Pub Date : 2024-09-27DOI: 10.1007/s11128-024-04535-2
Deepa Rathi, Sanjeev Kumar
This paper proposes a verifiable dynamic multi-dimensional quantum secret sharing scheme utilizing a generalized Hadamard gate. The dealer simultaneously distributes quantum and classical information to participants in a single distribution using a generalized Hadamard gate and a quantum SUM gate. To detect the malicious behavior of participants, the dealer prepares a sequence of checking particles. The participants retrieve the secret quantum state and classical information utilizing a generalized Hadamard gate and single-particle measurement. Additionally, the authenticity of secrets is ensured using a public hash function. While adding or removing participants, the dealer does not require assistance from other participants. The proposed protocol effectively thwarts eavesdroppers and participants from performing several types of attacks, including collusion, forgery, denial, and revoked dishonest participant attacks. The proposed protocol yields greater reliability, simplicity, versatility, and practicality.
本文提出了一种利用广义哈达玛门的可验证动态多维量子秘密共享方案。交易者利用广义哈达玛门和量子 SUM 门在一次分配中同时向参与者分配量子和经典信息。为了检测参与者的恶意行为,交易者准备了一系列检查粒子。参与者利用广义哈达玛门和单粒子测量来检索秘密量子态和经典信息。此外,还利用公共哈希函数确保秘密的真实性。在添加或删除参与者时,交易商不需要其他参与者的协助。所提出的协议能有效阻止窃听者和参与者实施几种类型的攻击,包括串通、伪造、拒绝和撤销不诚实参与者攻击。拟议的协议具有更高的可靠性、简易性、通用性和实用性。
{"title":"Verifiable dynamic quantum secret sharing based on generalized Hadamard gate","authors":"Deepa Rathi, Sanjeev Kumar","doi":"10.1007/s11128-024-04535-2","DOIUrl":"10.1007/s11128-024-04535-2","url":null,"abstract":"<div><p>This paper proposes a verifiable dynamic multi-dimensional quantum secret sharing scheme utilizing a generalized Hadamard gate. The dealer simultaneously distributes quantum and classical information to participants in a single distribution using a generalized Hadamard gate and a quantum SUM gate. To detect the malicious behavior of participants, the dealer prepares a sequence of checking particles. The participants retrieve the secret quantum state and classical information utilizing a generalized Hadamard gate and single-particle measurement. Additionally, the authenticity of secrets is ensured using a public hash function. While adding or removing participants, the dealer does not require assistance from other participants. The proposed protocol effectively thwarts eavesdroppers and participants from performing several types of attacks, including collusion, forgery, denial, and revoked dishonest participant attacks. The proposed protocol yields greater reliability, simplicity, versatility, and practicality.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 10","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1007/s11128-024-04538-z
Shion Samadder Chaudhury
The Internet of Things, smart grids, etc. contain processors, sensors, and communication hardware that exchange information with other devices in the network and act on the acquired information. These generate huge amounts of data which are stored in cloud/edge servers managed by third parties and are exposed to the internet. The data often include sensitive information, and the protection of such privacy-sensitive data is important. Attribute-based encryption is one of the most popular methods to address security and privacy challenges encountered in such cases. However, most of the existing classical attribute-based schemes are not secure against quantum attacks and can be broken using Shor’s algorithm. Given this, secure (single-authority) quantum attribute-based schemes have been recently studied. To the best of our knowledge, quantum multi-authority attribute-based schemes have not received much attention and are missing in the literature. Here, we propose a novel construction of a quantum multi-authority attribute-based encryption scheme. The privacy of the encryption scheme is derived using trap codes and quantum secret-sharing schemes. Our construction is based on discrete-time quantum walks and is shown to be portable and usable in several variants of multi-authority schemes. We also demonstrate quantum advantage in terms of computational cost.
{"title":"Efficient quantum multi-authority attribute-based encryption and generalizations","authors":"Shion Samadder Chaudhury","doi":"10.1007/s11128-024-04538-z","DOIUrl":"10.1007/s11128-024-04538-z","url":null,"abstract":"<div><p>The Internet of Things, smart grids, etc. contain processors, sensors, and communication hardware that exchange information with other devices in the network and act on the acquired information. These generate huge amounts of data which are stored in cloud/edge servers managed by third parties and are exposed to the internet. The data often include sensitive information, and the protection of such privacy-sensitive data is important. Attribute-based encryption is one of the most popular methods to address security and privacy challenges encountered in such cases. However, most of the existing classical attribute-based schemes are not secure against quantum attacks and can be broken using Shor’s algorithm. Given this, secure (single-authority) quantum attribute-based schemes have been recently studied. To the best of our knowledge, quantum multi-authority attribute-based schemes have not received much attention and are missing in the literature. Here, we propose a novel construction of a quantum multi-authority attribute-based encryption scheme. The privacy of the encryption scheme is derived using trap codes and quantum secret-sharing schemes. Our construction is based on discrete-time quantum walks and is shown to be portable and usable in several variants of multi-authority schemes. We also demonstrate quantum advantage in terms of computational cost.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 10","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142414215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1007/s11128-024-04533-4
Xue-Tong Sun, Jing-Xue Zhang, Yu-Ying Gu, Hai-Rui Wei, Guo-Zhu Song
Hyper-parallel quantum computation offers irreplaceable advantages in quantum information processing (QIP). In this article, based on the scattering property of photons off emitters coupled to one-dimensional (1D) waveguides, we propose three heralded schemes for implementing hyper-controlled-not (hyper-CNOT) gates on two-photon systems. The four qubits of our hyper-CNOT gates are encoded on the spatial-mode and the polarization degrees of freedom (DOFs) of two-photon systems. In our schemes, the faulty scattering events between photons and quantum emitters caused by system imperfections can be detected and discarded. Besides, no auxiliary photons are needed during the process, reducing the operation time and resource consumption in QIP. We also discuss the success probabilities and fidelities of our schemes, concluding that our schemes may be feasible under current technology.
{"title":"Heralded high-fidelity photonic hyper-CNOT gates with quantum scattering in one-dimensional waveguides","authors":"Xue-Tong Sun, Jing-Xue Zhang, Yu-Ying Gu, Hai-Rui Wei, Guo-Zhu Song","doi":"10.1007/s11128-024-04533-4","DOIUrl":"10.1007/s11128-024-04533-4","url":null,"abstract":"<div><p>Hyper-parallel quantum computation offers irreplaceable advantages in quantum information processing (QIP). In this article, based on the scattering property of photons off emitters coupled to one-dimensional (1D) waveguides, we propose three heralded schemes for implementing hyper-controlled-not (hyper-CNOT) gates on two-photon systems. The four qubits of our hyper-CNOT gates are encoded on the spatial-mode and the polarization degrees of freedom (DOFs) of two-photon systems. In our schemes, the faulty scattering events between photons and quantum emitters caused by system imperfections can be detected and discarded. Besides, no auxiliary photons are needed during the process, reducing the operation time and resource consumption in QIP. We also discuss the success probabilities and fidelities of our schemes, concluding that our schemes may be feasible under current technology.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 10","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-25DOI: 10.1007/s11128-024-04537-0
Josh Dees, Antoine Jacquier, Sylvain Laizet
Classical Physics-informed neural networks (PINNs) approximate solutions to PDEs with the help of deep neural networks trained to satisfy the differential operator and the relevant boundary conditions. We revisit this idea in the quantum computing realm, using parameterised random quantum circuits as trial solutions. We further adapt recent PINN-based techniques to our quantum setting, in particular Gaussian smoothing. Our analysis concentrates on the Poisson, the Heat and the Hamilton–Jacobi–Bellman equations, which are ubiquitous in most areas of science. On the theoretical side, we develop a complexity analysis of this approach, and show numerically that random quantum networks can outperform more traditional quantum networks as well as random classical networks.
{"title":"Unsupervised random quantum networks for PDEs","authors":"Josh Dees, Antoine Jacquier, Sylvain Laizet","doi":"10.1007/s11128-024-04537-0","DOIUrl":"10.1007/s11128-024-04537-0","url":null,"abstract":"<div><p>Classical Physics-informed neural networks (PINNs) approximate solutions to PDEs with the help of deep neural networks trained to satisfy the differential operator and the relevant boundary conditions. We revisit this idea in the quantum computing realm, using parameterised random quantum circuits as trial solutions. We further adapt recent PINN-based techniques to our quantum setting, in particular Gaussian smoothing. Our analysis concentrates on the Poisson, the Heat and the Hamilton–Jacobi–Bellman equations, which are ubiquitous in most areas of science. On the theoretical side, we develop a complexity analysis of this approach, and show numerically that random quantum networks can outperform more traditional quantum networks as well as random classical networks.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 10","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-024-04537-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-23DOI: 10.1007/s11128-024-04534-3
Lanqiang Li, Ziwen Cao, Tingting Wu, Li Liu
Let p be an odd prime and r, s, m be positive integers. In this study, we initiate our exploration by delving into the intricate structure of all repeated-root cyclic codes and their duals with a length of (2^rp^s) over the finite field (mathbb {F}_{p^m}). Through the utilization of CSS and Steane’s constructions, a series of new quantum error-correcting (QEC) codes are constructed with parameters distinct from all previous constructions. Furthermore, we identify all maximum distance separable (MDS) cyclic codes of length (2^rp^s), which are further utilized in the construction of QEC MDS codes. Finally, we introduce a significant number of novel entanglement-assisted quantum error-correcting (EAQEC) codes derived from these repeated-root cyclic codes. Notably, these newly constructed codes exhibit parameters distinct from those of previously known constructions.
{"title":"New quantum codes and entanglement-assisted quantum codes from repeated-root cyclic codes of length (2^rp^s)","authors":"Lanqiang Li, Ziwen Cao, Tingting Wu, Li Liu","doi":"10.1007/s11128-024-04534-3","DOIUrl":"10.1007/s11128-024-04534-3","url":null,"abstract":"<div><p>Let <i>p</i> be an odd prime and <i>r</i>, <i>s</i>, <i>m</i> be positive integers. In this study, we initiate our exploration by delving into the intricate structure of all repeated-root cyclic codes and their duals with a length of <span>(2^rp^s)</span> over the finite field <span>(mathbb {F}_{p^m})</span>. Through the utilization of CSS and Steane’s constructions, a series of new quantum error-correcting (QEC) codes are constructed with parameters distinct from all previous constructions. Furthermore, we identify all maximum distance separable (MDS) cyclic codes of length <span>(2^rp^s)</span>, which are further utilized in the construction of QEC MDS codes. Finally, we introduce a significant number of novel entanglement-assisted quantum error-correcting (EAQEC) codes derived from these repeated-root cyclic codes. Notably, these newly constructed codes exhibit parameters distinct from those of previously known constructions.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 9","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-024-04534-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-20DOI: 10.1007/s11128-024-04527-2
Zhong Ding, Yong Zhang
This paper proposes a magnetic field measurement scheme based on a hybrid microwave optomechanical-magnetic coupled system. The proposed sensor comprises a yttrium iron garnet sphere and an optomechanical cavity, where the spring coefficient of the cavity is parametrically modulated. The results demonstrate that the system’s response to the input signal is significantly enhanced, amplifying the weak input signal while reducing the added noise of measurement below the standard quantum limit. Consequently, this hybrid system serves as an effective amplifier, generating a stronger output signal while maintaining sensitivity nearly identical to that of the bare system. We posit that these findings may offer an efficient method for magnetic field measurement and contribute to the advancement of technology in quantum precision measurements.
{"title":"Magnetic field measurement in a hybrid microwave optomechanical-magnetic coupled system","authors":"Zhong Ding, Yong Zhang","doi":"10.1007/s11128-024-04527-2","DOIUrl":"10.1007/s11128-024-04527-2","url":null,"abstract":"<div><p>This paper proposes a magnetic field measurement scheme based on a hybrid microwave optomechanical-magnetic coupled system. The proposed sensor comprises a yttrium iron garnet sphere and an optomechanical cavity, where the spring coefficient of the cavity is parametrically modulated. The results demonstrate that the system’s response to the input signal is significantly enhanced, amplifying the weak input signal while reducing the added noise of measurement below the standard quantum limit. Consequently, this hybrid system serves as an effective amplifier, generating a stronger output signal while maintaining sensitivity nearly identical to that of the bare system. We posit that these findings may offer an efficient method for magnetic field measurement and contribute to the advancement of technology in quantum precision measurements.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 9","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142412782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1007/s11128-024-04531-6
Aiham Rostom, Leonid Il’ichov
In quantum key distribution, secret randomness is extracted quantum-mechanically from two-sided local random choices of measurement bases. Subsequently, the public announcement of basis information is necessary to perform a security check and establish the key. Recent studies have demonstrated that, provided the basis information is accessible, even adversaries with limited computational power can readily compromise the key through side-channel attacks. In this paper, we propose a quantum key distribution scheme using entangled coherent states. The present scheme is based on the secure exchange of one-sided quantum randomness, thus obviating the necessity for basis-information announcement. This effectively closes the security loophole associated with access to basis information during side-channel attacks. The security of the present protocol has been verified against both local and global quantum attacks. Furthermore, the impact of high photon loss and an authentication scheme has been discussed.
{"title":"Secure sharing of one-sided quantum randomness using entangled coherent states","authors":"Aiham Rostom, Leonid Il’ichov","doi":"10.1007/s11128-024-04531-6","DOIUrl":"10.1007/s11128-024-04531-6","url":null,"abstract":"<div><p>In quantum key distribution, secret randomness is extracted quantum-mechanically from two-sided local random choices of measurement bases. Subsequently, the public announcement of basis information is necessary to perform a security check and establish the key. Recent studies have demonstrated that, provided the basis information is accessible, even adversaries with limited computational power can readily compromise the key through side-channel attacks. In this paper, we propose a quantum key distribution scheme using entangled coherent states. The present scheme is based on the secure exchange of one-sided quantum randomness, thus obviating the necessity for basis-information announcement. This effectively closes the security loophole associated with access to basis information during side-channel attacks. The security of the present protocol has been verified against both local and global quantum attacks. Furthermore, the impact of high photon loss and an authentication scheme has been discussed.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 9","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1007/s11128-024-04508-5
Ankit Khandelwal, Handy Kurniawan, Shraddha Aangiras, Özlem Salehi, Adam Glos
Efficient decomposition of permutation unitaries is vital as they frequently appear in quantum computing. In this paper, we identify the key properties that impact the decomposition process of permutation unitaries. Then, we classify these decompositions based on the identified properties, establishing a comprehensive framework for analysis. We demonstrate the applicability of the presented framework through the widely used multi-controlled Toffoli gate, revealing that the existing decompositions in the literature belong to only four out of ten identified classes. Motivated by this finding, we propose transformations that can adapt a given decomposition into a member of another class, enabling resource reduction.
{"title":"Classification and transformations of quantum circuit decompositions for permutation operations","authors":"Ankit Khandelwal, Handy Kurniawan, Shraddha Aangiras, Özlem Salehi, Adam Glos","doi":"10.1007/s11128-024-04508-5","DOIUrl":"10.1007/s11128-024-04508-5","url":null,"abstract":"<div><p>Efficient decomposition of permutation unitaries is vital as they frequently appear in quantum computing. In this paper, we identify the key properties that impact the decomposition process of permutation unitaries. Then, we classify these decompositions based on the identified properties, establishing a comprehensive framework for analysis. We demonstrate the applicability of the presented framework through the widely used multi-controlled Toffoli gate, revealing that the existing decompositions in the literature belong to only four out of ten identified classes. Motivated by this finding, we propose transformations that can adapt a given decomposition into a member of another class, enabling resource reduction.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 9","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1007/s11128-024-04528-1
Xiaobing Li, Yunyan Xiong, Cai Zhang
In this paper, we propose a protocol for quantum secure multiparty summation and privacy sorting based on inverse quantum Fourier transform. The protocol allows multiple participants to obtain the summation and sorting of their secrets without revealing their private inputs. Each participant in the protocol encodes his/her own secret input into the phase of the d-level entangled state of n particles by means of a phase transformation operator and an inverse quantum Fourier transform. Finally, all participants perform measurements and jointly calculate the sum of all the secret data, meanwhile deriving their own rankings of the private inputs based on the final results. Compared to the existing similar quantum summation and sorting protocols, this protocol requires only a one-time particle transmission and does not require private key sequences to encrypt secret information, resulting in higher quantum efficiency. The participants can further obtain the ranking of their secret inputs by themselves. The credibility of the protocol is demonstrated in security analysis and simulation.
本文提出了一种基于逆量子傅里叶变换的量子安全多方求和与隐私排序协议。该协议允许多个参与者在不泄露其私人输入的情况下获得其秘密的求和与排序。协议中的每个参与者通过相位变换算子和逆量子傅里叶变换,将自己的秘密输入编码为 n 个粒子的 d 级纠缠态的相位。最后,所有参与者进行测量并共同计算所有秘密数据的总和,同时根据最终结果得出各自的私人输入排名。与现有的类似量子求和与排序协议相比,该协议只需一次性粒子传输,不需要私钥序列来加密秘密信息,因此具有更高的量子效率。参与者可以进一步自行获得其秘密输入的排序。安全分析和仿真证明了该协议的可信性。
{"title":"Secure multiparty quantum computation for summation and data sorting","authors":"Xiaobing Li, Yunyan Xiong, Cai Zhang","doi":"10.1007/s11128-024-04528-1","DOIUrl":"10.1007/s11128-024-04528-1","url":null,"abstract":"<div><p>In this paper, we propose a protocol for quantum secure multiparty summation and privacy sorting based on inverse quantum Fourier transform. The protocol allows multiple participants to obtain the summation and sorting of their secrets without revealing their private inputs. Each participant in the protocol encodes his/her own secret input into the phase of the <i>d</i>-level entangled state of <i>n</i> particles by means of a phase transformation operator and an inverse quantum Fourier transform. Finally, all participants perform measurements and jointly calculate the sum of all the secret data, meanwhile deriving their own rankings of the private inputs based on the final results. Compared to the existing similar quantum summation and sorting protocols, this protocol requires only a one-time particle transmission and does not require private key sequences to encrypt secret information, resulting in higher quantum efficiency. The participants can further obtain the ranking of their secret inputs by themselves. The credibility of the protocol is demonstrated in security analysis and simulation.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 9","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-024-04528-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16DOI: 10.1007/s11128-024-04530-7
Cheng-Yun Ding, Wan-Fang Liu, Li-Hua Zhang
It is well-known that maximally entangled GHZ states can achieve perfect teleportation and superdense coding, whereas maximally entangled W states cannot. However, it has been demonstrated that there exists a special class of non-maximally entangled W states, called as W-like states, which can overcome this limitation. Therefore, it is of great significance to prepare such W-like states for efficient quantum communication. Here, we propose two kinds of novel and efficient fusion schemes for atomic W-like states based on the large-detuning interactions between several atoms and a single-mode cavity field, with which large-scale atomic (|mathcal {W}_{N+M-1}rangle ) and (|mathcal {W}_{N+M+T-2}rangle ) states can be prepared, respectively, from two small-scale atomic (|mathcal {W}_{N}rangle ) and (|mathcal {W}_{M}rangle ) states and three small-scale atomic (|mathcal {W}_{N}rangle ), (|mathcal {W}_{M}rangle ) and (|mathcal {W}_{T}rangle ) states, by detecting the states of one or two of the fused atoms. Particularly, although the fusion process of our scheme involves particle loss, the corresponding success probability is high and fixed, which may induce high fusion efficiency. Furthermore, through the investigation of the resource cost and feasibility analysis, our protocol is simple and feasible under the current experimental conditions. All these suggest that it provides an alternative strategy for preparing large-scale atomic W-like states for perfect teleportation and superdense coding.
众所周知,最大纠缠 GHZ 状态可以实现完美的远距传输和超密集编码,而最大纠缠 W 状态却不能。然而,有研究证明,存在一类特殊的非最大纠缠 W 状态,即类 W 状态,可以克服这一限制。因此,制备这类类 W 态对于高效量子通信具有重要意义。在这里,我们提出了两种新颖高效的原子类W态融合方案,它们基于多个原子与单模腔场之间的大调谐相互作用,可以制备出大尺度的原子态(|mathcal {W}_{N+M-1}rangle )和原子态(|mathcal {W}_{N+M+T-2}rangle )、分别由两个小尺度原子态(|mathcal {W}_{N}rangle )和三个小尺度原子态(|mathcal {W}_{M}rangle )制备而成、通过检测融合原子中的一个或两个原子的状态,可以得到它们的(|mathcal {W}_{M}rangle )态和(|mathcal {W}_{T}rangle )态。特别是,虽然我们的方案在融合过程中会有粒子丢失,但相应的成功概率较高且固定,这可能会诱发较高的融合效率。此外,通过对资源成本的研究和可行性分析,我们的方案在当前实验条件下是简单可行的。所有这些都表明,它为制备用于完美远距传输和超密集编码的大规模类 W 原子态提供了另一种策略。
{"title":"Fusion of atomic W-like states in cavity QED systems","authors":"Cheng-Yun Ding, Wan-Fang Liu, Li-Hua Zhang","doi":"10.1007/s11128-024-04530-7","DOIUrl":"10.1007/s11128-024-04530-7","url":null,"abstract":"<div><p>It is well-known that maximally entangled GHZ states can achieve perfect teleportation and superdense coding, whereas maximally entangled W states cannot. However, it has been demonstrated that there exists a special class of non-maximally entangled W states, called as W-like states, which can overcome this limitation. Therefore, it is of great significance to prepare such W-like states for efficient quantum communication. Here, we propose two kinds of novel and efficient fusion schemes for atomic W-like states based on the large-detuning interactions between several atoms and a single-mode cavity field, with which large-scale atomic <span>(|mathcal {W}_{N+M-1}rangle )</span> and <span>(|mathcal {W}_{N+M+T-2}rangle )</span> states can be prepared, respectively, from two small-scale atomic <span>(|mathcal {W}_{N}rangle )</span> and <span>(|mathcal {W}_{M}rangle )</span> states and three small-scale atomic <span>(|mathcal {W}_{N}rangle )</span>, <span>(|mathcal {W}_{M}rangle )</span> and <span>(|mathcal {W}_{T}rangle )</span> states, by detecting the states of one or two of the fused atoms. Particularly, although the fusion process of our scheme involves particle loss, the corresponding success probability is high and fixed, which may induce high fusion efficiency. Furthermore, through the investigation of the resource cost and feasibility analysis, our protocol is simple and feasible under the current experimental conditions. All these suggest that it provides an alternative strategy for preparing large-scale atomic W-like states for perfect teleportation and superdense coding.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 9","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}