprouting angiogenesis. RNF20 mediates RNA polymerase (Pol II) promoter-proximal pausing at genes highly paused in endothelial cells, involved in VEGFA signaling, stress response, cell cycle control and mRNA splicing. It also orchestrates large-scale mRNA processing events that alter the bioavailability and function of critical pro-angiogenic factors, such as VEGFA. Mechanistically, RNF20 restricts ERG-dependent Pol II pause release at highly paused genes while binding to Notch1 to promote H2B monoubiquitination at Notch target genes and Notch-dependent gene expression. This balance is crucial, as loss of Rnf20 leads to uncontrolled tip cell specification. Our findings highlight the pivotal role of RNF20 in regulating VEGF–Notch signaling circuits during vessel growth, underscoring its potential for therapeutic modulation of angiogenesis. Tetik-Elsherbiny et al. demonstrate that the E3 ubiquitin ligase RNF20 mediates RNA polymerase II promoter-proximal pausing and alternative splicing, regulating the bioavailability and signaling of pro-angiogenic factors and angiogenesis.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 10","pages":"1199-1216"},"PeriodicalIF":9.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44161-024-00546-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measured and genetically predicted protein levels and cardiovascular diseases in UK Biobank and China Kadoorie Biobank 英国生物库和中国嘉道理生物库中测量和基因预测的蛋白质水平与心血管疾病。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-25 DOI: 10.1038/s44161-024-00545-6
Lars Lind, Mohsen Mazidi, Robert Clarke, Derrick A. Bennett, Rui Zheng
Several large-scale studies have measured plasma levels of the proteome in individuals with cardiovascular diseases (CVDs)1–7. However, since the majority of such proteins are interrelated2, it is difficult for observational studies to distinguish which proteins are likely to be of etiological relevance. Here we evaluate whether plasma levels of 2,919 proteins measured in 52,164 UK Biobank participants are associated with incident myocardial infarction, ischemic stroke or heart failure. Of those proteins, 126 were associated with all three CVD outcomes and 118 were associated with at least one CVD in the China Kadoorie Biobank. Mendelian randomization and colocalization analyses indicated that genetically determined levels of 47 and 18 proteins, respectively, were associated with CVDs, including FGF5, PROCR and FURIN. While the majority of protein–CVD observational associations were noncausal, these three proteins showed evidence to support potential causality and are therefore promising targets for drug treatment for CVD outcomes. Lind et al. investigate the causal relationship between plasma proteins and cardiovascular disease outcomes in patients of European and Chinese descent, identifying FGF5, PROCR and FURIN as promising targets for the development of new drugs.
有几项大规模研究测量了心血管疾病(CVDs)患者的血浆蛋白质组水平1-7。然而,由于大多数此类蛋白质是相互关联的2,因此观察性研究很难区分哪些蛋白质可能与病因有关。在此,我们评估了在 52,164 名英国生物库参与者中检测到的 2,919 种蛋白质的血浆水平是否与心肌梗死、缺血性中风或心力衰竭事件有关。在这些蛋白质中,126 种与所有三种心血管疾病结局相关,118 种与中国嘉道理生物库中的至少一种心血管疾病相关。孟德尔随机化和共定位分析表明,分别有47种和18种蛋白质的基因水平与心血管疾病相关,其中包括FGF5、PROCR和FURIN。虽然大多数蛋白质与心血管疾病的观察关联都不是因果关系,但这三种蛋白质显示出支持潜在因果关系的证据,因此是治疗心血管疾病的药物治疗目标。
{"title":"Measured and genetically predicted protein levels and cardiovascular diseases in UK Biobank and China Kadoorie Biobank","authors":"Lars Lind, Mohsen Mazidi, Robert Clarke, Derrick A. Bennett, Rui Zheng","doi":"10.1038/s44161-024-00545-6","DOIUrl":"10.1038/s44161-024-00545-6","url":null,"abstract":"Several large-scale studies have measured plasma levels of the proteome in individuals with cardiovascular diseases (CVDs)1–7. However, since the majority of such proteins are interrelated2, it is difficult for observational studies to distinguish which proteins are likely to be of etiological relevance. Here we evaluate whether plasma levels of 2,919 proteins measured in 52,164 UK Biobank participants are associated with incident myocardial infarction, ischemic stroke or heart failure. Of those proteins, 126 were associated with all three CVD outcomes and 118 were associated with at least one CVD in the China Kadoorie Biobank. Mendelian randomization and colocalization analyses indicated that genetically determined levels of 47 and 18 proteins, respectively, were associated with CVDs, including FGF5, PROCR and FURIN. While the majority of protein–CVD observational associations were noncausal, these three proteins showed evidence to support potential causality and are therefore promising targets for drug treatment for CVD outcomes. Lind et al. investigate the causal relationship between plasma proteins and cardiovascular disease outcomes in patients of European and Chinese descent, identifying FGF5, PROCR and FURIN as promising targets for the development of new drugs.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 10","pages":"1189-1198"},"PeriodicalIF":9.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44161-024-00545-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of translational control and the emergence of genes and open reading frames in human and non-human primate hearts 翻译控制的进化以及人类和非人灵长类动物心脏中基因和开放阅读框的出现。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2024-09-24 DOI: 10.1038/s44161-024-00544-7
Jorge Ruiz-Orera, Duncan C. Miller, Johannes Greiner, Carolin Genehr, Aliki Grammatikaki, Susanne Blachut, Jeanne Mbebi, Giannino Patone, Anna Myronova, Eleonora Adami, Nikita Dewani, Ning Liang, Oliver Hummel, Michael B. Muecke, Thomas B. Hildebrandt, Guido Fritsch, Lisa Schrade, Wolfram H. Zimmermann, Ivanela Kondova, Sebastian Diecke, Sebastiaan van Heesch, Norbert Hübner
Evolutionary innovations can be driven by changes in the rates of RNA translation and the emergence of new genes and small open reading frames (sORFs). In this study, we characterized the transcriptional and translational landscape of the hearts of four primate and two rodent species through integrative ribosome and transcriptomic profiling, including adult left ventricle tissues and induced pluripotent stem cell-derived cardiomyocyte cell cultures. We show here that the translational efficiencies of subunits of the mitochondrial oxidative phosphorylation chain complexes IV and V evolved rapidly across mammalian evolution. Moreover, we discovered hundreds of species-specific and lineage-specific genomic innovations that emerged during primate evolution in the heart, including 551 genes, 504 sORFs and 76 evolutionarily conserved genes displaying human-specific cardiac-enriched expression. Overall, our work describes the evolutionary processes and mechanisms that have shaped cardiac transcription and translation in recent primate evolution and sheds light on how these can contribute to cardiac development and disease. Ruiz-Orera et al. used comparative transcriptomics and translatomics to analyze the cardiac evolution in primates and discovered species-specific and lineage-specific genomic innovations that might contribute to cardiac development and disease.
RNA翻译速率的变化以及新基因和小开放阅读框(sORF)的出现可以推动进化创新。在这项研究中,我们通过核糖体和转录组综合分析,包括成人左心室组织和诱导多能干细胞衍生的心肌细胞培养物,描述了四种灵长类动物和两种啮齿类动物心脏的转录和翻译情况。我们在这里发现,线粒体氧化磷酸化链复合物 IV 和 V 亚基的翻译效率在哺乳动物进化过程中迅速进化。此外,我们还发现了灵长类动物心脏进化过程中出现的数百个物种特异性和品系特异性基因组创新,其中包括 551 个基因、504 个 sORF 和 76 个进化保守基因,这些基因显示出人类特异性的心脏丰富表达。总之,我们的工作描述了近代灵长类动物进化过程中形成心脏转录和翻译的进化过程和机制,并揭示了这些过程和机制如何促进心脏发育和疾病的发生。
{"title":"Evolution of translational control and the emergence of genes and open reading frames in human and non-human primate hearts","authors":"Jorge Ruiz-Orera, Duncan C. Miller, Johannes Greiner, Carolin Genehr, Aliki Grammatikaki, Susanne Blachut, Jeanne Mbebi, Giannino Patone, Anna Myronova, Eleonora Adami, Nikita Dewani, Ning Liang, Oliver Hummel, Michael B. Muecke, Thomas B. Hildebrandt, Guido Fritsch, Lisa Schrade, Wolfram H. Zimmermann, Ivanela Kondova, Sebastian Diecke, Sebastiaan van Heesch, Norbert Hübner","doi":"10.1038/s44161-024-00544-7","DOIUrl":"10.1038/s44161-024-00544-7","url":null,"abstract":"Evolutionary innovations can be driven by changes in the rates of RNA translation and the emergence of new genes and small open reading frames (sORFs). In this study, we characterized the transcriptional and translational landscape of the hearts of four primate and two rodent species through integrative ribosome and transcriptomic profiling, including adult left ventricle tissues and induced pluripotent stem cell-derived cardiomyocyte cell cultures. We show here that the translational efficiencies of subunits of the mitochondrial oxidative phosphorylation chain complexes IV and V evolved rapidly across mammalian evolution. Moreover, we discovered hundreds of species-specific and lineage-specific genomic innovations that emerged during primate evolution in the heart, including 551 genes, 504 sORFs and 76 evolutionarily conserved genes displaying human-specific cardiac-enriched expression. Overall, our work describes the evolutionary processes and mechanisms that have shaped cardiac transcription and translation in recent primate evolution and sheds light on how these can contribute to cardiac development and disease. Ruiz-Orera et al. used comparative transcriptomics and translatomics to analyze the cardiac evolution in primates and discovered species-specific and lineage-specific genomic innovations that might contribute to cardiac development and disease.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 10","pages":"1217-1235"},"PeriodicalIF":9.4,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44161-024-00544-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature cardiovascular research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1