Pub Date : 2023-05-26DOI: 10.1007/s44154-023-00095-0
Xueru Liu, Josh Li, Tony ShengZhe Peng, Xin Li
Plant intracellular nucleotide-binding domain leucine-rich repeat (NLR) receptors play crucial roles in immune responses against pathogens. How diverse NLRs recognize different pathogen effectors remains a significant question. A recent study published in Nature uncovered how pepper NLR Tsw detects phytohormone receptors' interference caused by tomato spotted wilt virus (TSWV) effector, triggering a robust immune response, showcasing a new manner of NLR guarding.
{"title":"Immune receptor mimicking hormone receptors: a new guarding strategy.","authors":"Xueru Liu, Josh Li, Tony ShengZhe Peng, Xin Li","doi":"10.1007/s44154-023-00095-0","DOIUrl":"https://doi.org/10.1007/s44154-023-00095-0","url":null,"abstract":"<p><p>Plant intracellular nucleotide-binding domain leucine-rich repeat (NLR) receptors play crucial roles in immune responses against pathogens. How diverse NLRs recognize different pathogen effectors remains a significant question. A recent study published in Nature uncovered how pepper NLR Tsw detects phytohormone receptors' interference caused by tomato spotted wilt virus (TSWV) effector, triggering a robust immune response, showcasing a new manner of NLR guarding.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"14"},"PeriodicalIF":0.0,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442019/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10177224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-19DOI: 10.1007/s44154-023-00091-4
Tian Tian, Feng Qin
Droughts threaten crop yields worldwide. Compared to other major staple cereal crops, maize (Zea mays) is especially sensitive to drought, which can cause dramatic fluctuations in its yield potential. Natural maize populations contain many superior alleles that can enhance drought resistance through complex regulatory mechanisms. We recently de novo assembled the genome of a prominent drought-resistant maize germplasm, CIMBL55, and systematically dissected the genetic basis for its drought resistance on the genome, transcriptome, and epigenome levels. These analyses revealed 65 favorable drought resistance alleles in CIMBL55. Subsequently, we genetically verified the functions of the drought resistance genes ZmABF4, ZmNAC075, and ZmRtn16 and unraveled the function of ZmRtn16 on a molecular level.
{"title":"CIMBL55: a repository for maize drought resistance alleles.","authors":"Tian Tian, Feng Qin","doi":"10.1007/s44154-023-00091-4","DOIUrl":"https://doi.org/10.1007/s44154-023-00091-4","url":null,"abstract":"<p><p>Droughts threaten crop yields worldwide. Compared to other major staple cereal crops, maize (Zea mays) is especially sensitive to drought, which can cause dramatic fluctuations in its yield potential. Natural maize populations contain many superior alleles that can enhance drought resistance through complex regulatory mechanisms. We recently de novo assembled the genome of a prominent drought-resistant maize germplasm, CIMBL55, and systematically dissected the genetic basis for its drought resistance on the genome, transcriptome, and epigenome levels. These analyses revealed 65 favorable drought resistance alleles in CIMBL55. Subsequently, we genetically verified the functions of the drought resistance genes ZmABF4, ZmNAC075, and ZmRtn16 and unraveled the function of ZmRtn16 on a molecular level.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"13"},"PeriodicalIF":0.0,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441843/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10556600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-15DOI: 10.1007/s44154-023-00092-3
Bingru Huang, Haidong Yan, Min Sun, Yarong Jin
Global warming adversely affects crop production worldwide. Massive efforts have been undertaken to study mechanisms regulating heat tolerance in plants. However, the roles of structural variations (SVs) in heat stress tolerance remain unclear. In a recent article, Yan et al. (Nat Genet 1-12, 2023) constructed the first pan-genome of pearl millet (Pennisetum glaucum) and identified key SVs linked to genes involved in regulating plant tolerance to heat stress for an important crop with a superior ability to thrive in extremely hot and arid climates. Through multi-omics analyses integrating by pan-genomics, comparative genomics, transcriptomics, population genetics and and molecular biological technologies, they found RWP-RK transcription factors cooperating with endoplasmic reticulum-related genes play key roles in heat tolerance in pearl millet. The results in this paper provided novel insights to advance the understanding of the genetic and genomic basis of heat tolerance and an exceptional resource for molecular breeding to improve heat tolerance in pearl millet and other crops.
{"title":"Novel discovery in roles of structural variations and RWP-RK transcription factors in heat tolerance for pearl millet.","authors":"Bingru Huang, Haidong Yan, Min Sun, Yarong Jin","doi":"10.1007/s44154-023-00092-3","DOIUrl":"https://doi.org/10.1007/s44154-023-00092-3","url":null,"abstract":"<p><p>Global warming adversely affects crop production worldwide. Massive efforts have been undertaken to study mechanisms regulating heat tolerance in plants. However, the roles of structural variations (SVs) in heat stress tolerance remain unclear. In a recent article, Yan et al. (Nat Genet 1-12, 2023) constructed the first pan-genome of pearl millet (Pennisetum glaucum) and identified key SVs linked to genes involved in regulating plant tolerance to heat stress for an important crop with a superior ability to thrive in extremely hot and arid climates. Through multi-omics analyses integrating by pan-genomics, comparative genomics, transcriptomics, population genetics and and molecular biological technologies, they found RWP-RK transcription factors cooperating with endoplasmic reticulum-related genes play key roles in heat tolerance in pearl millet. The results in this paper provided novel insights to advance the understanding of the genetic and genomic basis of heat tolerance and an exceptional resource for molecular breeding to improve heat tolerance in pearl millet and other crops.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"12"},"PeriodicalIF":0.0,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442032/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10187816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-12DOI: 10.1007/s44154-023-00088-z
Yan Huang, Yezi Kong, Bowen Li, Chenxu Zhao, Juan J Loor, Panpan Tan, Yang Yuan, Fangyuan Zeng, Xiaoyan Zhu, Simeng Qi, Baoyu Zhao, Jianguo Wang
Dairy goats experience metabolic stress during the peripartal period, and their ability to navigate this stage of lactation is related to the occurrence and development of metabolic diseases. Unlike dairy cows, there is a lack of comprehensive analysis of changes in the plasma profiles of peripartal dairy goats, particularly using high-throughput techniques. A subset of 9 clinically-healthy dairy goats were used from a cohort of 96 primiparous Guanzhong dairy goats (BCS, 2.75 ± 0.15). Blood samples were collected at seven time points around parturition (d 21, 14, 7 before parturition, the day of kidding, and d 7, 14, 21 postpartum), were analyzed using untargeted metabolomics and targeted lipidomics. The orthogonal partial least squares discriminant analysis model revealed a total of 31 differential metabolites including p-cresol sulfate, pyruvic acid, cholic acid, and oxoglutaric acid. The pathway enrichment analysis identified phenylalanine metabolism, aminoacyl-tRNA biosynthesis, and citrate cycle as the top three significantly-altered pathways. The Limma package identified a total of 123 differentially expressed lipids. Phosphatidylserine (PS), free fatty acids (FFA), and acylcarnitines (ACs) were significantly increased on the day of kidding, while diacylglycerols (DAG) and triacylglycerols (TAG) decreased. Ceramides (Cer) and lyso-phosphatidylinositols (LPI) were significantly increased during postpartum period, while PS, FFA, and ACs decreased postpartum and gradually returned to antepartum levels. Individual species of FFA and phosphatidylcholines (PC) were segregated based on the differences in the saturation and length of the carbon chain. Overall, this work generated the largest repository of the plasma lipidome and metabolome in dairy goats across the peripartal period, which contributed to our understanding of the multifaceted adaptations of transition dairy goats.
{"title":"Effects of perinatal stress on the metabolites and lipids in plasma of dairy goats.","authors":"Yan Huang, Yezi Kong, Bowen Li, Chenxu Zhao, Juan J Loor, Panpan Tan, Yang Yuan, Fangyuan Zeng, Xiaoyan Zhu, Simeng Qi, Baoyu Zhao, Jianguo Wang","doi":"10.1007/s44154-023-00088-z","DOIUrl":"https://doi.org/10.1007/s44154-023-00088-z","url":null,"abstract":"<p><p>Dairy goats experience metabolic stress during the peripartal period, and their ability to navigate this stage of lactation is related to the occurrence and development of metabolic diseases. Unlike dairy cows, there is a lack of comprehensive analysis of changes in the plasma profiles of peripartal dairy goats, particularly using high-throughput techniques. A subset of 9 clinically-healthy dairy goats were used from a cohort of 96 primiparous Guanzhong dairy goats (BCS, 2.75 ± 0.15). Blood samples were collected at seven time points around parturition (d 21, 14, 7 before parturition, the day of kidding, and d 7, 14, 21 postpartum), were analyzed using untargeted metabolomics and targeted lipidomics. The orthogonal partial least squares discriminant analysis model revealed a total of 31 differential metabolites including p-cresol sulfate, pyruvic acid, cholic acid, and oxoglutaric acid. The pathway enrichment analysis identified phenylalanine metabolism, aminoacyl-tRNA biosynthesis, and citrate cycle as the top three significantly-altered pathways. The Limma package identified a total of 123 differentially expressed lipids. Phosphatidylserine (PS), free fatty acids (FFA), and acylcarnitines (ACs) were significantly increased on the day of kidding, while diacylglycerols (DAG) and triacylglycerols (TAG) decreased. Ceramides (Cer) and lyso-phosphatidylinositols (LPI) were significantly increased during postpartum period, while PS, FFA, and ACs decreased postpartum and gradually returned to antepartum levels. Individual species of FFA and phosphatidylcholines (PC) were segregated based on the differences in the saturation and length of the carbon chain. Overall, this work generated the largest repository of the plasma lipidome and metabolome in dairy goats across the peripartal period, which contributed to our understanding of the multifaceted adaptations of transition dairy goats.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441998/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10539086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-11DOI: 10.1007/s44154-023-00089-y
Zeyuan Liu, Ningning Bian, Jianyan Guo, Shuang Zhao, Abid Khan, Baohua Chu, Ziqing Ma, Chundong Niu, Fengwang Ma, Ming Ma, Qingmei Guan, Xuewei Li
Heat stress, which is caused by global warming, threatens crops yield and quality across the world. As a kind of post-translation modification, SUMOylation involves in plants heat stress response with a rapid and wide pattern. Here, we identified small ubiquitin modifiers (SUMO), which affect drought tolerance in apple, also participated in thermotolerance. Six isoforms of SUMOs located on six chromosomes in apple genome, and all the SUMOs were up-regulated in response to heat stress condition. The MdSUMO2 RNAi transgenic apple plants exhibited higher survival rate, lower ion leakage, higher catalase (CAT) activity, and Malondialdehyde (MDA) content under heat stress. MdDREB2A, the substrate of MdSUMO2 in apple, was accumulated in MdSUMO2 RNAi transgenic plants than the wild type GL-3 at the protein level in response to heat stress treatment. Further, the inhibited SUMOylation level of MdDREB2A in MdSUMO2 RNAi plants might repress its ubiquitination, too. The accumulated MdDREB2A in MdSUMO2 RNAi plants further induced heat-responsive genes expression to strengthen plants thermotolerance, including MdHSFA3, MdHSP26.5, MdHSP18.2, MdHSP70, MdCYP18-1 and MdTLP1. In summary, these findings illustrate that interfering small ubiquitin modifiers (SUMO) in apple improves plants thermotolerance, partly by facilitating the stability and activity of MdDREB2A.
{"title":"Interfering small ubiquitin modifiers (SUMO) improves the thermotolerance of apple by facilitating the activity of MdDREB2A.","authors":"Zeyuan Liu, Ningning Bian, Jianyan Guo, Shuang Zhao, Abid Khan, Baohua Chu, Ziqing Ma, Chundong Niu, Fengwang Ma, Ming Ma, Qingmei Guan, Xuewei Li","doi":"10.1007/s44154-023-00089-y","DOIUrl":"https://doi.org/10.1007/s44154-023-00089-y","url":null,"abstract":"<p><p>Heat stress, which is caused by global warming, threatens crops yield and quality across the world. As a kind of post-translation modification, SUMOylation involves in plants heat stress response with a rapid and wide pattern. Here, we identified small ubiquitin modifiers (SUMO), which affect drought tolerance in apple, also participated in thermotolerance. Six isoforms of SUMOs located on six chromosomes in apple genome, and all the SUMOs were up-regulated in response to heat stress condition. The MdSUMO2 RNAi transgenic apple plants exhibited higher survival rate, lower ion leakage, higher catalase (CAT) activity, and Malondialdehyde (MDA) content under heat stress. MdDREB2A, the substrate of MdSUMO2 in apple, was accumulated in MdSUMO2 RNAi transgenic plants than the wild type GL-3 at the protein level in response to heat stress treatment. Further, the inhibited SUMOylation level of MdDREB2A in MdSUMO2 RNAi plants might repress its ubiquitination, too. The accumulated MdDREB2A in MdSUMO2 RNAi plants further induced heat-responsive genes expression to strengthen plants thermotolerance, including MdHSFA3, MdHSP26.5, MdHSP18.2, MdHSP70, MdCYP18-1 and MdTLP1. In summary, these findings illustrate that interfering small ubiquitin modifiers (SUMO) in apple improves plants thermotolerance, partly by facilitating the stability and activity of MdDREB2A.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442018/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10539092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-25DOI: 10.1007/s44154-023-00090-5
Chuanfeng Ju, Cun Wang
This brief article highlights the results of Zhang et al. (Science 379, eade8416, 2023), who recently found that the Gγ subunit AT1/GS3 contributes to alkaline tolerance in several main monocots crops, and revealed the molecular mechanism of AT1/GS3-mediated response to alkaline stress in plants, which involves regulating H2O2 levels by inhibiting the phosphorylation of aquaporin PIP2s.
{"title":"Gγ subunit AT1/GS3-the \"code\" of alkaline tolerance in main graminaceous crops.","authors":"Chuanfeng Ju, Cun Wang","doi":"10.1007/s44154-023-00090-5","DOIUrl":"https://doi.org/10.1007/s44154-023-00090-5","url":null,"abstract":"<p><p>This brief article highlights the results of Zhang et al. (Science 379, eade8416, 2023), who recently found that the Gγ subunit AT1/GS3 contributes to alkaline tolerance in several main monocots crops, and revealed the molecular mechanism of AT1/GS3-mediated response to alkaline stress in plants, which involves regulating H<sub>2</sub>O<sub>2</sub> levels by inhibiting the phosphorylation of aquaporin PIP2s.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441878/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10538673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-18DOI: 10.1007/s44154-023-00085-2
Xiaoting Xia, Kaixing Qu, Yan Wang, Mikkel-Holger S Sinding, Fuwen Wang, Quratulain Hanif, Zulfiqar Ahmed, Johannes A Lenstra, Jianlin Han, Chuzhao Lei, Ningbo Chen
Domestic cattle have spread across the globe and inhabit variable and unpredictable environments. They have been exposed to a plethora of selective pressures and have adapted to a variety of local ecological and management conditions, including UV exposure, diseases, and stall-feeding systems. These selective pressures have resulted in unique and important phenotypic and genetic differences among modern cattle breeds/populations. Ongoing efforts to sequence the genomes of local and commercial cattle breeds/populations, along with the growing availability of ancient bovid DNA data, have significantly advanced our understanding of the genomic architecture, recent evolution of complex traits, common diseases, and local adaptation in cattle. Here, we review the origin and spread of domestic cattle and illustrate the environmental adaptations of local cattle breeds/populations.
{"title":"Global dispersal and adaptive evolution of domestic cattle: a genomic perspective.","authors":"Xiaoting Xia, Kaixing Qu, Yan Wang, Mikkel-Holger S Sinding, Fuwen Wang, Quratulain Hanif, Zulfiqar Ahmed, Johannes A Lenstra, Jianlin Han, Chuzhao Lei, Ningbo Chen","doi":"10.1007/s44154-023-00085-2","DOIUrl":"https://doi.org/10.1007/s44154-023-00085-2","url":null,"abstract":"<p><p>Domestic cattle have spread across the globe and inhabit variable and unpredictable environments. They have been exposed to a plethora of selective pressures and have adapted to a variety of local ecological and management conditions, including UV exposure, diseases, and stall-feeding systems. These selective pressures have resulted in unique and important phenotypic and genetic differences among modern cattle breeds/populations. Ongoing efforts to sequence the genomes of local and commercial cattle breeds/populations, along with the growing availability of ancient bovid DNA data, have significantly advanced our understanding of the genomic architecture, recent evolution of complex traits, common diseases, and local adaptation in cattle. Here, we review the origin and spread of domestic cattle and illustrate the environmental adaptations of local cattle breeds/populations.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441868/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10539088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-06DOI: 10.1007/s44154-023-00087-0
Shuai Huang
Biomolecular condensates assembled through phase transitions regulate diverse aspects of plant growth, development, and stress responses. How biomolecular condensates control plant immunity is poorly understood. In Nature Plants, a new study (Zhou et al., Nat Plants 9:289-301, 2023) reveals how plants assemble translational condensates to balance tissue health and disease resistance.
通过相变组装的生物分子凝聚体调节植物生长、发育和胁迫反应的各个方面。生物分子凝聚物如何控制植物免疫尚不清楚。在Nature Plants上,一项新的研究(Zhou et al., Nat Plants 9:289-301, 2023)揭示了植物如何组装翻译凝聚物来平衡组织健康和抗病性。
{"title":"Tuning the rheostat of immune gene translation.","authors":"Shuai Huang","doi":"10.1007/s44154-023-00087-0","DOIUrl":"https://doi.org/10.1007/s44154-023-00087-0","url":null,"abstract":"<p><p>Biomolecular condensates assembled through phase transitions regulate diverse aspects of plant growth, development, and stress responses. How biomolecular condensates control plant immunity is poorly understood. In Nature Plants, a new study (Zhou et al., Nat Plants 9:289-301, 2023) reveals how plants assemble translational condensates to balance tissue health and disease resistance.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442008/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10539076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-06DOI: 10.1007/s44154-023-00086-1
Hong Zhang, Yuanming Liu, Xiangyu Zhang, Wanquan Ji, Zhensheng Kang
Crop diseases cause enormous yield losses and threaten global food security. Deployment of resistant cultivars can effectively control the disease and to minimize crop losses. However, high level of genetic immunity to disease was often accompanied by an undesired reduction in crop growth and yield. Recently, literatures have been rapidly emerged in understanding the mechanism of disease resistance and development genes in crop plants. To determine how and why the costs and the likely benefit of resistance genes caused in crop varieties, we re-summarized the present knowledge about the crosstalk between plant development and disease resistance caused by those genes that function as plasma membrane residents, MAPK cassette, nuclear envelope (NE) channels components and pleiotropic regulators. Considering the growth-defense tradeoffs on the basis of current advances, finally, we try to understand and suggest that a reasonable balancing strategies based on the interplay between immunity with growth should be considered to enhance immunity capacity without yield penalty in future crop breeding.
{"title":"A necessary considering factor for breeding: growth-defense tradeoff in plants.","authors":"Hong Zhang, Yuanming Liu, Xiangyu Zhang, Wanquan Ji, Zhensheng Kang","doi":"10.1007/s44154-023-00086-1","DOIUrl":"10.1007/s44154-023-00086-1","url":null,"abstract":"<p><p>Crop diseases cause enormous yield losses and threaten global food security. Deployment of resistant cultivars can effectively control the disease and to minimize crop losses. However, high level of genetic immunity to disease was often accompanied by an undesired reduction in crop growth and yield. Recently, literatures have been rapidly emerged in understanding the mechanism of disease resistance and development genes in crop plants. To determine how and why the costs and the likely benefit of resistance genes caused in crop varieties, we re-summarized the present knowledge about the crosstalk between plant development and disease resistance caused by those genes that function as plasma membrane residents, MAPK cassette, nuclear envelope (NE) channels components and pleiotropic regulators. Considering the growth-defense tradeoffs on the basis of current advances, finally, we try to understand and suggest that a reasonable balancing strategies based on the interplay between immunity with growth should be considered to enhance immunity capacity without yield penalty in future crop breeding.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441926/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10189827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-06DOI: 10.1007/s44154-023-00083-4
Ikram Madani, Jean-Benoît Peltier, Martin Boeglin, Hervé Sentenac, Anne-Aliénor Véry
The availability in the soil of potassium (K+), a poorly mobile macronutrient required in large quantities for plant growth, is generally suboptimal for crop production in the absence of fertilization, making improvement of the ability of crops to adapt to K+ deficiency stress a major issue. Increasing the uptake capacity of the root system is among the main strategies to achieve this goal. Here, we report an integrative approach to examine the effect of K+ deficiency on the development of young plant entire root system, including root hairs which are known to provide a significant contribution to the uptake of poorly mobile nutrients such as K+, in two genetically distant wheat varieties. A rhizobox-type methodology was developed to obtain highly-resolved images of root and root hairs, allowing to describe global root and root hair traits over the whole root system via image analysis procedures. The two wheat varieties responded differently to the K+ shortage: Escandia, a wheat ancestor, reduced shoot biomass in condition of K+ shortage and substantially increased the surface area of its root system, specifically by increasing the total root hair area. Oued Zenati, a landrace, conversely appeared unresponsive to the K+ shortage but was shown to constitutively express, independently of the external K+ availability, favorable traits to cope with reduced K+ availability, among which a high total root hair area. Thus, valuable information on root system adaptation to K+ deficiency was provided by global analyses including root hairs, which should also be relevant for other nutrient stresses.
{"title":"Plasticity of wheat seedling responses to K<sup>+</sup> deficiency highlighted by integrated phenotyping of roots and root hairs over the whole root system.","authors":"Ikram Madani, Jean-Benoît Peltier, Martin Boeglin, Hervé Sentenac, Anne-Aliénor Véry","doi":"10.1007/s44154-023-00083-4","DOIUrl":"10.1007/s44154-023-00083-4","url":null,"abstract":"<p><p>The availability in the soil of potassium (K<sup>+</sup>), a poorly mobile macronutrient required in large quantities for plant growth, is generally suboptimal for crop production in the absence of fertilization, making improvement of the ability of crops to adapt to K<sup>+</sup> deficiency stress a major issue. Increasing the uptake capacity of the root system is among the main strategies to achieve this goal. Here, we report an integrative approach to examine the effect of K<sup>+</sup> deficiency on the development of young plant entire root system, including root hairs which are known to provide a significant contribution to the uptake of poorly mobile nutrients such as K<sup>+</sup>, in two genetically distant wheat varieties. A rhizobox-type methodology was developed to obtain highly-resolved images of root and root hairs, allowing to describe global root and root hair traits over the whole root system via image analysis procedures. The two wheat varieties responded differently to the K<sup>+</sup> shortage: Escandia, a wheat ancestor, reduced shoot biomass in condition of K<sup>+</sup> shortage and substantially increased the surface area of its root system, specifically by increasing the total root hair area. Oued Zenati, a landrace, conversely appeared unresponsive to the K<sup>+</sup> shortage but was shown to constitutively express, independently of the external K<sup>+</sup> availability, favorable traits to cope with reduced K<sup>+</sup> availability, among which a high total root hair area. Thus, valuable information on root system adaptation to K<sup>+</sup> deficiency was provided by global analyses including root hairs, which should also be relevant for other nutrient stresses.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441938/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10186499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}