首页 > 最新文献

Nature cardiovascular research最新文献

英文 中文
Phosphorylation of endothelial histone H3.3 serine 31 by PKN1 links flow-induced signaling to proatherogenic gene expression. PKN1磷酸化内皮组蛋白H3.3丝氨酸31将血流诱导的信号传导与促动脉粥样硬化基因表达联系起来。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-08 DOI: 10.1038/s44161-024-00593-y
Young-June Jin, Guozheng Liang, Rui Li, ShengPeng Wang, Mohamad Wessam Alnouri, Mette Bentsen, Carsten Kuenne, Stefan Günther, Yang Yan, Yongxin Li, Nina Wettschureck, Stefan Offermanns

Atherosclerotic lesions develop preferentially in arterial regions exposed to disturbed blood flow, where endothelial cells acquire an inflammatory phenotype. How disturbed flow induces endothelial cell inflammation is incompletely understood. Here we show that histone H3.3 phosphorylation at serine 31 (H3.3S31) regulates disturbed-flow-induced endothelial inflammation by allowing rapid induction of FOS and FOSB, required for inflammatory gene expression. We identified protein kinase N1 (PKN1) as the kinase responsible for disturbed-flow-induced H3.3S31 phosphorylation. Disturbed flow activates PKN1 in an integrin α5β1-dependent manner and induces its translocation into the nucleus, and PKN1 is also involved in the phosphorylation of the AP-1 transcription factor JUN. Mice with endothelium-specific PKN1 loss or endothelial expression of S31 phosphorylation-deficient H.3.3 mutants show reduced endothelial inflammation and disturbed-flow-induced vascular remodeling in vitro and in vivo. Together, we identified a pathway whereby disturbed flow through PKN1-mediated histone phosphorylation and FOS/FOSB induction promotes inflammatory gene expression and vascular inflammation.

动脉粥样硬化病变优先发生在暴露于血流紊乱的动脉区域,在那里内皮细胞获得炎症表型。血流紊乱如何诱发内皮细胞炎症尚不完全清楚。本研究表明,组蛋白H3.3丝氨酸31位点的磷酸化(H3.3 s31)通过快速诱导炎症基因表达所需的FOS和FOSB来调节血流紊乱诱导的内皮炎症。我们确定蛋白激酶N1 (PKN1)是负责紊乱血流诱导的H3.3S31磷酸化的激酶。PKN1以整合素α5β1依赖的方式激活PKN1并诱导其易位到细胞核,PKN1还参与AP-1转录因子jun的磷酸化。内皮特异性PKN1缺失或S31磷酸化缺陷H.3.3突变体在内皮细胞表达的小鼠,在体外和体内均表现出内皮炎症减少和血流紊乱诱导的血管重构。我们共同确定了pkn1介导的组蛋白磷酸化和FOS/FOSB诱导的紊乱血流促进炎症基因表达和血管炎症的途径。
{"title":"Phosphorylation of endothelial histone H3.3 serine 31 by PKN1 links flow-induced signaling to proatherogenic gene expression.","authors":"Young-June Jin, Guozheng Liang, Rui Li, ShengPeng Wang, Mohamad Wessam Alnouri, Mette Bentsen, Carsten Kuenne, Stefan Günther, Yang Yan, Yongxin Li, Nina Wettschureck, Stefan Offermanns","doi":"10.1038/s44161-024-00593-y","DOIUrl":"https://doi.org/10.1038/s44161-024-00593-y","url":null,"abstract":"<p><p>Atherosclerotic lesions develop preferentially in arterial regions exposed to disturbed blood flow, where endothelial cells acquire an inflammatory phenotype. How disturbed flow induces endothelial cell inflammation is incompletely understood. Here we show that histone H3.3 phosphorylation at serine 31 (H3.3S31) regulates disturbed-flow-induced endothelial inflammation by allowing rapid induction of FOS and FOSB, required for inflammatory gene expression. We identified protein kinase N1 (PKN1) as the kinase responsible for disturbed-flow-induced H3.3S31 phosphorylation. Disturbed flow activates PKN1 in an integrin α5β1-dependent manner and induces its translocation into the nucleus, and PKN1 is also involved in the phosphorylation of the AP-1 transcription factor JUN. Mice with endothelium-specific PKN1 loss or endothelial expression of S31 phosphorylation-deficient H.3.3 mutants show reduced endothelial inflammation and disturbed-flow-induced vascular remodeling in vitro and in vivo. Together, we identified a pathway whereby disturbed flow through PKN1-mediated histone phosphorylation and FOS/FOSB induction promotes inflammatory gene expression and vascular inflammation.</p>","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A road map of human vasculature 人体血管系统的路线图。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-08 DOI: 10.1038/s44161-024-00604-y
Gerburg Schwaerzer
{"title":"A road map of human vasculature","authors":"Gerburg Schwaerzer","doi":"10.1038/s44161-024-00604-y","DOIUrl":"10.1038/s44161-024-00604-y","url":null,"abstract":"","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 1","pages":"7-7"},"PeriodicalIF":9.4,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142959937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conduction system regeneration and remodeling after myocardial infarction. 心肌梗死后传导系统的再生与重构。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-03 DOI: 10.1038/s44161-024-00594-x
Miao Cui
{"title":"Conduction system regeneration and remodeling after myocardial infarction.","authors":"Miao Cui","doi":"10.1038/s44161-024-00594-x","DOIUrl":"https://doi.org/10.1038/s44161-024-00594-x","url":null,"abstract":"","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tirzepatide improves cardiorenal health in obese individuals with HFpEF 替扎帕肽可改善肥胖型高频心衰患者的心肾健康。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-03 DOI: 10.1038/s44161-024-00601-1
Andrea Tavosanis
{"title":"Tirzepatide improves cardiorenal health in obese individuals with HFpEF","authors":"Andrea Tavosanis","doi":"10.1038/s44161-024-00601-1","DOIUrl":"10.1038/s44161-024-00601-1","url":null,"abstract":"","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 1","pages":"5-5"},"PeriodicalIF":9.4,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardiac conduction system regeneration prevents arrhythmias after myocardial infarction. 心脏传导系统再生可预防心肌梗死后的心律失常。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-03 DOI: 10.1038/s44161-024-00586-x
Judy R Sayers, Hector Martinez-Navarro, Xin Sun, Carla de Villiers, Sarah Sigal, Michael Weinberger, Claudio Cortes Rodriguez, Leto Luana Riebel, Lucas Arantes Berg, Julia Camps, Neil Herring, Blanca Rodriguez, Tatjana Sauka-Spengler, Paul R Riley

Arrhythmias are a hallmark of myocardial infarction (MI) and increase patient mortality. How insult to the cardiac conduction system causes arrhythmias following MI is poorly understood. Here, we demonstrate conduction system restoration during neonatal mouse heart regeneration versus pathological remodeling at non-regenerative stages. Tissue-cleared whole-organ imaging identified disorganized bundling of conduction fibers after MI and global His-Purkinje disruption. Single-cell RNA sequencing (scRNA-seq) revealed specific molecular changes to regenerate the conduction network versus aberrant electrical alterations during fibrotic repair. This manifested functionally as a transition from normal rhythm to pathological conduction delay beyond the regenerative window. Modeling in the infarcted human heart implicated the non-regenerative phenotype as causative for heart block, as observed in patients. These findings elucidate the mechanisms underpinning conduction system regeneration and reveal how MI-induced damage elicits clinical arrhythmogenesis.

心律失常是心肌梗死(MI)的标志,并增加患者死亡率。心肌梗死后,对心脏传导系统的损伤是如何引起心律失常的尚不清楚。在这里,我们证明了新生小鼠心脏再生过程中的传导系统恢复与非再生阶段的病理重塑。组织清除的全器官成像发现心肌梗死和全身his -浦肯野损伤后传导纤维的无序束。单细胞RNA测序(scRNA-seq)揭示了在纤维化修复过程中再生传导网络与异常电改变的特定分子变化。这在功能上表现为从正常节律过渡到超出再生窗口的病理性传导延迟。正如在患者中观察到的那样,在梗死的人类心脏中建模暗示了非再生表型是导致心脏传导阻滞的原因。这些发现阐明了传导系统再生的机制,揭示了心肌梗死引起的损伤是如何引起临床心律失常的。
{"title":"Cardiac conduction system regeneration prevents arrhythmias after myocardial infarction.","authors":"Judy R Sayers, Hector Martinez-Navarro, Xin Sun, Carla de Villiers, Sarah Sigal, Michael Weinberger, Claudio Cortes Rodriguez, Leto Luana Riebel, Lucas Arantes Berg, Julia Camps, Neil Herring, Blanca Rodriguez, Tatjana Sauka-Spengler, Paul R Riley","doi":"10.1038/s44161-024-00586-x","DOIUrl":"https://doi.org/10.1038/s44161-024-00586-x","url":null,"abstract":"<p><p>Arrhythmias are a hallmark of myocardial infarction (MI) and increase patient mortality. How insult to the cardiac conduction system causes arrhythmias following MI is poorly understood. Here, we demonstrate conduction system restoration during neonatal mouse heart regeneration versus pathological remodeling at non-regenerative stages. Tissue-cleared whole-organ imaging identified disorganized bundling of conduction fibers after MI and global His-Purkinje disruption. Single-cell RNA sequencing (scRNA-seq) revealed specific molecular changes to regenerate the conduction network versus aberrant electrical alterations during fibrotic repair. This manifested functionally as a transition from normal rhythm to pathological conduction delay beyond the regenerative window. Modeling in the infarcted human heart implicated the non-regenerative phenotype as causative for heart block, as observed in patients. These findings elucidate the mechanisms underpinning conduction system regeneration and reveal how MI-induced damage elicits clinical arrhythmogenesis.</p>","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":""},"PeriodicalIF":9.4,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142928842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct specification of lymphatic endothelium from mesenchymal progenitors 淋巴内皮从间充质祖细胞直接分化。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-02 DOI: 10.1038/s44161-024-00570-5
Irina-Elena Lupu, David E. Grainger, Nils Kirschnick, Sarah Weischer, Erica Zhao, Ines Martinez-Corral, Hans Schoofs, Marie Vanhollebeke, Grace Jones, Jonathan Godwin, Aden Forrow, Ines Lahmann, Paul R. Riley, Thomas Zobel, Kari Alitalo, Taija Mäkinen, Friedemann Kiefer, Oliver A. Stone
During embryogenesis, endothelial cells (ECs) are generally described to arise from a common pool of progenitors termed angioblasts, which diversify through iterative steps of differentiation to form functionally distinct subtypes of ECs. A key example is the formation of lymphatic ECs (LECs), which are thought to arise largely through transdifferentiation from venous endothelium. Opposing this model, here we show that the initial expansion of mammalian LECs is primarily driven by the in situ differentiation of mesenchymal progenitors and does not require transition through an intermediate venous state. Single-cell genomics and lineage-tracing experiments revealed a population of paraxial mesoderm-derived Etv2+Prox1+ progenitors that directly give rise to LECs. Morphometric analyses of early LEC proliferation and migration, and mutants that disrupt lymphatic development supported these findings. Collectively, this work establishes a cellular blueprint for LEC specification and indicates that discrete pools of mesenchymal progenitors can give rise to specialized subtypes of ECs. Lupu, Grainger, Kirschnick et al. show that, contrary to prevailing belief, the initial specification of mammalian lymphatic endothelial cells primarily occurs from previously unidentified mesenchymal angioblasts rather than from venous endothelium.
在胚胎发生过程中,内皮细胞(ECs)通常被描述为由称为成血管细胞的共同祖细胞池产生,这些祖细胞通过反复分化步骤多样化,形成功能不同的ECs亚型。一个关键的例子是淋巴内皮细胞(LECs)的形成,它被认为主要是通过静脉内皮的转分化而产生的。与此模型相反,本研究表明哺乳动物LECs的初始扩张主要由间充质祖细胞的原位分化驱动,不需要通过中间静脉状态过渡。单细胞基因组学和谱系追踪实验显示,近轴中胚层衍生的Etv2+Prox1+祖细胞直接产生LECs。早期LEC增殖和迁移以及破坏淋巴发育的突变体的形态计量学分析支持了这些发现。总的来说,这项工作建立了LEC规范的细胞蓝图,并表明离散的间质祖细胞池可以产生特化的ECs亚型。
{"title":"Direct specification of lymphatic endothelium from mesenchymal progenitors","authors":"Irina-Elena Lupu,&nbsp;David E. Grainger,&nbsp;Nils Kirschnick,&nbsp;Sarah Weischer,&nbsp;Erica Zhao,&nbsp;Ines Martinez-Corral,&nbsp;Hans Schoofs,&nbsp;Marie Vanhollebeke,&nbsp;Grace Jones,&nbsp;Jonathan Godwin,&nbsp;Aden Forrow,&nbsp;Ines Lahmann,&nbsp;Paul R. Riley,&nbsp;Thomas Zobel,&nbsp;Kari Alitalo,&nbsp;Taija Mäkinen,&nbsp;Friedemann Kiefer,&nbsp;Oliver A. Stone","doi":"10.1038/s44161-024-00570-5","DOIUrl":"10.1038/s44161-024-00570-5","url":null,"abstract":"During embryogenesis, endothelial cells (ECs) are generally described to arise from a common pool of progenitors termed angioblasts, which diversify through iterative steps of differentiation to form functionally distinct subtypes of ECs. A key example is the formation of lymphatic ECs (LECs), which are thought to arise largely through transdifferentiation from venous endothelium. Opposing this model, here we show that the initial expansion of mammalian LECs is primarily driven by the in situ differentiation of mesenchymal progenitors and does not require transition through an intermediate venous state. Single-cell genomics and lineage-tracing experiments revealed a population of paraxial mesoderm-derived Etv2+Prox1+ progenitors that directly give rise to LECs. Morphometric analyses of early LEC proliferation and migration, and mutants that disrupt lymphatic development supported these findings. Collectively, this work establishes a cellular blueprint for LEC specification and indicates that discrete pools of mesenchymal progenitors can give rise to specialized subtypes of ECs. Lupu, Grainger, Kirschnick et al. show that, contrary to prevailing belief, the initial specification of mammalian lymphatic endothelial cells primarily occurs from previously unidentified mesenchymal angioblasts rather than from venous endothelium.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 1","pages":"45-63"},"PeriodicalIF":9.4,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44161-024-00570-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-species comparison reveals that Hmga1 reduces H3K27me3 levels to promote cardiomyocyte proliferation and cardiac regeneration 跨物种比较表明,Hmga1降低H3K27me3水平,促进心肌细胞增殖和心脏再生。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-02 DOI: 10.1038/s44161-024-00588-9
Mara Bouwman, Dennis E. M. de Bakker, Hessel Honkoop, Alexandra E. Giovou, Danielle Versteeg, Arie R. Boender, Phong D. Nguyen, Merel Slotboom, Daniel Colquhoun, Marta Vigil-Garcia, Lieneke Kooijman, Rob Janssen, Ingeborg B. Hooijkaas, Marie Günthel, Kimberly J. Visser, Mischa Klerk, Lorena Zentilin, Mauro Giacca, Jan Kaslin, Gerard J. J. Boink, Eva van Rooij, Vincent M. Christoffels, Jeroen Bakkers
In contrast to adult mammalian hearts, the adult zebrafish heart efficiently replaces cardiomyocytes lost after injury. Here we reveal shared and species-specific injury response pathways and a correlation between Hmga1, an architectural non-histone protein, and regenerative capacity, as Hmga1 is required and sufficient to induce cardiomyocyte proliferation and required for heart regeneration. In addition, Hmga1 was shown to reactivate developmentally silenced genes, likely through modulation of H3K27me3 levels, poising them for a pro-regenerative gene program. Furthermore, AAV-mediated Hmga1 expression in injured adult mouse hearts led to controlled cardiomyocyte proliferation in the border zone and enhanced heart function, without cardiomegaly and adverse remodeling. Histone modification mapping in mouse border zone cardiomyocytes revealed a similar modulation of H3K27me3 marks, consistent with findings in zebrafish. Our study demonstrates that Hmga1 mediates chromatin remodeling and drives a regenerative program, positioning it as a promising therapeutic target to enhance cardiac regeneration after injury. Bouwman et al. identify Hmga1-mediated chromatin remodeling as the fundamental regulator of zebrafish cardiac regeneration and reveal the potential of Hmga1 to restore heart repair in mice by reactivating developmental genes, suggesting potential therapeutic applications.
与成年哺乳动物的心脏相比,成年斑马鱼的心脏可以有效地替代受伤后丢失的心肌细胞。在这里,我们揭示了共有的和物种特异性的损伤反应途径,以及Hmga1(一种建筑非组蛋白)与再生能力之间的相关性,因为Hmga1是诱导心肌细胞增殖和心脏再生所必需的。此外,Hmga1被证明可以通过调节H3K27me3水平重新激活发育沉默的基因,为促进再生的基因程序做好准备。此外,aav介导的Hmga1表达在损伤的成年小鼠心脏中导致边界区心肌细胞增殖受到控制,心功能增强,没有心脏扩大和不良重构。小鼠心肌细胞边界区组蛋白修饰图谱显示了H3K27me3标记的类似调节,与斑马鱼的发现一致。我们的研究表明,Hmga1介导染色质重塑并驱动再生程序,将其定位为增强损伤后心脏再生的有希望的治疗靶点。
{"title":"Cross-species comparison reveals that Hmga1 reduces H3K27me3 levels to promote cardiomyocyte proliferation and cardiac regeneration","authors":"Mara Bouwman,&nbsp;Dennis E. M. de Bakker,&nbsp;Hessel Honkoop,&nbsp;Alexandra E. Giovou,&nbsp;Danielle Versteeg,&nbsp;Arie R. Boender,&nbsp;Phong D. Nguyen,&nbsp;Merel Slotboom,&nbsp;Daniel Colquhoun,&nbsp;Marta Vigil-Garcia,&nbsp;Lieneke Kooijman,&nbsp;Rob Janssen,&nbsp;Ingeborg B. Hooijkaas,&nbsp;Marie Günthel,&nbsp;Kimberly J. Visser,&nbsp;Mischa Klerk,&nbsp;Lorena Zentilin,&nbsp;Mauro Giacca,&nbsp;Jan Kaslin,&nbsp;Gerard J. J. Boink,&nbsp;Eva van Rooij,&nbsp;Vincent M. Christoffels,&nbsp;Jeroen Bakkers","doi":"10.1038/s44161-024-00588-9","DOIUrl":"10.1038/s44161-024-00588-9","url":null,"abstract":"In contrast to adult mammalian hearts, the adult zebrafish heart efficiently replaces cardiomyocytes lost after injury. Here we reveal shared and species-specific injury response pathways and a correlation between Hmga1, an architectural non-histone protein, and regenerative capacity, as Hmga1 is required and sufficient to induce cardiomyocyte proliferation and required for heart regeneration. In addition, Hmga1 was shown to reactivate developmentally silenced genes, likely through modulation of H3K27me3 levels, poising them for a pro-regenerative gene program. Furthermore, AAV-mediated Hmga1 expression in injured adult mouse hearts led to controlled cardiomyocyte proliferation in the border zone and enhanced heart function, without cardiomegaly and adverse remodeling. Histone modification mapping in mouse border zone cardiomyocytes revealed a similar modulation of H3K27me3 marks, consistent with findings in zebrafish. Our study demonstrates that Hmga1 mediates chromatin remodeling and drives a regenerative program, positioning it as a promising therapeutic target to enhance cardiac regeneration after injury. Bouwman et al. identify Hmga1-mediated chromatin remodeling as the fundamental regulator of zebrafish cardiac regeneration and reveal the potential of Hmga1 to restore heart repair in mice by reactivating developmental genes, suggesting potential therapeutic applications.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 1","pages":"64-82"},"PeriodicalIF":9.4,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44161-024-00588-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical regulation of macrophage metabolism by allograft inflammatory factor 1 leads to adverse remodeling after cardiac injury 同种异体移植物炎症因子1对巨噬细胞代谢的机械调节导致心脏损伤后的不良重构。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-02 DOI: 10.1038/s44161-024-00585-y
Matthew DeBerge, Kristofor Glinton, Connor Lantz, Zhi-Dong Ge, David P. Sullivan, Swapna Patil, Bo Ryung Lee, Minori I. Thorp, Adam Mullick, Steve Yeh, Shuling Han, Anja M. van der Laan, Hans W. M. Niessen, Xunrong Luo, Nicholas E. S. Sibinga, Edward B. Thorp
Myocardial infarction (MI) mobilizes macrophages, the central protagonists of tissue repair in the infarcted heart. Although necessary for repair, macrophages also contribute to adverse remodeling and progression to heart failure. In this context, specific targeting of inflammatory macrophage activation may attenuate maladaptive responses and enhance cardiac repair. Allograft inflammatory factor 1 (AIF1) is a macrophage-specific protein expressed in a variety of inflammatory settings, but its function after MI is unknown. Here we identify a maladaptive role for macrophage AIF1 after MI in mice. Mechanistic studies show that AIF1 increases actin remodeling in macrophages to promote reactive oxygen species–dependent activation of hypoxia-inducible factor (HIF)-1α. This directs a switch to glycolytic metabolism to fuel macrophage-mediated inflammation, adverse ventricular remodeling and progression to heart failure. Targeted knockdown of Aif1 using antisense oligonucleotides improved cardiac repair, supporting further exploration of macrophage AIF1 as a therapeutic target after MI. DeBerge, Glinton et al. demonstrate that allograft inflammatory factor 1 promotes inflammatory glycolytic reprogramming in cardiac macrophages, leading to adverse remodeling and progression to heart failure after myocardial infarction.
心肌梗死(MI)动员巨噬细胞,巨噬细胞是梗死心脏组织修复的中心主角。尽管巨噬细胞对心脏修复是必需的,但它也有助于不利的重塑和心力衰竭的进展。在这种情况下,特异性靶向炎性巨噬细胞激活可能会减轻适应不良反应并增强心脏修复。同种异体炎症因子1 (AIF1)是一种巨噬细胞特异性蛋白,在多种炎症环境中表达,但其在心肌梗死后的功能尚不清楚。在这里,我们确定了小鼠心肌梗死后巨噬细胞AIF1的不适应作用。机制研究表明,AIF1增加巨噬细胞肌动蛋白重塑,促进活性氧物种依赖的缺氧诱导因子(HIF)-1α的激活。这导致糖酵解代谢转变为巨噬细胞介导的炎症,不利的心室重塑和心力衰竭的进展。利用反义寡核苷酸靶向敲除Aif1可改善心脏修复,支持进一步探索巨噬细胞Aif1作为心肌梗死后的治疗靶点。
{"title":"Mechanical regulation of macrophage metabolism by allograft inflammatory factor 1 leads to adverse remodeling after cardiac injury","authors":"Matthew DeBerge,&nbsp;Kristofor Glinton,&nbsp;Connor Lantz,&nbsp;Zhi-Dong Ge,&nbsp;David P. Sullivan,&nbsp;Swapna Patil,&nbsp;Bo Ryung Lee,&nbsp;Minori I. Thorp,&nbsp;Adam Mullick,&nbsp;Steve Yeh,&nbsp;Shuling Han,&nbsp;Anja M. van der Laan,&nbsp;Hans W. M. Niessen,&nbsp;Xunrong Luo,&nbsp;Nicholas E. S. Sibinga,&nbsp;Edward B. Thorp","doi":"10.1038/s44161-024-00585-y","DOIUrl":"10.1038/s44161-024-00585-y","url":null,"abstract":"Myocardial infarction (MI) mobilizes macrophages, the central protagonists of tissue repair in the infarcted heart. Although necessary for repair, macrophages also contribute to adverse remodeling and progression to heart failure. In this context, specific targeting of inflammatory macrophage activation may attenuate maladaptive responses and enhance cardiac repair. Allograft inflammatory factor 1 (AIF1) is a macrophage-specific protein expressed in a variety of inflammatory settings, but its function after MI is unknown. Here we identify a maladaptive role for macrophage AIF1 after MI in mice. Mechanistic studies show that AIF1 increases actin remodeling in macrophages to promote reactive oxygen species–dependent activation of hypoxia-inducible factor (HIF)-1α. This directs a switch to glycolytic metabolism to fuel macrophage-mediated inflammation, adverse ventricular remodeling and progression to heart failure. Targeted knockdown of Aif1 using antisense oligonucleotides improved cardiac repair, supporting further exploration of macrophage AIF1 as a therapeutic target after MI. DeBerge, Glinton et al. demonstrate that allograft inflammatory factor 1 promotes inflammatory glycolytic reprogramming in cardiac macrophages, leading to adverse remodeling and progression to heart failure after myocardial infarction.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 1","pages":"83-101"},"PeriodicalIF":9.4,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Social isolation negatively affects oxytocin production and accelerates atherosclerosis 社交孤立会对催产素产生负面影响,加速动脉粥样硬化。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-02 DOI: 10.1038/s44161-024-00602-0
Elisa Martini
{"title":"Social isolation negatively affects oxytocin production and accelerates atherosclerosis","authors":"Elisa Martini","doi":"10.1038/s44161-024-00602-0","DOIUrl":"10.1038/s44161-024-00602-0","url":null,"abstract":"","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 1","pages":"6-6"},"PeriodicalIF":9.4,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paraxial mesoderm as a direct gateway to lymphatic endothelial cells 旁轴中胚层作为淋巴内皮细胞的直接通道。
IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Pub Date : 2025-01-02 DOI: 10.1038/s44161-024-00583-0
Tatiana V. Petrova, Valeria V. Orlova
The origins of mammalian lymphatic vessels have been debated since the early twentieth century; recent data are shifting the balance toward a less widely accepted view.
自20世纪初以来,哺乳动物淋巴管的起源一直存在争议;最近的数据正在将天平转向一种不太被广泛接受的观点。
{"title":"Paraxial mesoderm as a direct gateway to lymphatic endothelial cells","authors":"Tatiana V. Petrova,&nbsp;Valeria V. Orlova","doi":"10.1038/s44161-024-00583-0","DOIUrl":"10.1038/s44161-024-00583-0","url":null,"abstract":"The origins of mammalian lymphatic vessels have been debated since the early twentieth century; recent data are shifting the balance toward a less widely accepted view.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 1","pages":"11-12"},"PeriodicalIF":9.4,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature cardiovascular research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1