Pub Date : 2024-11-21eCollection Date: 2024-11-01DOI: 10.1371/journal.pdig.0000658
Lydia Tesfaye, Michael Wakeman, Gunnar Baskin, Greg Gruse, Tim Gregory, Erin Leahy, Brandon Kendrick, Sherine El-Toukhy
Understanding users' acceptance of smoking cessation interventions features is a precursor to mobile cessation apps' uptake and use. We gauged perceptions of three features of smoking cessation mobile interventions (self-monitoring, tailored feedback and support, educational content) and their design in two smoking cessation apps, Quit Journey and QuitGuide, among young adults with low socioeconomic status (SES) who smoke. A convenience sample of 38 current cigarette smokers 18-29-years-old who wanted to quit and were non-college-educated nor currently enrolled in a four-year college participated in 12 semi-structured virtual focus group discussions on GoTo Meeting. Discussions were audio recorded, transcribed verbatim, and coded using the second Unified Theory of Acceptance and Use of Technology (UTAUT2) constructs (i.e., performance and effort expectancies, hedonic motivation, facilitating conditions, social influence), sentiment (i.e., positive, neutral, negative), and app features following a deductive thematic analysis approach. Participants (52.63% female, 42.10% non-Hispanic White) expressed positive sentiment toward self-monitoring (73.02%), tailored feedback and support (70.53%) and educational content (64.58%). Across both apps, performance expectancy was the dominant theme discussed in relation to feature acceptance (47.43%). Features' perceived usefulness centered on the reliability of apps in tracking smoking triggers over time, accommodating within- and between-person differences, and availability of on-demand cessation-related information. Skepticism about features' usefulness included the possibility of unintended consequences of self-monitoring, burden associated with user-input and effectiveness of tailored support given the unpredictable timing of cravings, and repetitiveness of cessation information. All features were perceived as easy to use. Other technology acceptance themes (e.g., social influence) were minimally discussed. Acceptance of features common to smoking cessation mobile applications among low socioeconomic young adult smokers was owed primarily to their perceived usefulness and ease of use. To increase user acceptance, developers should maximize integration within app features and across other apps and mobile devices.
{"title":"A feature-based qualitative assessment of smoking cessation mobile applications.","authors":"Lydia Tesfaye, Michael Wakeman, Gunnar Baskin, Greg Gruse, Tim Gregory, Erin Leahy, Brandon Kendrick, Sherine El-Toukhy","doi":"10.1371/journal.pdig.0000658","DOIUrl":"10.1371/journal.pdig.0000658","url":null,"abstract":"<p><p>Understanding users' acceptance of smoking cessation interventions features is a precursor to mobile cessation apps' uptake and use. We gauged perceptions of three features of smoking cessation mobile interventions (self-monitoring, tailored feedback and support, educational content) and their design in two smoking cessation apps, Quit Journey and QuitGuide, among young adults with low socioeconomic status (SES) who smoke. A convenience sample of 38 current cigarette smokers 18-29-years-old who wanted to quit and were non-college-educated nor currently enrolled in a four-year college participated in 12 semi-structured virtual focus group discussions on GoTo Meeting. Discussions were audio recorded, transcribed verbatim, and coded using the second Unified Theory of Acceptance and Use of Technology (UTAUT2) constructs (i.e., performance and effort expectancies, hedonic motivation, facilitating conditions, social influence), sentiment (i.e., positive, neutral, negative), and app features following a deductive thematic analysis approach. Participants (52.63% female, 42.10% non-Hispanic White) expressed positive sentiment toward self-monitoring (73.02%), tailored feedback and support (70.53%) and educational content (64.58%). Across both apps, performance expectancy was the dominant theme discussed in relation to feature acceptance (47.43%). Features' perceived usefulness centered on the reliability of apps in tracking smoking triggers over time, accommodating within- and between-person differences, and availability of on-demand cessation-related information. Skepticism about features' usefulness included the possibility of unintended consequences of self-monitoring, burden associated with user-input and effectiveness of tailored support given the unpredictable timing of cravings, and repetitiveness of cessation information. All features were perceived as easy to use. Other technology acceptance themes (e.g., social influence) were minimally discussed. Acceptance of features common to smoking cessation mobile applications among low socioeconomic young adult smokers was owed primarily to their perceived usefulness and ease of use. To increase user acceptance, developers should maximize integration within app features and across other apps and mobile devices.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 11","pages":"e0000658"},"PeriodicalIF":0.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581403/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142689895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p><strong>Introduction: </strong>The widespread use of the internet has brought numerous benefits, but it has also raised concerns about its potential negative impact on mental health, particularly among university students. This study aims to investigate the relationship between internet addiction and mental health in university students, as well as explore the mediating effects of emotional intelligence in this relationship.</p><p><strong>Objective: </strong>The main objective of this study was to examine whether internet addiction (dimensions and total) negatively predicts the mental health of university students, with emotional intelligence acting as a mediator.</p><p><strong>Methods: </strong>To address this objective, a cross-sectional design with an inferential approach was employed. Data were collected using the Wong Law Emotional Intelligence Scale (WLEIS-S), Internet Addiction Scale (IAS), and Keyes' Mental Health Continuum-Short Form (MHC-SF). The total sample consisted of 850 students from two large public higher education institutions in Ethiopia, of which 334 (39.3%) were females and 516 (60.7%) were males, with a mean age of 22.32 (SD = 4.04). For the purpose of the study, the data were split into two randomly selected groups: sample 1 with 300 participants for psychometric testing purposes, and sample 2 with 550 participants for complex mediation purposes. Various analyses were conducted to achieve the stated objectives, including Cronbach's alpha and composite reliabilities, bivariate correlation, discriminant validity, common method biases, measurement invariance, and structural equation modeling (confirmatory factor analysis, path analysis, and mediation analysis). Confirmatory factor analysis was performed to assess the construct validity of the WLEIS-S, IAS, and MHC-SF. Additionally, a mediating model was examined using structural equation modeling with the corrected biased bootstrap method.</p><p><strong>Results: </strong>The results revealed that internet addiction had a negative and direct effect on emotional intelligence (β = -0.180, 95%CI [-0.257, -0.103], p = 0.001) and mental health (β = -0.204, 95%CI [-0.273, -0.134], p = 0.001). Also, Internet Craving and Internet obsession negatively predicted EI (β = -0.324, 95%CI [-0.423, -0.224], p = 0.002) and MH (β = -0.167, 95%CI [-0.260, -0.069], p = 0.009), respectively. However, EI had a significant and positive direct effect on mental health (β = 0.494, 95%CI [0.390, 0.589], p = 0.001). Finally, EI fully mediated the relationship between internet addiction and mental health (β = -0.089, 95%CI [-0.136, -0.049], p = 0.001). Besides The study also confirmed that all the scales had strong internal consistency and good psychometric properties.</p><p><strong>Conclusion: </strong>This study contributes to a better understanding of the complex interplay between internet addiction, emotional intelligence, and mental health among university students. The findings highlight the detr
{"title":"Investigating the mediating role of emotional intelligence in the relationship between internet addiction and mental health among university students.","authors":"Girum Tareke Zewude, Derib Gosim, Seid Dawed, Tilaye Nega, Getachew Wassie Tessema, Amogne Asfaw Eshetu","doi":"10.1371/journal.pdig.0000639","DOIUrl":"10.1371/journal.pdig.0000639","url":null,"abstract":"<p><strong>Introduction: </strong>The widespread use of the internet has brought numerous benefits, but it has also raised concerns about its potential negative impact on mental health, particularly among university students. This study aims to investigate the relationship between internet addiction and mental health in university students, as well as explore the mediating effects of emotional intelligence in this relationship.</p><p><strong>Objective: </strong>The main objective of this study was to examine whether internet addiction (dimensions and total) negatively predicts the mental health of university students, with emotional intelligence acting as a mediator.</p><p><strong>Methods: </strong>To address this objective, a cross-sectional design with an inferential approach was employed. Data were collected using the Wong Law Emotional Intelligence Scale (WLEIS-S), Internet Addiction Scale (IAS), and Keyes' Mental Health Continuum-Short Form (MHC-SF). The total sample consisted of 850 students from two large public higher education institutions in Ethiopia, of which 334 (39.3%) were females and 516 (60.7%) were males, with a mean age of 22.32 (SD = 4.04). For the purpose of the study, the data were split into two randomly selected groups: sample 1 with 300 participants for psychometric testing purposes, and sample 2 with 550 participants for complex mediation purposes. Various analyses were conducted to achieve the stated objectives, including Cronbach's alpha and composite reliabilities, bivariate correlation, discriminant validity, common method biases, measurement invariance, and structural equation modeling (confirmatory factor analysis, path analysis, and mediation analysis). Confirmatory factor analysis was performed to assess the construct validity of the WLEIS-S, IAS, and MHC-SF. Additionally, a mediating model was examined using structural equation modeling with the corrected biased bootstrap method.</p><p><strong>Results: </strong>The results revealed that internet addiction had a negative and direct effect on emotional intelligence (β = -0.180, 95%CI [-0.257, -0.103], p = 0.001) and mental health (β = -0.204, 95%CI [-0.273, -0.134], p = 0.001). Also, Internet Craving and Internet obsession negatively predicted EI (β = -0.324, 95%CI [-0.423, -0.224], p = 0.002) and MH (β = -0.167, 95%CI [-0.260, -0.069], p = 0.009), respectively. However, EI had a significant and positive direct effect on mental health (β = 0.494, 95%CI [0.390, 0.589], p = 0.001). Finally, EI fully mediated the relationship between internet addiction and mental health (β = -0.089, 95%CI [-0.136, -0.049], p = 0.001). Besides The study also confirmed that all the scales had strong internal consistency and good psychometric properties.</p><p><strong>Conclusion: </strong>This study contributes to a better understanding of the complex interplay between internet addiction, emotional intelligence, and mental health among university students. The findings highlight the detr","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 11","pages":"e0000639"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578529/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20eCollection Date: 2024-11-01DOI: 10.1371/journal.pdig.0000652
Prima Alam, Ana Bolio, Leesa Lin, Heidi J Larson
The rapid advancement of digital health technologies has heightened demand for health data for secondary uses, highlighting the importance of understanding global perspectives on personal information sharing. This article examines stakeholder perceptions and attitudes toward the use of personal health data to improve personalized treatments, interventions, and research. It also identifies barriers and facilitators in health data sharing and pinpoints gaps in current research, aiming to inform ethical practices in healthcare settings that utilize digital technologies. We conducted a scoping review of peer reviewed empirical studies based on data pertaining to perceptions and attitudes towards sharing personal health data. The authors searched three electronic databases-Embase, MEDLINE, and Web of Science-for articles published (2015-2023), using terms relating to health data and perceptions. Thirty-nine articles met the inclusion criteria with sample size ranging from 14 to 29,275. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines for the design and analysis of this study. We synthesized the included articles using narrative analysis. The review captured multiple stakeholder perspectives with an up-to-date range of diverse barriers and facilitators that impact data-sharing behavior. The included studies were primarily cross-sectional and geographically concentrated in high-income settings; often overlooking diverse demographics and broader global health challenges. Most of the included studies were based within North America and Western Europe, with the United States (n = 8) and the United Kingdom (n = 7) representing the most studied countries. Many reviewed studies were published in 2022 (n = 11) and used quantitative methods (n = 23). Twenty-nine studies examined the perspectives of patients and the public while six looked at healthcare professionals, researchers, and experts. Many of the studies we reviewed reported overall positive attitudes about data sharing with variations around sociodemographic factors, motivations for sharing data, type and recipient of data being shared, consent preference, and trust.
数字健康技术的飞速发展提高了对健康数据二次利用的需求,凸显了了解全球对个人信息共享看法的重要性。本文探讨了利益相关者对使用个人健康数据改善个性化治疗、干预和研究的看法和态度。文章还指出了健康数据共享的障碍和促进因素,并指出了当前研究中存在的差距,旨在为利用数字技术的医疗保健环境中的伦理实践提供参考。我们根据与共享个人健康数据的看法和态度相关的数据,对经同行评审的实证研究进行了范围界定。作者在三个电子数据库--Embase、MEDLINE 和 Web of Science--中使用与健康数据和认知相关的术语检索了发表于 2015-2023 年的文章。39篇文章符合纳入标准,样本量从14到29,275不等。在设计和分析本研究时,我们遵循了《系统综述和元分析首选报告项目》(Preferred Reporting Items for Systematic Reviews and Meta-Analyses)的扩展范围综述指南。我们采用叙事分析法对纳入的文章进行了综合。综述从多个利益相关者的角度出发,对影响数据共享行为的各种障碍和促进因素进行了最新的分析。所纳入的研究主要是横断面研究,地域集中在高收入地区,往往忽略了不同的人口结构和更广泛的全球健康挑战。大部分纳入研究的国家位于北美和西欧,其中美国(8 项)和英国(7 项)是研究最多的国家。许多综述研究发表于 2022 年(11 项),并使用了定量方法(23 项)。29 项研究考察了患者和公众的观点,6 项研究考察了医护人员、研究人员和专家的观点。我们审查的许多研究都报告了人们对数据共享的总体积极态度,但在社会人口因素、共享数据的动机、共享数据的类型和接收方、同意偏好和信任度等方面存在差异。
{"title":"Stakeholders' perceptions of personal health data sharing: A scoping review.","authors":"Prima Alam, Ana Bolio, Leesa Lin, Heidi J Larson","doi":"10.1371/journal.pdig.0000652","DOIUrl":"10.1371/journal.pdig.0000652","url":null,"abstract":"<p><p>The rapid advancement of digital health technologies has heightened demand for health data for secondary uses, highlighting the importance of understanding global perspectives on personal information sharing. This article examines stakeholder perceptions and attitudes toward the use of personal health data to improve personalized treatments, interventions, and research. It also identifies barriers and facilitators in health data sharing and pinpoints gaps in current research, aiming to inform ethical practices in healthcare settings that utilize digital technologies. We conducted a scoping review of peer reviewed empirical studies based on data pertaining to perceptions and attitudes towards sharing personal health data. The authors searched three electronic databases-Embase, MEDLINE, and Web of Science-for articles published (2015-2023), using terms relating to health data and perceptions. Thirty-nine articles met the inclusion criteria with sample size ranging from 14 to 29,275. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines for the design and analysis of this study. We synthesized the included articles using narrative analysis. The review captured multiple stakeholder perspectives with an up-to-date range of diverse barriers and facilitators that impact data-sharing behavior. The included studies were primarily cross-sectional and geographically concentrated in high-income settings; often overlooking diverse demographics and broader global health challenges. Most of the included studies were based within North America and Western Europe, with the United States (n = 8) and the United Kingdom (n = 7) representing the most studied countries. Many reviewed studies were published in 2022 (n = 11) and used quantitative methods (n = 23). Twenty-nine studies examined the perspectives of patients and the public while six looked at healthcare professionals, researchers, and experts. Many of the studies we reviewed reported overall positive attitudes about data sharing with variations around sociodemographic factors, motivations for sharing data, type and recipient of data being shared, consent preference, and trust.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 11","pages":"e0000652"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20eCollection Date: 2024-11-01DOI: 10.1371/journal.pdig.0000666
Jennifer K Wagner, Laura Y Cabrera, Sara Gerke, Daniel Susser
Artificial intelligence (AI) and machine learning (ML) tools are now proliferating in biomedical contexts, and there is no sign this will slow down any time soon. AI/ML and related technologies promise to improve scientific understanding of health and disease and have the potential to spur the development of innovative and effective diagnostics, treatments, cures, and medical technologies. Concerns about AI/ML are prominent, but attention to two specific aspects of AI/ML have so far received little research attention: synthetic data and computational checklists that might promote not only the reproducibility of AI/ML tools but also increased attention to ethical, legal, and social implications (ELSI) of AI/ML tools. We administered a targeted survey to explore these two items among biomedical professionals in the United States. Our survey findings suggest that there is a gap in familiarity with both synthetic data and computational checklists among AI/ML users and developers and those in ethics-related positions who might be tasked with ensuring the proper use or oversight of AI/ML tools. The findings from this survey study underscore the need for additional ELSI research on synthetic data and computational checklists to inform escalating efforts, including the establishment of laws and policies, to ensure safe, effective, and ethical use of AI in health settings.
{"title":"Synthetic data and ELSI-focused computational checklists-A survey of biomedical professionals' views.","authors":"Jennifer K Wagner, Laura Y Cabrera, Sara Gerke, Daniel Susser","doi":"10.1371/journal.pdig.0000666","DOIUrl":"10.1371/journal.pdig.0000666","url":null,"abstract":"<p><p>Artificial intelligence (AI) and machine learning (ML) tools are now proliferating in biomedical contexts, and there is no sign this will slow down any time soon. AI/ML and related technologies promise to improve scientific understanding of health and disease and have the potential to spur the development of innovative and effective diagnostics, treatments, cures, and medical technologies. Concerns about AI/ML are prominent, but attention to two specific aspects of AI/ML have so far received little research attention: synthetic data and computational checklists that might promote not only the reproducibility of AI/ML tools but also increased attention to ethical, legal, and social implications (ELSI) of AI/ML tools. We administered a targeted survey to explore these two items among biomedical professionals in the United States. Our survey findings suggest that there is a gap in familiarity with both synthetic data and computational checklists among AI/ML users and developers and those in ethics-related positions who might be tasked with ensuring the proper use or oversight of AI/ML tools. The findings from this survey study underscore the need for additional ELSI research on synthetic data and computational checklists to inform escalating efforts, including the establishment of laws and policies, to ensure safe, effective, and ethical use of AI in health settings.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 11","pages":"e0000666"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578457/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For orally administered drugs, palatability is key in ensuring patient acceptability and treatment compliance. Therefore, understanding children's taste sensitivity and preferences can support formulators in making paediatric medicines more acceptable. Presently, we explore if the application of computer-vision techniques to videos of children's reaction to gustatory taste strips can provide an objective assessment of palatability. Children aged 4 to 11 years old tasted four different flavoured strips: no taste, bitter, sweet, and sour. Data was collected at home, under the supervision of a guardian, with responses recorded using the Aparito Atom app and smartphone camera. Participants scored each strip on a 5-point hedonic scale. Facial landmarks were identified in the videos, and quantitative measures, such as changes around the eyes, nose, and mouth, were extracted to train models to classify strip taste and score. We received 197 videos and 256 self-reported scores from 64 participants. The hedonic scale elicited expected results: children like sweetness, dislike bitterness and have varying opinions for sourness. The findings revealed the complexity and variability of facial reactions and highlighted specific measures, such as eyebrow and mouth corner elevations, as significant indicators of palatability. This study capturing children's objective reactions to taste sensations holds promise in identifying palatable drug formulations and assessing patient acceptability of paediatric medicines. Moreover, collecting data in the home setting allows for natural behaviour, with minimal burden for participants.
{"title":"Using facial reaction analysis and machine learning to objectively assess the taste of medicines in children.","authors":"Rabia Aziza, Elisa Alessandrini, Clare Matthews, Sejal R Ranmal, Ziyu Zhou, Elin Haf Davies, Catherine Tuleu","doi":"10.1371/journal.pdig.0000340","DOIUrl":"10.1371/journal.pdig.0000340","url":null,"abstract":"<p><p>For orally administered drugs, palatability is key in ensuring patient acceptability and treatment compliance. Therefore, understanding children's taste sensitivity and preferences can support formulators in making paediatric medicines more acceptable. Presently, we explore if the application of computer-vision techniques to videos of children's reaction to gustatory taste strips can provide an objective assessment of palatability. Children aged 4 to 11 years old tasted four different flavoured strips: no taste, bitter, sweet, and sour. Data was collected at home, under the supervision of a guardian, with responses recorded using the Aparito Atom app and smartphone camera. Participants scored each strip on a 5-point hedonic scale. Facial landmarks were identified in the videos, and quantitative measures, such as changes around the eyes, nose, and mouth, were extracted to train models to classify strip taste and score. We received 197 videos and 256 self-reported scores from 64 participants. The hedonic scale elicited expected results: children like sweetness, dislike bitterness and have varying opinions for sourness. The findings revealed the complexity and variability of facial reactions and highlighted specific measures, such as eyebrow and mouth corner elevations, as significant indicators of palatability. This study capturing children's objective reactions to taste sensations holds promise in identifying palatable drug formulations and assessing patient acceptability of paediatric medicines. Moreover, collecting data in the home setting allows for natural behaviour, with minimal burden for participants.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 11","pages":"e0000340"},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142683723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19eCollection Date: 2024-11-01DOI: 10.1371/journal.pdig.0000650
Johanna E Hidalgo, Julia Kim, Jordan Llorin, Kathryn Stanton, Josh Cherian, Laura Bloomfield, Mikaela Fudolig, Matthew Price, Jennifer Ha, Natalie Noble, Christopher M Danforth, Peter Sheridan Dodds, Jason Fanning, Ryan S McGinnis, Ellen W McGinnis
Objectives: Despite the development of efficacious wellness interventions, sustainable wellness behavior change remains challenging. To optimize engagement, initiating small behaviors that build upon existing practices congruent with individuals' lifestyles may promote sustainable wellness behavior change. In this study, we crowd-sourced helpful, flexible, and engaging wellness practices to identify a list of those commonly used for improving sleep, productivity, and physical, emotional, and social wellness from participants who felt they had been successful in these dimensions.
Method: We recruited a representative sample of 992 U.S. residents to survey the wellness dimensions in which they had achieved success and their specific wellness practices.
Results: Responses were aggregated across demographic, health, lifestyle factors, and wellness dimension. Exploration of these data revealed that there was little overlap in preferred practices across wellness dimensions. Within wellness dimensions, preferred practices were similar across demographic factors, especially within the top 3-4 most selected practices. Interestingly, daily wellness practices differ from those typically recommended as efficacious by research studies and seem to be impacted by health status (e.g., depression, cardiovascular disease). Additionally, we developed and provide for public use a web dashboard that visualizes and enables exploration of the study results.
Conclusions: Findings identify personalized, sustainable wellness practices targeted at specific wellness dimensions. Future studies could leverage tailored practices as recommendations for optimizing the development of healthier behaviors.
{"title":"Meeting people where they are: Crowdsourcing goal-specific personalized wellness practices.","authors":"Johanna E Hidalgo, Julia Kim, Jordan Llorin, Kathryn Stanton, Josh Cherian, Laura Bloomfield, Mikaela Fudolig, Matthew Price, Jennifer Ha, Natalie Noble, Christopher M Danforth, Peter Sheridan Dodds, Jason Fanning, Ryan S McGinnis, Ellen W McGinnis","doi":"10.1371/journal.pdig.0000650","DOIUrl":"10.1371/journal.pdig.0000650","url":null,"abstract":"<p><strong>Objectives: </strong>Despite the development of efficacious wellness interventions, sustainable wellness behavior change remains challenging. To optimize engagement, initiating small behaviors that build upon existing practices congruent with individuals' lifestyles may promote sustainable wellness behavior change. In this study, we crowd-sourced helpful, flexible, and engaging wellness practices to identify a list of those commonly used for improving sleep, productivity, and physical, emotional, and social wellness from participants who felt they had been successful in these dimensions.</p><p><strong>Method: </strong>We recruited a representative sample of 992 U.S. residents to survey the wellness dimensions in which they had achieved success and their specific wellness practices.</p><p><strong>Results: </strong>Responses were aggregated across demographic, health, lifestyle factors, and wellness dimension. Exploration of these data revealed that there was little overlap in preferred practices across wellness dimensions. Within wellness dimensions, preferred practices were similar across demographic factors, especially within the top 3-4 most selected practices. Interestingly, daily wellness practices differ from those typically recommended as efficacious by research studies and seem to be impacted by health status (e.g., depression, cardiovascular disease). Additionally, we developed and provide for public use a web dashboard that visualizes and enables exploration of the study results.</p><p><strong>Conclusions: </strong>Findings identify personalized, sustainable wellness practices targeted at specific wellness dimensions. Future studies could leverage tailored practices as recommendations for optimizing the development of healthier behaviors.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 11","pages":"e0000650"},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575832/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142677517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19eCollection Date: 2024-11-01DOI: 10.1371/journal.pdig.0000662
Mahmud Omar, Girish N Nadkarni, Eyal Klang, Benjamin S Glicksberg
This review analyzes current clinical trials investigating large language models' (LLMs) applications in healthcare. We identified 27 trials (5 published and 22 ongoing) across 4 main clinical applications: patient care, data handling, decision support, and research assistance. Our analysis reveals diverse LLM uses, from clinical documentation to medical decision-making. Published trials show promise but highlight accuracy concerns. Ongoing studies explore novel applications like patient education and informed consent. Most trials occur in the United States of America and China. We discuss the challenges of evaluating rapidly evolving LLMs through clinical trials and identify gaps in current research. This review aims to inform future studies and guide the integration of LLMs into clinical practice.
{"title":"Large language models in medicine: A review of current clinical trials across healthcare applications.","authors":"Mahmud Omar, Girish N Nadkarni, Eyal Klang, Benjamin S Glicksberg","doi":"10.1371/journal.pdig.0000662","DOIUrl":"10.1371/journal.pdig.0000662","url":null,"abstract":"<p><p>This review analyzes current clinical trials investigating large language models' (LLMs) applications in healthcare. We identified 27 trials (5 published and 22 ongoing) across 4 main clinical applications: patient care, data handling, decision support, and research assistance. Our analysis reveals diverse LLM uses, from clinical documentation to medical decision-making. Published trials show promise but highlight accuracy concerns. Ongoing studies explore novel applications like patient education and informed consent. Most trials occur in the United States of America and China. We discuss the challenges of evaluating rapidly evolving LLMs through clinical trials and identify gaps in current research. This review aims to inform future studies and guide the integration of LLMs into clinical practice.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 11","pages":"e0000662"},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575759/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142677480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15eCollection Date: 2024-11-01DOI: 10.1371/journal.pdig.0000656
Cindy Welzel, Stefanie Brückner, Celia Brightwell, Matthew Fenech, Stephen Gilbert
{"title":"A transparent and standardized performance measurement platform is needed for on-prescription digital health apps to enable ongoing performance monitoring.","authors":"Cindy Welzel, Stefanie Brückner, Celia Brightwell, Matthew Fenech, Stephen Gilbert","doi":"10.1371/journal.pdig.0000656","DOIUrl":"10.1371/journal.pdig.0000656","url":null,"abstract":"","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 11","pages":"e0000656"},"PeriodicalIF":0.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11567564/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14eCollection Date: 2024-11-01DOI: 10.1371/journal.pdig.0000506
Rajeev Bopche, Lise Tuset Gustad, Jan Egil Afset, Birgitta Ehrnström, Jan Kristian Damås, Øystein Nytrø
Bloodstream infections (BSIs) are a severe public health threat due to their rapid progression into critical conditions like sepsis. This study presents a novel eXplainable Artificial Intelligence (XAI) framework to predict BSIs using historical electronic health records (EHRs). Leveraging a dataset from St. Olavs Hospital in Trondheim, Norway, encompassing 35,591 patients, the framework integrates demographic, laboratory, and comprehensive medical history data to classify patients into high-risk and low-risk BSI groups. By avoiding reliance on real-time clinical data, our model allows for enhanced scalability across various healthcare settings, including resource-limited environments. The XAI framework significantly outperformed traditional models, particularly with tree-based algorithms, demonstrating superior specificity and sensitivity in BSI prediction. This approach promises to optimize resource allocation and potentially reduce healthcare costs while providing interpretability for clinical decision-making, making it a valuable tool in hospital systems for early intervention and improved patient outcomes.
{"title":"Leveraging explainable artificial intelligence for early prediction of bloodstream infections using historical electronic health records.","authors":"Rajeev Bopche, Lise Tuset Gustad, Jan Egil Afset, Birgitta Ehrnström, Jan Kristian Damås, Øystein Nytrø","doi":"10.1371/journal.pdig.0000506","DOIUrl":"10.1371/journal.pdig.0000506","url":null,"abstract":"<p><p>Bloodstream infections (BSIs) are a severe public health threat due to their rapid progression into critical conditions like sepsis. This study presents a novel eXplainable Artificial Intelligence (XAI) framework to predict BSIs using historical electronic health records (EHRs). Leveraging a dataset from St. Olavs Hospital in Trondheim, Norway, encompassing 35,591 patients, the framework integrates demographic, laboratory, and comprehensive medical history data to classify patients into high-risk and low-risk BSI groups. By avoiding reliance on real-time clinical data, our model allows for enhanced scalability across various healthcare settings, including resource-limited environments. The XAI framework significantly outperformed traditional models, particularly with tree-based algorithms, demonstrating superior specificity and sensitivity in BSI prediction. This approach promises to optimize resource allocation and potentially reduce healthcare costs while providing interpretability for clinical decision-making, making it a valuable tool in hospital systems for early intervention and improved patient outcomes.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 11","pages":"e0000506"},"PeriodicalIF":0.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563427/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11eCollection Date: 2024-11-01DOI: 10.1371/journal.pdig.0000448
Sarah Al-Akshar, Sheriff Tolulope Ibrahim, Tarun Reddy Katapally
Ubiquitous use of smartphones among youth poses significant challenges related to non-communicable diseases, including poor mental health. Although traditional survey measures can be used to assess smartphone use among youth, they are subject to recall bias. This study aims to compare self-reported smartphone use via retrospective modified traditional recall survey and prospective Ecological Momentary Assessments (EMAs) among youth. This study uses data from the Smart Platform, which engages with youth as citizen scientists. Youth (N = 77) aged 13-21 years in two urban jurisdictions in Canada (Regina and Saskatoon) engaged with our research team using a custom-built application via their own smartphones to report on a range of behaviours and outcomes on eight consecutive days. Youth reported smartphone use utilizing a traditional validated measure, which was modified to capture retrospective smartphone use on both weekdays and weekend days. In addition, daily EMAs were also time-triggered over a period of eight days to capture prospective smartphone use. Demographic, behavioural, and contextual factors were also collected. Data analyses included t-test and linear regression using Python statistical software. There was a significant difference between weekdays, weekends and overall smartphone use reported retrospectively and prospectively (p-value = <0.001), with youth reporting less smartphone use via EMAs. Overall retrospective smartphone use was significantly associated with not having a part-time job (β = 139.64, 95% confidence interval [CI] = 34.759, 244.519, p-value = 0.010) and having more than two friends who are physically active (β = -114.72, 95%[CI] = -208.872, -20.569, p-value = 0.018). However, prospective smartphone use reported via EMAs was not associated with any behavioural and contextual factors. The findings of this study have implications for appropriately understanding and monitoring smartphone use in the digital age among youth. EMAs can potentially minimize recall bias of smartphone use among youth, and other behaviours such as physical activity. More importantly, digital citizen science approaches that engage large populations of youth using their own smartphones can transform how we ethically monitor and mitigate the impact of excessive smartphone use.
青少年普遍使用智能手机,这给非传染性疾病(包括不良心理健康)带来了重大挑战。虽然传统的调查方法可用于评估青少年使用智能手机的情况,但它们会受到回忆偏差的影响。本研究旨在比较青少年通过回顾性改良传统回忆调查和前瞻性生态瞬间评估(EMA)自我报告的智能手机使用情况。本研究使用了智能平台(Smart Platform)的数据,该平台让青少年作为公民科学家参与其中。加拿大两个城市辖区(里贾纳和萨斯卡通)13-21 岁的青少年(77 人)通过自己的智能手机与我们的研究团队一起使用定制的应用程序,连续八天报告一系列行为和结果。青少年使用传统的有效测量方法报告智能手机的使用情况,该方法经过修改,可以捕捉平日和周末智能手机使用情况的回顾。此外,每天的 EMA 也会在八天内进行时间触发,以捕捉前瞻性的智能手机使用情况。此外,还收集了人口、行为和环境因素。数据分析包括使用 Python 统计软件进行 t 检验和线性回归。回顾性和前瞻性报告的工作日、周末和智能手机总体使用情况之间存在明显差异(p 值 = 0.05)。
{"title":"How can digital citizen science approaches improve ethical smartphone use surveillance among youth: Traditional surveys versus ecological momentary assessments.","authors":"Sarah Al-Akshar, Sheriff Tolulope Ibrahim, Tarun Reddy Katapally","doi":"10.1371/journal.pdig.0000448","DOIUrl":"10.1371/journal.pdig.0000448","url":null,"abstract":"<p><p>Ubiquitous use of smartphones among youth poses significant challenges related to non-communicable diseases, including poor mental health. Although traditional survey measures can be used to assess smartphone use among youth, they are subject to recall bias. This study aims to compare self-reported smartphone use via retrospective modified traditional recall survey and prospective Ecological Momentary Assessments (EMAs) among youth. This study uses data from the Smart Platform, which engages with youth as citizen scientists. Youth (N = 77) aged 13-21 years in two urban jurisdictions in Canada (Regina and Saskatoon) engaged with our research team using a custom-built application via their own smartphones to report on a range of behaviours and outcomes on eight consecutive days. Youth reported smartphone use utilizing a traditional validated measure, which was modified to capture retrospective smartphone use on both weekdays and weekend days. In addition, daily EMAs were also time-triggered over a period of eight days to capture prospective smartphone use. Demographic, behavioural, and contextual factors were also collected. Data analyses included t-test and linear regression using Python statistical software. There was a significant difference between weekdays, weekends and overall smartphone use reported retrospectively and prospectively (p-value = <0.001), with youth reporting less smartphone use via EMAs. Overall retrospective smartphone use was significantly associated with not having a part-time job (β = 139.64, 95% confidence interval [CI] = 34.759, 244.519, p-value = 0.010) and having more than two friends who are physically active (β = -114.72, 95%[CI] = -208.872, -20.569, p-value = 0.018). However, prospective smartphone use reported via EMAs was not associated with any behavioural and contextual factors. The findings of this study have implications for appropriately understanding and monitoring smartphone use in the digital age among youth. EMAs can potentially minimize recall bias of smartphone use among youth, and other behaviours such as physical activity. More importantly, digital citizen science approaches that engage large populations of youth using their own smartphones can transform how we ethically monitor and mitigate the impact of excessive smartphone use.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 11","pages":"e0000448"},"PeriodicalIF":0.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554190/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}