首页 > 最新文献

Stress biology最新文献

英文 中文
Ecological risk assessment of heavy metals in tea plantation soil around Tai Lake region in Suzhou, China. 中国苏州太湖地区茶园土壤中重金属的生态风险评估。
Pub Date : 2024-02-16 DOI: 10.1007/s44154-024-00149-x
Xiaohan Xu, Jiahui Yang, Yang Zhang, Xueyan Sui, Zelong Gong, Shujing Liu, Xuan Chen, Xinghui Li, Yuhua Wang

Tea plant [Camellia sinensis (L.) O. Kuntze] is one of the important foliar cash crops in China, and its root system absorbs heavy metal (HM) elements enriched in the soil and transports them to the over ground part. In order to ensure the safety of the soil ecological environment and tea raw materials in the tea production area, the HM contents of soil and tea plant leaves in Suzhou tea plantations were detected, the relationship between HMs and soil physicochemical properties was analyzed, and the ecological risk of HMs in tea plantation soils was evaluated by using relevant detection techniques and evaluation models. The results showed that the average pH of tea plantation soils around Tai Lake in Suzhou was within the range suitable for the growth of tea plants. The pH, soil organic matter, total nitrogen, available phosphorus and available potassium of tea plantation soil satisfying the requirements of high quality, high efficiency and high yield ('3H') tea plantation accounted for 47.06%, 26.47%, 8.82%, 79.41% and 67.65%, respectively. Site 2 fully met the requirements of '3H' tea plantation. In addition, the contents of cadmium (Cd) and mercury (Hg) were extremely variable, and the average contents exceeded the background value of soil in Jiangsu Province, but the HM contents of tea leaves all met the pollution-free standard, and the HM contents of tea leaves around Tai Lake in Suzhou were generally at a safe level. The composite ecological risk index ranged from 0.05 to 0.60, and 32 of the 34 sample sites (except site 21 and site 23) are the most suitable agricultural land for tea plantations.

茶树[Camellia sinensis (L.) O. Kuntze]是中国重要的叶面经济作物之一,其根系吸收土壤中富集的重金属元素并将其转移到地上部分。为确保茶叶产地土壤生态环境和茶叶原料的安全,利用相关检测技术和评价模型,检测了苏州茶园土壤和茶树叶片中 HMs 的含量,分析了 HMs 与土壤理化性质的关系,评价了茶园土壤中 HMs 的生态风险。结果表明,苏州太湖周边茶园土壤的平均 pH 值在适宜茶树生长的范围内。茶园土壤pH值、土壤有机质、全氮、可利用磷和可利用钾满足优质高效高产("3H")茶园要求的比例分别为47.06%、26.47%、8.82%、79.41%和67.65%。2 号地完全符合 "3H "茶园的要求。此外,镉(Cd)和汞(Hg)的含量变化很大,平均含量超过江苏省土壤背景值,但茶叶中 HM 含量均达到无公害标准,苏州太湖周边茶叶中 HM 含量总体处于安全水平。生态风险综合指数在 0.05 至 0.60 之间,34 个样地中有 32 个样地(除 21 号样地和 23 号样地外)是最适宜种植茶叶的农田。
{"title":"Ecological risk assessment of heavy metals in tea plantation soil around Tai Lake region in Suzhou, China.","authors":"Xiaohan Xu, Jiahui Yang, Yang Zhang, Xueyan Sui, Zelong Gong, Shujing Liu, Xuan Chen, Xinghui Li, Yuhua Wang","doi":"10.1007/s44154-024-00149-x","DOIUrl":"10.1007/s44154-024-00149-x","url":null,"abstract":"<p><p>Tea plant [Camellia sinensis (L.) O. Kuntze] is one of the important foliar cash crops in China, and its root system absorbs heavy metal (HM) elements enriched in the soil and transports them to the over ground part. In order to ensure the safety of the soil ecological environment and tea raw materials in the tea production area, the HM contents of soil and tea plant leaves in Suzhou tea plantations were detected, the relationship between HMs and soil physicochemical properties was analyzed, and the ecological risk of HMs in tea plantation soils was evaluated by using relevant detection techniques and evaluation models. The results showed that the average pH of tea plantation soils around Tai Lake in Suzhou was within the range suitable for the growth of tea plants. The pH, soil organic matter, total nitrogen, available phosphorus and available potassium of tea plantation soil satisfying the requirements of high quality, high efficiency and high yield ('3H') tea plantation accounted for 47.06%, 26.47%, 8.82%, 79.41% and 67.65%, respectively. Site 2 fully met the requirements of '3H' tea plantation. In addition, the contents of cadmium (Cd) and mercury (Hg) were extremely variable, and the average contents exceeded the background value of soil in Jiangsu Province, but the HM contents of tea leaves all met the pollution-free standard, and the HM contents of tea leaves around Tai Lake in Suzhou were generally at a safe level. The composite ecological risk index ranged from 0.05 to 0.60, and 32 of the 34 sample sites (except site 21 and site 23) are the most suitable agricultural land for tea plantations.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"15"},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873261/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degradation kinetics and physiological studies of organophosphates degrading microorganisms for soil bioremediation. 用于土壤生物修复的有机磷降解微生物的降解动力学和生理学研究。
Pub Date : 2024-02-06 DOI: 10.1007/s44154-023-00138-6
J M Kilonzi, S Otieno

Organophosphate compounds are widely used in agricultural activities to optimize food production. Contamination of field soil by these compounds may result in detrimental effects on soil biota. The aim of the present study was to isolate microorganisms from field soils and evaluate the strains on ability to degrade organophosphates as single isolate and as a consortium. Isolated strains were identified using both biochemical and molecular techniques. Results revealed that, out of the 46 isolated strains, three isolates herein referred to as S6, S36 and S37 showed an average diazinon degradation rate of 76.4%, 76.7% and 76.8% respectively, of the initial dose (50 ppm) within 11 days of incubation in mineral medium. Notably, isolates S36 and S37 were more effective than S6 in degrading diazinon by 40% in soil aliquot after 11 days and therefore were evaluated on biochemical reactions and molecular identification. The isolates showed variable biochemical characteristics. However, both isolates possessed catalase enzyme, but lacked oxidase enzyme. Molecular characterization showed that, the closest species for S36 and S37 were Priestia megaterium and P. arybattia, respectively, based on 16S rRNA gene similarity (> 99%). Combination of the strains increased diazinon degradation ability by 45% compared to single strain treatment. Chlorpyrifos was the most highly degraded organophosphate, compared to phorate and cadusafos. Therefore it is expected that the pesticide-degrading bacteria could be a solution to soil health improvement and contribution to the production of safe agricultural products.

有机磷化合物被广泛用于农业活动,以优化粮食生产。这些化合物污染田间土壤可能会对土壤生物区系造成有害影响。本研究的目的是从田间土壤中分离微生物,并评估菌株作为单个分离菌株和作为菌群降解有机磷的能力。分离出的菌株采用生化和分子技术进行鉴定。结果表明,在 46 株分离菌株中,S6、S36 和 S37 三株分离菌株在矿物培养基中培养 11 天后,对初始剂量(50 ppm)的二嗪农平均降解率分别为 76.4%、76.7% 和 76.8%。值得注意的是,在 11 天后的土壤等分中,分离物 S36 和 S37 比 S6 更有效地降解了 40% 的二嗪农,因此对其进行了生化反应和分子鉴定评估。分离物表现出不同的生化特征。不过,两种分离物都具有过氧化氢酶,但缺乏氧化酶。分子鉴定结果表明,根据 16S rRNA 基因相似度(> 99%),S36 和 S37 最接近的菌种分别是 Priestia megaterium 和 P. arybattia。与单一菌株处理相比,组合菌株的二嗪农降解能力提高了 45%。与甲拌磷和卡杜沙磷相比,毒死蜱是降解率最高的有机磷。因此,农药降解菌有望成为改善土壤健康的一种解决方案,并有助于生产安全的农产品。
{"title":"Degradation kinetics and physiological studies of organophosphates degrading microorganisms for soil bioremediation.","authors":"J M Kilonzi, S Otieno","doi":"10.1007/s44154-023-00138-6","DOIUrl":"10.1007/s44154-023-00138-6","url":null,"abstract":"<p><p>Organophosphate compounds are widely used in agricultural activities to optimize food production. Contamination of field soil by these compounds may result in detrimental effects on soil biota. The aim of the present study was to isolate microorganisms from field soils and evaluate the strains on ability to degrade organophosphates as single isolate and as a consortium. Isolated strains were identified using both biochemical and molecular techniques. Results revealed that, out of the 46 isolated strains, three isolates herein referred to as S6, S36 and S37 showed an average diazinon degradation rate of 76.4%, 76.7% and 76.8% respectively, of the initial dose (50 ppm) within 11 days of incubation in mineral medium. Notably, isolates S36 and S37 were more effective than S6 in degrading diazinon by 40% in soil aliquot after 11 days and therefore were evaluated on biochemical reactions and molecular identification. The isolates showed variable biochemical characteristics. However, both isolates possessed catalase enzyme, but lacked oxidase enzyme. Molecular characterization showed that, the closest species for S36 and S37 were Priestia megaterium and P. arybattia, respectively, based on 16S rRNA gene similarity (> 99%). Combination of the strains increased diazinon degradation ability by 45% compared to single strain treatment. Chlorpyrifos was the most highly degraded organophosphate, compared to phorate and cadusafos. Therefore it is expected that the pesticide-degrading bacteria could be a solution to soil health improvement and contribution to the production of safe agricultural products.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847075/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling two decades of phyllosphere endophytes: tracing research trends and insights through visualized knowledge maps, with emphasis on microbial interactions as emerging frontiers. 揭开植物叶球内生菌二十年的神秘面纱:通过可视化知识图谱追踪研究趋势和见解,重点关注作为新兴前沿领域的微生物相互作用。
Pub Date : 2024-02-06 DOI: 10.1007/s44154-024-00148-y
Muhammad Atif Muneer, Xiaohui Chen, Hexin Wang, Muhammad Zeeshan Munir, Muhammad Siddique Afridi, Xiaojun Yan, Baoming Ji, Wenqing Li, Liangquan Wu, Chaoyuan Zheng

Phyllosphere endophytes play a critical role in a myriad of biological functions, such as maintaining plant health and overall fitness. They play a determinative role in crop yield and quality by regulating vital processes, such as leaf functionality and longevity, seed mass, apical growth, flowering, and fruit development. This study conducted a comprehensive bibliometric analysis aiming to review the prevailing research trajectories in phyllosphere endophytes and harness both primary areas of interest and emerging challenges. A total of 156 research articles on phyllosphere endophytes, published between 2002 and 2022, were retrieved from the Web of Science Core Collection (WoSCC). A systematic analysis was conducted using CiteSpace to visualize the evolution of publication frequency, the collaboration network, the co-citation network, and keywords co-occurrence. The findings indicated that initially, there were few publications on the topic of phyllosphere endophytes. However, from 2011 onwards, there was a notable increase in the number of publications on phyllosphere endophytes, gaining worldwide attention. Among authors, Arnold, A Elizabeth is widely recognized as a leading author in this research area. In terms of countries, the USA and China hold the highest rankings. As for institutional ranking, the University of Arizona is the most prevalent and leading institute in this particular subject. Collaborative efforts among the authors and institutions tend to be confined to small groups, and a large-scale collaborative network needs to be established. This study identified the influential journals, literature, and hot research topics. These findings also highlight the interconnected nature of key themes, e.g., phyllosphere endophyte research revolves around the four pillars: diversity, fungal endophytes, growth, and endophytic fungi. This study provides an in-depth perspective on phyllosphere endophytes studies, revealing the identification of biodiversity and microbial interaction of phyllosphere endophytes as the principal research frontiers. These analytical findings not only elucidate the recent trajectory of phyllosphere endophyte research but also provide invaluable insights for similar studies and their potential applications on a global scale.

叶球内生菌在维护植物健康和整体健康等众多生物功能中发挥着至关重要的作用。它们通过调节叶片功能和寿命、种子质量、顶端生长、开花和果实发育等重要过程,对作物的产量和质量起着决定性作用。本研究进行了全面的文献计量学分析,旨在回顾叶球内生菌的当前研究轨迹,把握主要兴趣领域和新出现的挑战。研究人员从科学网核心文献库(WoSCC)中检索了 2002 年至 2022 年间发表的 156 篇关于叶球内生菌的研究文章。利用 CiteSpace 进行了系统分析,以直观地显示发表频率、合作网络、共引网络和关键词共现的演变情况。研究结果表明,最初关于叶绿体内生菌主题的论文很少。然而,从 2011 年开始,有关叶球内生菌的论文数量明显增加,并在世界范围内受到关注。在作者中,阿诺德-伊丽莎白(A-Elizabeth)被公认为这一研究领域的领军人物。在国家排名方面,美国和中国排名最高。在机构排名方面,亚利桑那大学是这一研究领域最重要和最领先的机构。作者和机构之间的合作往往局限于小范围,需要建立大规模的合作网络。本研究确定了有影响力的期刊、文献和热门研究课题。这些发现还突出了关键主题的相互关联性,例如,植物叶球内生真菌研究围绕四大支柱展开:多样性、真菌内生体、生长和内生真菌。本研究深入透视了叶球内生真菌研究,揭示了生物多样性和叶球内生真菌的微生物相互作用是主要的研究前沿。这些分析结果不仅阐明了叶球内生菌研究的最新发展轨迹,还为类似研究及其在全球范围内的潜在应用提供了宝贵的见解。
{"title":"Unraveling two decades of phyllosphere endophytes: tracing research trends and insights through visualized knowledge maps, with emphasis on microbial interactions as emerging frontiers.","authors":"Muhammad Atif Muneer, Xiaohui Chen, Hexin Wang, Muhammad Zeeshan Munir, Muhammad Siddique Afridi, Xiaojun Yan, Baoming Ji, Wenqing Li, Liangquan Wu, Chaoyuan Zheng","doi":"10.1007/s44154-024-00148-y","DOIUrl":"10.1007/s44154-024-00148-y","url":null,"abstract":"<p><p>Phyllosphere endophytes play a critical role in a myriad of biological functions, such as maintaining plant health and overall fitness. They play a determinative role in crop yield and quality by regulating vital processes, such as leaf functionality and longevity, seed mass, apical growth, flowering, and fruit development. This study conducted a comprehensive bibliometric analysis aiming to review the prevailing research trajectories in phyllosphere endophytes and harness both primary areas of interest and emerging challenges. A total of 156 research articles on phyllosphere endophytes, published between 2002 and 2022, were retrieved from the Web of Science Core Collection (WoSCC). A systematic analysis was conducted using CiteSpace to visualize the evolution of publication frequency, the collaboration network, the co-citation network, and keywords co-occurrence. The findings indicated that initially, there were few publications on the topic of phyllosphere endophytes. However, from 2011 onwards, there was a notable increase in the number of publications on phyllosphere endophytes, gaining worldwide attention. Among authors, Arnold, A Elizabeth is widely recognized as a leading author in this research area. In terms of countries, the USA and China hold the highest rankings. As for institutional ranking, the University of Arizona is the most prevalent and leading institute in this particular subject. Collaborative efforts among the authors and institutions tend to be confined to small groups, and a large-scale collaborative network needs to be established. This study identified the influential journals, literature, and hot research topics. These findings also highlight the interconnected nature of key themes, e.g., phyllosphere endophyte research revolves around the four pillars: diversity, fungal endophytes, growth, and endophytic fungi. This study provides an in-depth perspective on phyllosphere endophytes studies, revealing the identification of biodiversity and microbial interaction of phyllosphere endophytes as the principal research frontiers. These analytical findings not only elucidate the recent trajectory of phyllosphere endophyte research but also provide invaluable insights for similar studies and their potential applications on a global scale.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"12"},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847081/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the dynamic relationship of viruses and/or symbiotic bacteria with plant resilience in abiotic stress. 揭示病毒和/或共生细菌与植物在非生物胁迫下恢复能力的动态关系。
Pub Date : 2024-02-05 DOI: 10.1007/s44154-023-00126-w
Vasudha Sharma, Shakeel A Mohammed, Nisha Devi, Gourav Vats, Hardeep S Tuli, Adesh K Saini, Yashika W Dhir, Sunny Dhir, Bharat Singh

In the ecosphere, plants interact with environmental biotic and abiotic partners, where unbalanced interactions can induce unfavourable stress conditions. Abiotic factors (temperature, water, and salt) are primarily required for plants healthy survival, and any change in their availability is reflected as a stress signal. In certain cases, the presence of infectious pathogens such as viruses, bacteria, fungi, protozoa, nematodes, and insects can also create stress conditions in plants, leading to the emergence of disease or deficiency symptoms. While these symptoms are often typical of abiotic or biotic stress, however, there are instances where they can intensify under specific conditions. Here, we primarily summarize the viral interactions with plants during abiotic stress to understand how these associations are linked together during viral pathogenesis. Secondly, focus is given to the beneficial effects of root-associated symbiotic bacteria in fulfilling the basic needs of plants during normal as well as abiotic stress conditions. The modulations of plant functional proteins, and their occurrence/cross-talk, with pathogen (virus) and symbiont (bacteria) molecules are also discussed. Furthermore, we have highlighted the biochemical and systematic adaptations that develop in plants due to bacterial symbiosis to encounter stress hallmarks. Lastly, directions are provided towards exploring potential rhizospheric bacteria to maintain plant-microbes ecosystem and manage abiotic stress in plants to achieve better trait health in the horticulture crops.

在生态圈中,植物与环境中的生物和非生物伙伴相互作用,不平衡的相互作用会导致不利的胁迫条件。非生物因素(温度、水和盐)是植物健康生存的主要条件,其可用性的任何变化都会反映为压力信号。在某些情况下,病毒、细菌、真菌、原生动物、线虫和昆虫等传染性病原体的存在也会对植物造成胁迫条件,导致出现疾病或缺素症状。虽然这些症状通常是典型的非生物或生物胁迫症状,但在某些情况下,它们会在特定条件下加剧。在此,我们主要总结了非生物胁迫期间病毒与植物的相互作用,以了解病毒致病过程中这些关联是如何联系在一起的。其次,我们将重点关注根系相关共生细菌在正常和非生物胁迫条件下满足植物基本需求的有益作用。我们还讨论了植物功能蛋白的调节及其与病原体(病毒)和共生体(细菌)分子之间的相互作用/交叉对话。此外,我们还强调了植物因细菌共生而在遭遇胁迫时产生的生化和系统适应。最后,我们为探索潜在的根瘤菌提供了方向,以维护植物-微生物生态系统,管理植物的非生物压力,实现园艺作物更好的性状健康。
{"title":"Unveiling the dynamic relationship of viruses and/or symbiotic bacteria with plant resilience in abiotic stress.","authors":"Vasudha Sharma, Shakeel A Mohammed, Nisha Devi, Gourav Vats, Hardeep S Tuli, Adesh K Saini, Yashika W Dhir, Sunny Dhir, Bharat Singh","doi":"10.1007/s44154-023-00126-w","DOIUrl":"10.1007/s44154-023-00126-w","url":null,"abstract":"<p><p>In the ecosphere, plants interact with environmental biotic and abiotic partners, where unbalanced interactions can induce unfavourable stress conditions. Abiotic factors (temperature, water, and salt) are primarily required for plants healthy survival, and any change in their availability is reflected as a stress signal. In certain cases, the presence of infectious pathogens such as viruses, bacteria, fungi, protozoa, nematodes, and insects can also create stress conditions in plants, leading to the emergence of disease or deficiency symptoms. While these symptoms are often typical of abiotic or biotic stress, however, there are instances where they can intensify under specific conditions. Here, we primarily summarize the viral interactions with plants during abiotic stress to understand how these associations are linked together during viral pathogenesis. Secondly, focus is given to the beneficial effects of root-associated symbiotic bacteria in fulfilling the basic needs of plants during normal as well as abiotic stress conditions. The modulations of plant functional proteins, and their occurrence/cross-talk, with pathogen (virus) and symbiont (bacteria) molecules are also discussed. Furthermore, we have highlighted the biochemical and systematic adaptations that develop in plants due to bacterial symbiosis to encounter stress hallmarks. Lastly, directions are provided towards exploring potential rhizospheric bacteria to maintain plant-microbes ecosystem and manage abiotic stress in plants to achieve better trait health in the horticulture crops.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838894/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139682040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multi-omics analysis of viral nucleic acid poly(I:C) responses to mammalian testicular stimulation. 病毒核酸聚(I:C)对哺乳动物睾丸刺激反应的多组学分析。
Pub Date : 2024-02-01 DOI: 10.1007/s44154-023-00146-6
Donghui Yang, Wenping Wu, Qizhong Lu, Yaling Mou, Wenbo Chen, Shicheng Wan, Mengfei Zhang, Congliang Wang, Xiaomin Du, Na Li, Jinlian Hua

The male reproductive system has a standard immune response regulatory mechanism, However, a variety of external stimuli, including viruses, bacteria, heat, and medications can damage the testicles and cause orchitis and epididymitis. It has been shown that various RNA viruses are more likely to infect the testis than DNA viruses, inducing orchitis and impairing testicular function. It was found that local injection of the viral RNA analog poly(I:C) into the testes markedly disrupted the structure of the seminiferous tubules, accompanied by apoptosis and inflammation. Poly(I:C) mainly inhibited the expression of testosterone synthesis-associated proteins, STAR and MGARP, and affected the synthesis and metabolism of amino acids and lipids in the testis. This led to the disruption of the metabolite levels in the testis of mice, thus affecting the normal spermatogenesis process. The present study analyzed the acute inflammatory response of the testis to viral infection using a multi-omics approach. It provides insights into how RNA virus infection impairs testicular function and offers a theoretical basis for future studies on immune homeostasis and responses under stress conditions in male reproduction.

男性生殖系统有一套标准的免疫反应调节机制,但病毒、细菌、高温和药物等各种外界刺激都会损伤睾丸,引起睾丸炎和附睾炎。研究表明,与 DNA 病毒相比,各种 RNA 病毒更容易感染睾丸,诱发睾丸炎并损害睾丸功能。研究发现,向睾丸局部注射病毒 RNA 类似物 poly(I:C)会明显破坏曲细精管的结构,并伴有细胞凋亡和炎症。Poly(I:C)主要抑制睾酮合成相关蛋白STAR和MGARP的表达,并影响睾丸内氨基酸和脂质的合成和代谢。这导致了小鼠睾丸中代谢物水平的紊乱,从而影响了正常的精子发生过程。本研究采用多组学方法分析了睾丸对病毒感染的急性炎症反应。它深入揭示了 RNA 病毒感染如何损害睾丸功能,并为今后研究男性生殖系统应激条件下的免疫稳态和反应提供了理论依据。
{"title":"A multi-omics analysis of viral nucleic acid poly(I:C) responses to mammalian testicular stimulation.","authors":"Donghui Yang, Wenping Wu, Qizhong Lu, Yaling Mou, Wenbo Chen, Shicheng Wan, Mengfei Zhang, Congliang Wang, Xiaomin Du, Na Li, Jinlian Hua","doi":"10.1007/s44154-023-00146-6","DOIUrl":"10.1007/s44154-023-00146-6","url":null,"abstract":"<p><p>The male reproductive system has a standard immune response regulatory mechanism, However, a variety of external stimuli, including viruses, bacteria, heat, and medications can damage the testicles and cause orchitis and epididymitis. It has been shown that various RNA viruses are more likely to infect the testis than DNA viruses, inducing orchitis and impairing testicular function. It was found that local injection of the viral RNA analog poly(I:C) into the testes markedly disrupted the structure of the seminiferous tubules, accompanied by apoptosis and inflammation. Poly(I:C) mainly inhibited the expression of testosterone synthesis-associated proteins, STAR and MGARP, and affected the synthesis and metabolism of amino acids and lipids in the testis. This led to the disruption of the metabolite levels in the testis of mice, thus affecting the normal spermatogenesis process. The present study analyzed the acute inflammatory response of the testis to viral infection using a multi-omics approach. It provides insights into how RNA virus infection impairs testicular function and offers a theoretical basis for future studies on immune homeostasis and responses under stress conditions in male reproduction.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10834394/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ecological features of trace elements tolerant microbes isolated from sewage sludge of urban wastewater treatment plant. 从城市污水处理厂的污水污泥中分离出的耐微量元素微生物的生态学特征。
Pub Date : 2024-01-26 DOI: 10.1007/s44154-023-00144-8
L Perelomov, V D Rajput, M Gertsen, O Sizova, I Perelomova, S Kozmenko, T Minkina, Y Atroshchenko

Worldwide wastewater treatment plants generate enormous amounts of sewage sludge, and their further disposal depends on the treatment technologies applied and spontaneously occurring microbiological processes. From different ages urban sewage sludge, 12 strains of bacteria with simultaneous tolerance to two or more trace elements: Co, Ni, Cu, Zn, Cd and Pb at concentration of 3-5 mmol were isolated and identified by PCR of target genes and Sanger sequencing methods. The isloated metal(loids) tolerant strains belong to the species, i.e., Serratia fonticola, Rhodococcus qingshengii, Pseudomonas fragi, Pseudomonas extremaustralis, Pseudomonas cedrina, Stenotrophomonas maltophilia, Serratia liquefaciens and Citrobacter freundii. The ecological features of the isolated strains were studied. The optimal growth temperatures for most strains was 15-30°C at pH range of 5-9, although some strains grew at 7°C (Pseudomonas fragi SS0-4, Serratia fonticola SS0-9 and Serratia fonticola SS12-11). Satisfactory growth of two strains (Serratia fonticola SS0-1and Citrobacter freundii SS60-12) was noted in an acidic medium at pH 4. Most of the strains grew in the NaCl concentration range of 1-5%. The isolated bacteria resistant to high concentrations of trace elements can be used for the effective mineralization of sewage sludge and for the decontamination of wastewater.

全世界的污水处理厂都会产生大量的污泥,它们的进一步处置取决于所采用的处理技术和自发的微生物过程。从不同年限的城市污水污泥中,发现了 12 株同时耐受两种或两种以上微量元素的细菌:通过目标基因的聚合酶链式反应和桑格测序方法,分离并鉴定了 12 株同时耐受两种或两种以上微量元素(3-5 毫摩尔浓度的钴、镍、铜、锌、镉和铅)的细菌。耐异种金属(loids)菌株的种类包括:丰满沙雷氏菌(Serratia fonticola)、庆生红球菌(Rhodococcus qingshengii)、脆弱假单胞菌(Pseudomonas fragi)、极端假单胞菌(Pseudomonas extremaustralis)、雪松假单胞菌(Pseudomonas cedrina)、嗜麦芽血单胞菌(Stenotrophomonas maltophilia)、液化沙雷氏菌(Serratia liquefaciens)和自由柠檬酸杆菌(Citrobacter freundii)。研究了分离菌株的生态特征。大多数菌株的最适生长温度为 15-30°C,pH 值范围为 5-9,但也有一些菌株在 7°C(假单胞菌 SS0-4、方形沙雷氏菌 SS0-9 和方形沙雷氏菌 SS12-11)下生长。两株菌株(Serratia fonticola SS0-1 和 Citrobacter freundii SS60-12)在 pH 值为 4 的酸性培养基中生长良好。分离出的细菌对高浓度微量元素具有抗性,可用于污水污泥的有效矿化和废水净化。
{"title":"Ecological features of trace elements tolerant microbes isolated from sewage sludge of urban wastewater treatment plant.","authors":"L Perelomov, V D Rajput, M Gertsen, O Sizova, I Perelomova, S Kozmenko, T Minkina, Y Atroshchenko","doi":"10.1007/s44154-023-00144-8","DOIUrl":"10.1007/s44154-023-00144-8","url":null,"abstract":"<p><p>Worldwide wastewater treatment plants generate enormous amounts of sewage sludge, and their further disposal depends on the treatment technologies applied and spontaneously occurring microbiological processes. From different ages urban sewage sludge, 12 strains of bacteria with simultaneous tolerance to two or more trace elements: Co, Ni, Cu, Zn, Cd and Pb at concentration of 3-5 mmol were isolated and identified by PCR of target genes and Sanger sequencing methods. The isloated metal(loids) tolerant strains belong to the species, i.e., Serratia fonticola, Rhodococcus qingshengii, Pseudomonas fragi, Pseudomonas extremaustralis, Pseudomonas cedrina, Stenotrophomonas maltophilia, Serratia liquefaciens and Citrobacter freundii. The ecological features of the isolated strains were studied. The optimal growth temperatures for most strains was 15-30°C at pH range of 5-9, although some strains grew at 7°C (Pseudomonas fragi SS0-4, Serratia fonticola SS0-9 and Serratia fonticola SS12-11). Satisfactory growth of two strains (Serratia fonticola SS0-1and Citrobacter freundii SS60-12) was noted in an acidic medium at pH 4. Most of the strains grew in the NaCl concentration range of 1-5%. The isolated bacteria resistant to high concentrations of trace elements can be used for the effective mineralization of sewage sludge and for the decontamination of wastewater.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810767/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139565043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Whole-genome sequencing of Fusarium spp. causing sugarcane root rot on both chewing cane and sugar-making cane. 对引起咀嚼甘蔗和制糖甘蔗根腐病的镰刀菌属进行全基因组测序。
Pub Date : 2024-01-25 DOI: 10.1007/s44154-023-00145-7
Xinyang Li, Yuming Ma, Na Zhang, Yiming Li, Zhibin Liang, Yibao Luo, Longxin Lin, Dongliang Zhang, Yongqiang He, Ziting Wang, Zhiquan Zhang, Yizhen Deng

Previously we isolated three Fusarium strains (a F. sacchari strain namely GXUF-1, and another two F. commune strains namely GXUF-2 and GXUF-3), and we verified that GXUF-3 was able to cause sugarcane root rot to the chewing cane cultivar Badila. Considering that Fusarium spp. are a group of widely distributed fungal pathogens, we tested whether these three Fusarium isolates were able to cause root rot to Badila as well as sugar-making cane cultivar (Guitang42), using a suitable inoculation method established based on infection assays using Badila. We found that the three Fusarium strains were able to cause root rot symptoms to both Badila and Guitang42, to different extents. To better investigate the potential pathogenicity mechanisms, we performed Illumina high-throughput sequencing and analyzed the whole genomic sequence data of these three Fusarium strains. The results reveal that the assembly sizes of the three Fusarium strains were in a range of 44.7-48.2 Mb, with G + C contents of 48.0-48.5%, and 14,154-15,175 coding genes. The coding genes were annotated by multiple public databases, and potential pathogenic genes were predicted using proprietary databases (such as PHI, DFVF, CAZy, etc.). Furthermore, based on evolutionary analysis of the coding sequence, we found that contraction and expansion of gene families occurred in the three Fusarium strains. Overall, our results suggest a potential risk that the root rot disease may occur to the sugar-making canes although it was initially spotted from fruit cane, and provide clues to understand the pathogenic mechanisms of Fusarium spp. causing sugarcane root rot.

此前,我们分离了三株镰刀菌(一株 F. sacchari 菌株,即 GXUF-1;另两株 F. commune 菌株,即 GXUF-2 和 GXUF-3),并验证了 GXUF-3 能够引起咀嚼蔗品种 Badila 的甘蔗根腐病。考虑到镰刀菌属是一类广泛分布的真菌病原体,我们根据巴迪拉的感染试验,采用合适的接种方法,测试了这三种镰刀菌分离物是否能引起巴迪拉以及制糖甘蔗栽培品种(桂塘 42)的根腐病。我们发现,这三种镰刀菌株能在不同程度上引起巴迪拉和贵糖 42 的根腐病症状。为了更好地研究潜在的致病机制,我们进行了 Illumina 高通量测序,并分析了这三个镰刀菌株的全基因组序列数据。结果显示,这三个镰刀菌株的基因组大小在 44.7-48.2 Mb 之间,G+C 含量为 48.0-48.5%,编码基因为 14 154-15 175 个。编码基因由多个公共数据库注释,潜在的致病基因则由专有数据库(如 PHI、DFVF、CAZy 等)预测。此外,根据编码序列的进化分析,我们发现三个镰刀菌株中的基因家族发生了收缩和扩展。总之,我们的研究结果表明,虽然根腐病最初是从果蔗中发现的,但它有可能发生在制糖甘蔗上,并为了解镰刀菌属导致甘蔗根腐病的致病机制提供了线索。
{"title":"Whole-genome sequencing of Fusarium spp. causing sugarcane root rot on both chewing cane and sugar-making cane.","authors":"Xinyang Li, Yuming Ma, Na Zhang, Yiming Li, Zhibin Liang, Yibao Luo, Longxin Lin, Dongliang Zhang, Yongqiang He, Ziting Wang, Zhiquan Zhang, Yizhen Deng","doi":"10.1007/s44154-023-00145-7","DOIUrl":"10.1007/s44154-023-00145-7","url":null,"abstract":"<p><p>Previously we isolated three Fusarium strains (a F. sacchari strain namely GXUF-1, and another two F. commune strains namely GXUF-2 and GXUF-3), and we verified that GXUF-3 was able to cause sugarcane root rot to the chewing cane cultivar Badila. Considering that Fusarium spp. are a group of widely distributed fungal pathogens, we tested whether these three Fusarium isolates were able to cause root rot to Badila as well as sugar-making cane cultivar (Guitang42), using a suitable inoculation method established based on infection assays using Badila. We found that the three Fusarium strains were able to cause root rot symptoms to both Badila and Guitang42, to different extents. To better investigate the potential pathogenicity mechanisms, we performed Illumina high-throughput sequencing and analyzed the whole genomic sequence data of these three Fusarium strains. The results reveal that the assembly sizes of the three Fusarium strains were in a range of 44.7-48.2 Mb, with G + C contents of 48.0-48.5%, and 14,154-15,175 coding genes. The coding genes were annotated by multiple public databases, and potential pathogenic genes were predicted using proprietary databases (such as PHI, DFVF, CAZy, etc.). Furthermore, based on evolutionary analysis of the coding sequence, we found that contraction and expansion of gene families occurred in the three Fusarium strains. Overall, our results suggest a potential risk that the root rot disease may occur to the sugar-making canes although it was initially spotted from fruit cane, and provide clues to understand the pathogenic mechanisms of Fusarium spp. causing sugarcane root rot.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811303/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139547769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Common and specific genetic basis of metabolite-mediated drought responses in rice. 水稻代谢物介导的干旱反应的共性和特异性遗传基础
Pub Date : 2024-01-23 DOI: 10.1007/s44154-024-00150-4
Zilong Guo, Shouchuang Wang, Feng Zhang, Denghao Xiang, Jun Yang, Dong Li, Baowei Bai, Mingqiu Dai, Jie Luo, Lizhong Xiong

Plants orchestrate drought responses at metabolic level but the genetic basis remains elusive in rice. In this study, 233 drought-responsive metabolites (DRMs) were quantified in a large rice population comprised of 510 diverse accessions at the reproductive stage. Large metabolic variations in drought responses were detected, and little correlation of metabolic levels between drought and normal conditions were observed. Interestingly, most of these DRMs could predict drought resistance in high accuracy. Genome-wide association study revealed 2522 significant association signals for 233 DRMs, and 98% (2471/2522) of the signals were co-localized with the association loci for drought-related phenotypic traits in the same population or the linkage-mapped QTLs for drought resistance in other populations. Totally, 10 candidate genes were efficiently identified for nine DRMs, seven of which harbored cis-eQTLs under drought condition. Based on comparative GWAS of common DRMs in rice and maize, representing irrigated and upland crops, we have identified three pairs of homologous genes associated with three DRMs between the two crops. Among the homologous genes, a transferase gene responsible for metabolic variation of N-feruloylputrescine was confirmed to confer enhanced drought resistance in rice. Our study provides not only genetic architecture of metabolic responses to drought stress in rice but also metabolic data resources to reveal the common and specific metabolite-mediated drought responses in different crops.

植物在新陈代谢水平上协调干旱响应,但水稻的遗传基础仍然难以捉摸。本研究在一个由 510 个不同品种组成的大型水稻群体中对 233 种干旱响应代谢物(DRMs)进行了定量分析。研究发现,干旱响应的代谢差异很大,干旱和正常条件下的代谢水平几乎没有相关性。有趣的是,这些 DRMs 中的大多数都能高精度地预测抗旱性。全基因组关联研究揭示了 233 个 DRMs 的 2522 个显著关联信号,其中 98% 的信号(2471/2522)与同一群体中干旱相关表型性状的关联位点或其他群体中抗旱性的连锁 QTLs 共同定位。共为 9 个 DRMs 有效鉴定出 10 个候选基因,其中 7 个基因在干旱条件下具有顺式 QTL。基于对水稻和玉米(代表灌溉作物和高地作物)常见抗旱基因的全球基因组分析比较,我们在这两种作物中发现了三对与三个抗旱基因相关的同源基因。在这些同源基因中,一个负责 N-feruloylputrescine 代谢变异的转移酶基因被证实赋予了水稻更强的抗旱性。我们的研究不仅提供了水稻对干旱胁迫的代谢反应的遗传结构,还提供了代谢数据资源,揭示了不同作物由代谢物介导的共同和特异的干旱反应。
{"title":"Common and specific genetic basis of metabolite-mediated drought responses in rice.","authors":"Zilong Guo, Shouchuang Wang, Feng Zhang, Denghao Xiang, Jun Yang, Dong Li, Baowei Bai, Mingqiu Dai, Jie Luo, Lizhong Xiong","doi":"10.1007/s44154-024-00150-4","DOIUrl":"10.1007/s44154-024-00150-4","url":null,"abstract":"<p><p>Plants orchestrate drought responses at metabolic level but the genetic basis remains elusive in rice. In this study, 233 drought-responsive metabolites (DRMs) were quantified in a large rice population comprised of 510 diverse accessions at the reproductive stage. Large metabolic variations in drought responses were detected, and little correlation of metabolic levels between drought and normal conditions were observed. Interestingly, most of these DRMs could predict drought resistance in high accuracy. Genome-wide association study revealed 2522 significant association signals for 233 DRMs, and 98% (2471/2522) of the signals were co-localized with the association loci for drought-related phenotypic traits in the same population or the linkage-mapped QTLs for drought resistance in other populations. Totally, 10 candidate genes were efficiently identified for nine DRMs, seven of which harbored cis-eQTLs under drought condition. Based on comparative GWAS of common DRMs in rice and maize, representing irrigated and upland crops, we have identified three pairs of homologous genes associated with three DRMs between the two crops. Among the homologous genes, a transferase gene responsible for metabolic variation of N-feruloylputrescine was confirmed to confer enhanced drought resistance in rice. Our study provides not only genetic architecture of metabolic responses to drought stress in rice but also metabolic data resources to reveal the common and specific metabolite-mediated drought responses in different crops.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803723/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139521274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fimbrin associated with Pmk1 to regulate the actin assembly during Magnaporthe oryzae hyphal growth and infection. Fimbrin 与 Pmk1 相关联,可在木格诺氏杆菌(Magnaporthe oryzae)茎叶生长和感染过程中调节肌动蛋白的组装。
Pub Date : 2024-01-22 DOI: 10.1007/s44154-023-00147-5
Yuan-Bao Li, Ningning Shen, Xianya Deng, Zixuan Liu, Shuai Zhu, Chengyu Liu, Dingzhong Tang, Li-Bo Han

The dynamic assembly of the actin cytoskeleton is vital for Magnaporthe oryzae development and host infection. The actin-related protein MoFim1 is a key factor for organizing the M. oryzae actin cytoskeleton. Currently, how MoFim1 is regulated in M. oryzae to precisely rearrange the actin cytoskeleton is unclear. In this study, we found that MoFim1 associates with the M. oryzae mitogen-activated protein (MAP) kinase Pmk1 to regulate actin assembly. MoFim1 directly interacted with Pmk1, and the phosphorylation level of MoFim1 was decreased in Δpmk1, which led to a change in the subcellular distribution of MoFim1 in the hyphae of Δpmk1. Moreover, the actin cytoskeleton was aberrantly organized at the hyphal tip in the Δpmk1, which was similar to what was observed in the Δmofim1 during hyphal growth. Furthermore, phosphorylation analysis revealed that Pmk1 could phosphorylate MoFim1 at serine 94. Loss of phosphorylation of MoFim1 at serine 94 decreased actin bundling activity. Additionally, the expression of the site mutant of MoFim1 S94D (in which serine 94 was replaced with aspartate to mimic phosphorylation) in Δpmk1 could reverse the defects in actin organization and hyphal growth in Δpmk1. It also partially rescues the formation of appressorium failure in Δpmk1. Taken together, these findings suggest a regulatory mechanism in which Pmk1 phosphorylates MoFim1 to regulate the assembly of the actin cytoskeleton during hyphal development and pathogenesis.

肌动蛋白细胞骨架的动态组装对于木格氏球菌(Magnaporthe oryzae)的发育和宿主感染至关重要。肌动蛋白相关蛋白 MoFim1 是组织 M. oryzae 肌动蛋白细胞骨架的关键因子。目前,还不清楚 MoFim1 如何在 M. oryzae 中被调控以精确地重新排列肌动蛋白细胞骨架。在这项研究中,我们发现 MoFim1 与 M. oryzae 丝裂原活化蛋白(MAP)激酶 Pmk1 相关联,以调控肌动蛋白的组装。MoFim1与Pmk1直接相互作用,MoFim1在Δpmk1中的磷酸化水平降低,从而导致MoFim1在Δpmk1菌丝中的亚细胞分布发生变化。此外,在Δpmk1中,肌动蛋白细胞骨架在透明顶端异常地组织起来,这与在Δmofim1中观察到的透明生长过程相似。此外,磷酸化分析表明,Pmk1 能使 MoFim1 的丝氨酸 94 磷酸化。失去丝氨酸 94 处磷酸化的 MoFim1 会降低肌动蛋白束的活性。此外,在 Δpmk1 中表达 MoFim1 的位点突变体 S94D(其中丝氨酸 94 被天冬氨酸取代以模拟磷酸化)可以逆转 Δpmk1 中肌动蛋白组织和头状花序生长的缺陷。它还能部分挽救Δpmk1形成的附属体失败。综上所述,这些研究结果表明了一种调控机制,在该机制中,Pmk1 磷酸化 MoFim1,从而在蘑菇发育和致病过程中调控肌动蛋白细胞骨架的组装。
{"title":"Fimbrin associated with Pmk1 to regulate the actin assembly during Magnaporthe oryzae hyphal growth and infection.","authors":"Yuan-Bao Li, Ningning Shen, Xianya Deng, Zixuan Liu, Shuai Zhu, Chengyu Liu, Dingzhong Tang, Li-Bo Han","doi":"10.1007/s44154-023-00147-5","DOIUrl":"10.1007/s44154-023-00147-5","url":null,"abstract":"<p><p>The dynamic assembly of the actin cytoskeleton is vital for Magnaporthe oryzae development and host infection. The actin-related protein MoFim1 is a key factor for organizing the M. oryzae actin cytoskeleton. Currently, how MoFim1 is regulated in M. oryzae to precisely rearrange the actin cytoskeleton is unclear. In this study, we found that MoFim1 associates with the M. oryzae mitogen-activated protein (MAP) kinase Pmk1 to regulate actin assembly. MoFim1 directly interacted with Pmk1, and the phosphorylation level of MoFim1 was decreased in Δpmk1, which led to a change in the subcellular distribution of MoFim1 in the hyphae of Δpmk1. Moreover, the actin cytoskeleton was aberrantly organized at the hyphal tip in the Δpmk1, which was similar to what was observed in the Δmofim1 during hyphal growth. Furthermore, phosphorylation analysis revealed that Pmk1 could phosphorylate MoFim1 at serine 94. Loss of phosphorylation of MoFim1 at serine 94 decreased actin bundling activity. Additionally, the expression of the site mutant of MoFim1 S94D (in which serine 94 was replaced with aspartate to mimic phosphorylation) in Δpmk1 could reverse the defects in actin organization and hyphal growth in Δpmk1. It also partially rescues the formation of appressorium failure in Δpmk1. Taken together, these findings suggest a regulatory mechanism in which Pmk1 phosphorylates MoFim1 to regulate the assembly of the actin cytoskeleton during hyphal development and pathogenesis.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803693/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139514091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mitogen-activated protein kinase module CcSte11-CcSte7-CcPmk1 regulates pathogenicity via the transcription factor CcSte12 in Cytospora chrysosperma. 丝裂原活化蛋白激酶模块CcSte11-CcSte7-CcPmk1通过转录因子CcSte12调节菊孢子虫的致病性。
Pub Date : 2024-01-16 DOI: 10.1007/s44154-023-00142-w
Lu Yu, Yuchen Yang, Xiaolin Qiu, Dianguang Xiong, Chengming Tian

The pathogen Cytospora chrysosperma is the causal agent of poplar canker disease and causes considerable economic losses in China. Mitogen-activated protein kinase (MAPK) cascades play a crucial role in mediating cellular responses and Pmk1-MAPKs are indispensable for pathogenic related processes in plant pathogenic fungi. In previous studies, we demonstrated that the CcPmk1 acts as a core regulator of fungal pathogenicity by modulating a small number of master downstream targets, such as CcSte12. In this study, we identified and characterized two upstream components of CcPmk1: MAPKKK CcSte11 and MAPKK CcSte7. Deletion of CcSte11 and CcSte7, resulted in slowed growth, loss of sporulation and virulence, similar to the defects observed in the CcPmk1 deletion mutant. In addition, CcSte11, CcSte7 and CcPmk1 interact with each other, and the upstream adaptor protein CcSte50 interact with CcSte11 and CcSte7. Moreover, we explored the global regulation network of CcSte12 by transcriptional analysis between CcSte12 deletion mutants and wild-type during the simulated infection process. Two hydrolase activity GO terms (GO:0004553 and GO:0016798) and starch and sucrose metabolism (mgr00500) KEGG pathway were significantly enriched in the down-regulated genes of CcSte12 deletion mutants. In addition, a subset of glycosyl hydrolase genes and putative effector genes were significantly down-regulated in the CcSte12 deletion mutant, which might be important for fungal pathogenicity. Especially, CcSte12 bound to the CcSp84 promoter region containing the TGAAACA motif. Moreover, comparison of CcSte12-regulated genes with CcPmk1-regulated genes revealed 116 overlapping regulated genes in both CcSte12 and CcPmk1, including some virulence-associated genes. Taken together, the protein complexes CcSte11-CcSte7-CcPmk1 receive signals transmitted by upstream CcSte50 and transmit signals to downstream CcSte12, which regulates hydrolase, effectors and other genes to promote virulence. Overall, these results indicate that the CcPmk1-MAPK signaling pathway of C. chrysosperma plays a key role in the pathogenicity.

杨树腐烂病(Cytospora chrysosperma)病原体是杨树腐烂病的病原菌,在中国造成了巨大的经济损失。丝裂原活化蛋白激酶(MAPK)级联在介导细胞反应中起着至关重要的作用,而 Pmk1-MAPK 在植物病原真菌的致病相关过程中是不可或缺的。在之前的研究中,我们证明了 CcPmk1 通过调节少量主下游靶标(如 CcSte12)而成为真菌致病性的核心调节因子。在本研究中,我们发现并鉴定了 CcPmk1 的两个上游成分:MAPKKK CcSte11 和 MAPKK CcSte7。缺失 CcSte11 和 CcSte7 会导致生长减慢、孢子生成和毒力丧失,与 CcPmk1 缺失突变体中观察到的缺陷类似。此外,CcSte11、CcSte7 和 CcPmk1 相互作用,上游适配蛋白 CcSte50 与 CcSte11 和 CcSte7 相互作用。此外,我们还通过 CcSte12 缺失突变体与野生型在模拟感染过程中的转录分析,探索了 CcSte12 的全局调控网络。在 CcSte12 缺失突变体的下调基因中,两个水解酶活性 GO 项(GO:0004553 和 GO:0016798)和淀粉与蔗糖代谢(mgr00500)KEGG 通路显著富集。此外,在 CcSte12 缺失突变体中,糖基水解酶基因和假定效应基因的子集被明显下调,这可能对真菌的致病性很重要。特别是,CcSte12 与含有 TGAAACA 基序的 CcSp84 启动子区域结合。此外,比较了 CcSte12 和 CcPmk1 的调控基因,发现 CcSte12 和 CcPmk1 有 116 个重叠调控基因,其中包括一些毒力相关基因。综上所述,CcSte11-CcSte7-CcPmk1 蛋白复合物接收上游 CcSte50 传递的信号,并将信号传递给下游 CcSte12,后者调控水解酶、效应物和其他基因,从而促进毒力。总之,这些结果表明,蛹虫草的 CcPmk1-MAPK 信号通路在致病性中起着关键作用。
{"title":"The mitogen-activated protein kinase module CcSte11-CcSte7-CcPmk1 regulates pathogenicity via the transcription factor CcSte12 in Cytospora chrysosperma.","authors":"Lu Yu, Yuchen Yang, Xiaolin Qiu, Dianguang Xiong, Chengming Tian","doi":"10.1007/s44154-023-00142-w","DOIUrl":"10.1007/s44154-023-00142-w","url":null,"abstract":"<p><p>The pathogen Cytospora chrysosperma is the causal agent of poplar canker disease and causes considerable economic losses in China. Mitogen-activated protein kinase (MAPK) cascades play a crucial role in mediating cellular responses and Pmk1-MAPKs are indispensable for pathogenic related processes in plant pathogenic fungi. In previous studies, we demonstrated that the CcPmk1 acts as a core regulator of fungal pathogenicity by modulating a small number of master downstream targets, such as CcSte12. In this study, we identified and characterized two upstream components of CcPmk1: MAPKKK CcSte11 and MAPKK CcSte7. Deletion of CcSte11 and CcSte7, resulted in slowed growth, loss of sporulation and virulence, similar to the defects observed in the CcPmk1 deletion mutant. In addition, CcSte11, CcSte7 and CcPmk1 interact with each other, and the upstream adaptor protein CcSte50 interact with CcSte11 and CcSte7. Moreover, we explored the global regulation network of CcSte12 by transcriptional analysis between CcSte12 deletion mutants and wild-type during the simulated infection process. Two hydrolase activity GO terms (GO:0004553 and GO:0016798) and starch and sucrose metabolism (mgr00500) KEGG pathway were significantly enriched in the down-regulated genes of CcSte12 deletion mutants. In addition, a subset of glycosyl hydrolase genes and putative effector genes were significantly down-regulated in the CcSte12 deletion mutant, which might be important for fungal pathogenicity. Especially, CcSte12 bound to the CcSp84 promoter region containing the TGAAACA motif. Moreover, comparison of CcSte12-regulated genes with CcPmk1-regulated genes revealed 116 overlapping regulated genes in both CcSte12 and CcPmk1, including some virulence-associated genes. Taken together, the protein complexes CcSte11-CcSte7-CcPmk1 receive signals transmitted by upstream CcSte50 and transmit signals to downstream CcSte12, which regulates hydrolase, effectors and other genes to promote virulence. Overall, these results indicate that the CcPmk1-MAPK signaling pathway of C. chrysosperma plays a key role in the pathogenicity.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10789715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139473174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Stress biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1