首页 > 最新文献

Spring simulation conference (SpringSim)最新文献

英文 中文
Propiedades Psicométricas de la Escala de Pasión Laboral (EPL) en una Muestra de Adultos en Puerto Rico 工作激情量表(EPL)在波多黎各成年人样本中的心理测量特性
Pub Date : 2020-01-01 DOI: 10.37226/rcp.v4i1.1829
Adam Rosario-Rodríguez, J. González-Rivera
La pasión por el trabajo es un estado de deseo persistente, basado en evaluaciones cognitivas y afectivas hacia el trabajo. La misma ha sido conceptualizada como un constructo bifactorial (pasión armoniosa y pasión obsesiva). El propósito principal de esta investigación fue desarrollar una medida alternativa para la pasión por el trabajo y examinar sus propiedades psicométricas. Para esto, se desarrollaron reactivos basados en la conceptualización teórica del Modelo Dual de la Pasión y se examinó su validez de contenido al igual que sus propiedades psicométricas. Los resultados obtenidos brindaron evidencia de la estructura bifactorial de la Escala de Pasión Laboral y de que ésta posee propiedades psicométricas adecuadas para ser utilizada en investigaciones y diagnósticos organizacionales en Puerto Rico.
工作激情是基于对工作的认知和情感评价而产生的一种持久的渴望状态。这已经被概念化为一个双因素结构(和谐激情和强迫性激情)。本研究的目的是开发一种替代的工作激情测量方法,并分析其心理测量特性。为此,我们在激情二元模型的基础上开发了项目,并对量表的内容效度和心理测量特性进行了分析。所得结果证明了工作热情量表的双因素结构及其在波多黎各的研究和组织诊断中具有足够的心理测量特性。
{"title":"Propiedades Psicométricas de la Escala de Pasión Laboral (EPL) en una Muestra de Adultos en Puerto Rico","authors":"Adam Rosario-Rodríguez, J. González-Rivera","doi":"10.37226/rcp.v4i1.1829","DOIUrl":"https://doi.org/10.37226/rcp.v4i1.1829","url":null,"abstract":"La pasión por el trabajo es un estado de deseo persistente, basado en evaluaciones cognitivas y afectivas hacia el trabajo. La misma ha sido conceptualizada como un constructo bifactorial (pasión armoniosa y pasión obsesiva). El propósito principal de esta investigación fue desarrollar una medida alternativa para la pasión por el trabajo y examinar sus propiedades psicométricas. Para esto, se desarrollaron reactivos basados en la conceptualización teórica del Modelo Dual de la Pasión y se examinó su validez de contenido al igual que sus propiedades psicométricas. Los resultados obtenidos brindaron evidencia de la estructura bifactorial de la Escala de Pasión Laboral y de que ésta posee propiedades psicométricas adecuadas para ser utilizada en investigaciones y diagnósticos organizacionales en Puerto Rico.","PeriodicalId":74859,"journal":{"name":"Spring simulation conference (SpringSim)","volume":"466 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86711355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
ADHD and its Effects on Job Performance: A Moderated Mediation Model ADHD及其对工作绩效的影响:一个有调节的中介模型
Pub Date : 2020-01-01 DOI: 10.37226/rcp.2020/01
E. Rosario-Hernández, Lillian V. Rovira-Millán
The purpose of the present study was to examine the effects of ADHD on job performance and the possible me-diating role of work engagement and moderating role of gender. Hypotheses testing were performed using structural equation modeling base on PLS-SEM approach applied to a sample of 448 employees from different organizations in Puerto Rico. The results shown that ADHD has a direct effect on task performance and counter-productive work behaviors, but none on organizational citizenship behaviors. Meanwhile, the relationship be-tween ADHD and task performance/organizational citizenship behavior were mediated by work engagement. On the other hand, gender moderated the relationship between ADHD and counterproductive work behaviors on which males were more strongly to show counter-productive work behaviors under high levels of ADHD than females. Findings are discussed in the light of their theoretical and practical implications for future studies.
本研究旨在探讨ADHD对工作表现的影响,以及工作投入的中介作用和性别的调节作用。采用基于PLS-SEM方法的结构方程模型对波多黎各不同组织的448名员工进行假设检验。结果表明,ADHD对任务绩效和反生产行为有直接影响,但对组织公民行为没有直接影响。同时,工作投入对ADHD与任务绩效/组织公民行为的关系起中介作用。另一方面,性别调节了注意力缺陷多动障碍与反生产工作行为之间的关系,在高水平注意力缺陷多动障碍下,男性比女性更强烈地表现出反生产工作行为。根据这些发现对未来研究的理论和实践意义进行了讨论。
{"title":"ADHD and its Effects on Job Performance: A Moderated Mediation Model","authors":"E. Rosario-Hernández, Lillian V. Rovira-Millán","doi":"10.37226/rcp.2020/01","DOIUrl":"https://doi.org/10.37226/rcp.2020/01","url":null,"abstract":"The purpose of the present study was to examine the effects of ADHD on job performance and the possible me-diating role of work engagement and moderating role of gender. Hypotheses testing were performed using structural equation modeling base on PLS-SEM approach applied to a sample of 448 employees from different organizations in Puerto Rico. The results shown that ADHD has a direct effect on task performance and counter-productive work behaviors, but none on organizational citizenship behaviors. Meanwhile, the relationship be-tween ADHD and task performance/organizational citizenship behavior were mediated by work engagement. On the other hand, gender moderated the relationship between ADHD and counterproductive work behaviors on which males were more strongly to show counter-productive work behaviors under high levels of ADHD than females. Findings are discussed in the light of their theoretical and practical implications for future studies.","PeriodicalId":74859,"journal":{"name":"Spring simulation conference (SpringSim)","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78981181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Desarrollo y Validación de la Escala de Ansiedad por Enfermedad en Puerto Rico 波多黎各疾病焦虑量表的开发和验证
Pub Date : 2020-01-01 DOI: 10.37226/rcp.v4i1.1891
J. González-Rivera, Keren L. Santiago-Olmo, Ana Sofia Cruz-Rodríguez, Rafael Pérez-Ojeda, Hécmir Torres-Cuevas
This article examines the psychometric properties of the Illness Anxiety Scale in a sample of Puerto Rican adults. A total of 300 Puerto Ricans participated in this exploratory and psychometric study. The results confirmed that the scale has a one-dimensional structure. The 10 items complied with the criteria of discrimination. The reliability index of the scale was of .95 (Cronbach's alpha). These results suggest that the instrument has the potential to measure this construct among Puerto Rican adults. Likewise, the scale will advance further research of Illness Anxiety in Puerto Rican, Caribbean and Latin American adults.
本文考察了波多黎各成年人的疾病焦虑量表的心理测量特性。共有300名波多黎各人参加了这项探索性心理测量研究。结果证实了该尺度具有一维结构。这10个项目符合歧视标准。量表的信度指数为0.95 (Cronbach’s alpha)。这些结果表明,该仪器有潜力测量波多黎各成年人的这种结构。同样,该量表将促进波多黎各、加勒比和拉丁美洲成年人疾病焦虑的进一步研究。
{"title":"Desarrollo y Validación de la Escala de Ansiedad por Enfermedad en Puerto Rico","authors":"J. González-Rivera, Keren L. Santiago-Olmo, Ana Sofia Cruz-Rodríguez, Rafael Pérez-Ojeda, Hécmir Torres-Cuevas","doi":"10.37226/rcp.v4i1.1891","DOIUrl":"https://doi.org/10.37226/rcp.v4i1.1891","url":null,"abstract":"This article examines the psychometric properties of the Illness Anxiety Scale in a sample of Puerto Rican adults. A total of 300 Puerto Ricans participated in this exploratory and psychometric study. The results confirmed that the scale has a one-dimensional structure. The 10 items complied with the criteria of discrimination. The reliability index of the scale was of .95 (Cronbach's alpha). These results suggest that the instrument has the potential to measure this construct among Puerto Rican adults. Likewise, the scale will advance further research of Illness Anxiety in Puerto Rican, Caribbean and Latin American adults.","PeriodicalId":74859,"journal":{"name":"Spring simulation conference (SpringSim)","volume":"40 1","pages":"36-44"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82394526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TOWARDS MUSCULOSKELETAL SIMULATION-AWARE FALL INJURY MITIGATION: TRANSFER LEARNING WITH DEEP CNN FOR FALL DETECTION. 肌肉骨骼模拟软件跌倒损伤缓解:深度CNN迁移学习用于跌倒检测。
Pub Date : 2019-04-01 Epub Date: 2019-06-10 DOI: 10.23919/springsim.2019.8732857
Haben Yhdego, Jiang Li, Steven Morrison, Michel Audette, Christopher Paolini, Mahasweta Sarkar, Hamid Okhravi

This paper presents early work on a fall detection method using transfer learning method, in conjunction with a long-term effort to combine efficient machine learning and prior personalized musculoskeletal modeling to deploy fall injury mitigation in geriatric subjects. Inspired by the tremendous progress in image-based object recognition with deep convolutional neural networks (DCNNs), we opt for a pre-trained kinematics-based machine learning approach through existing large-scale annotated accelerometry datasets. The accelerometry datasets are converted to images using time-frequency analysis, based on scalograms, by computing the continuous wavelet transform filter bank. Subsequently, data augmentation is performed on these scalogram images to increase accuracy, thereby complementing limited labeled fall sensor data, enabling transfer learning from the existing pre-trained model. The experimental results on publicly available URFD datasets demonstrate that transfer learning leads to a better performance than the existing methods in the case of scarce labeled training data.

本文介绍了使用迁移学习方法的跌倒检测方法的早期工作,以及将高效的机器学习和先前的个性化肌肉骨骼建模相结合的长期努力,以在老年受试者中部署跌倒损伤缓解措施。受深度卷积神经网络(DCNN)在基于图像的物体识别方面取得的巨大进展的启发,我们通过现有的大规模注释加速度数据集选择了一种基于运动学的预训练机器学习方法。通过计算连续小波变换滤波器组,使用基于标度图的时频分析将加速度数据集转换为图像。随后,对这些标度图图像进行数据扩充以提高准确性,从而补充有限的标记跌倒传感器数据,从而能够从现有的预训练模型中进行迁移学习。在公开可用的URFD数据集上的实验结果表明,在标记训练数据稀少的情况下,迁移学习比现有方法具有更好的性能。
{"title":"TOWARDS MUSCULOSKELETAL SIMULATION-AWARE FALL INJURY MITIGATION: TRANSFER LEARNING WITH DEEP CNN FOR FALL DETECTION.","authors":"Haben Yhdego, Jiang Li, Steven Morrison, Michel Audette, Christopher Paolini, Mahasweta Sarkar, Hamid Okhravi","doi":"10.23919/springsim.2019.8732857","DOIUrl":"10.23919/springsim.2019.8732857","url":null,"abstract":"<p><p>This paper presents early work on a fall detection method using transfer learning method, in conjunction with a long-term effort to combine efficient machine learning and prior personalized musculoskeletal modeling to deploy fall injury mitigation in geriatric subjects. Inspired by the tremendous progress in image-based object recognition with deep convolutional neural networks (DCNNs), we opt for a pre-trained kinematics-based machine learning approach through existing large-scale annotated accelerometry datasets. The accelerometry datasets are converted to images using time-frequency analysis, based on scalograms, by computing the continuous wavelet transform filter bank. Subsequently, data augmentation is performed on these scalogram images to increase accuracy, thereby complementing limited labeled fall sensor data, enabling transfer learning from the existing pre-trained model. The experimental results on publicly available URFD datasets demonstrate that transfer learning leads to a better performance than the existing methods in the case of scarce labeled training data.</p>","PeriodicalId":74859,"journal":{"name":"Spring simulation conference (SpringSim)","volume":"2019 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10205067/pdf/nihms-1883014.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9522332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A MACHINE LEARNING MODEL TO PREDICT SEIZURE SUSCEPTIBILITY FROM RESTING-STATE FMRI CONNECTIVITY. 从静息状态fmri连接预测癫痫易感性的机器学习模型。
Pub Date : 2019-04-01 DOI: 10.23919/springsim.2019.8732859
Rachael Garner, Marianna La Rocca, Giuseppe Barisano, Arthur W Toga, Dominique Duncan, Paul Vespa

Traumatic brain injury (TBI) is a leading cause of disability globally. Many patients develop post-traumatic epilepsy, or recurrent seizures following TBI. In recent years, significant efforts have been made to identify biomarkers of epileptogenesis that may assist in preventing seizure occurrence by identifying high-risk patients. We present a novel method of assessing seizure susceptibility using data from 49 patients enrolled in the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx). We employ a machine learning paradigm that utilizes a Random Forest classifier trained with resting-state functional magnetic resonance imaging (fMRI) data to predict seizure outcomes. Following 100 rounds of stratified cross-validation with 70% of resting state fMRI scans as the training set and 30% as the testing set, our model was found to assess seizure outcome in the testing set with 69% accuracy. To validate the method, we compared our results with classification by Support Vector Machines and Neural Network classifiers.

外伤性脑损伤(TBI)是全球致残的主要原因。许多患者发生创伤后癫痫,或在TBI后复发性癫痫发作。近年来,人们已经做出了重大努力,以确定癫痫发生的生物标志物,这些标志物可能有助于通过识别高危患者来预防癫痫发作。我们提出了一种评估癫痫易感性的新方法,该方法使用了49名参加抗癫痫治疗癫痫生物信息学研究(EpiBioS4Rx)的患者的数据。我们采用了一种机器学习范式,该范式利用静息状态功能磁共振成像(fMRI)数据训练的随机森林分类器来预测癫痫发作结果。经过100轮分层交叉验证,其中70%的静息状态fMRI扫描作为训练集,30%作为测试集,我们的模型在测试集中评估癫痫发作结果的准确率为69%。为了验证该方法,我们将结果与支持向量机和神经网络分类器的分类结果进行了比较。
{"title":"A MACHINE LEARNING MODEL TO PREDICT SEIZURE SUSCEPTIBILITY FROM RESTING-STATE FMRI CONNECTIVITY.","authors":"Rachael Garner,&nbsp;Marianna La Rocca,&nbsp;Giuseppe Barisano,&nbsp;Arthur W Toga,&nbsp;Dominique Duncan,&nbsp;Paul Vespa","doi":"10.23919/springsim.2019.8732859","DOIUrl":"https://doi.org/10.23919/springsim.2019.8732859","url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is a leading cause of disability globally. Many patients develop post-traumatic epilepsy, or recurrent seizures following TBI. In recent years, significant efforts have been made to identify biomarkers of epileptogenesis that may assist in preventing seizure occurrence by identifying high-risk patients. We present a novel method of assessing seizure susceptibility using data from 49 patients enrolled in the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx). We employ a machine learning paradigm that utilizes a Random Forest classifier trained with resting-state functional magnetic resonance imaging (fMRI) data to predict seizure outcomes. Following 100 rounds of stratified cross-validation with 70% of resting state fMRI scans as the training set and 30% as the testing set, our model was found to assess seizure outcome in the testing set with 69% accuracy. To validate the method, we compared our results with classification by Support Vector Machines and Neural Network classifiers.</p>","PeriodicalId":74859,"journal":{"name":"Spring simulation conference (SpringSim)","volume":"2019 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.23919/springsim.2019.8732859","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10406926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Positive Feedback 积极的反馈
Pub Date : 2017-03-01 DOI: 10.17077/0021-065x.31799
G. Barnhart
{"title":"Positive Feedback","authors":"G. Barnhart","doi":"10.17077/0021-065x.31799","DOIUrl":"https://doi.org/10.17077/0021-065x.31799","url":null,"abstract":"","PeriodicalId":74859,"journal":{"name":"Spring simulation conference (SpringSim)","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77355730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Train Juju
Pub Date : 2017-03-01 DOI: 10.17077/0021-065x.31796
Iheoma Nwachukwu
{"title":"Train Juju","authors":"Iheoma Nwachukwu","doi":"10.17077/0021-065x.31796","DOIUrl":"https://doi.org/10.17077/0021-065x.31796","url":null,"abstract":"","PeriodicalId":74859,"journal":{"name":"Spring simulation conference (SpringSim)","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75230286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Certificates of Training 培训证书
Pub Date : 2017-03-01 DOI: 10.17077/0021-065x.31801
G. Barnhart
{"title":"Certificates of Training","authors":"G. Barnhart","doi":"10.17077/0021-065x.31801","DOIUrl":"https://doi.org/10.17077/0021-065x.31801","url":null,"abstract":"","PeriodicalId":74859,"journal":{"name":"Spring simulation conference (SpringSim)","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91302413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cultivating Mass 培养质量
Pub Date : 2017-03-01 DOI: 10.17077/0021-065x.31800
G. Barnhart
{"title":"Cultivating Mass","authors":"G. Barnhart","doi":"10.17077/0021-065x.31800","DOIUrl":"https://doi.org/10.17077/0021-065x.31800","url":null,"abstract":"","PeriodicalId":74859,"journal":{"name":"Spring simulation conference (SpringSim)","volume":"162 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73474556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indiana-stan Indiana-stan
Pub Date : 2017-03-01 DOI: 10.17077/0021-065x.31798
G. Barnhart
{"title":"Indiana-stan","authors":"G. Barnhart","doi":"10.17077/0021-065x.31798","DOIUrl":"https://doi.org/10.17077/0021-065x.31798","url":null,"abstract":"","PeriodicalId":74859,"journal":{"name":"Spring simulation conference (SpringSim)","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87668073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Spring simulation conference (SpringSim)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1