首页 > 最新文献

Stress biology最新文献

英文 中文
Unbalanced diets enhance the complexity of gut microbial network but destabilize its stability and resistance. 不平衡的饮食增加了肠道微生物网络的复杂性,但破坏了其稳定性和抵抗力。
Pub Date : 2023-06-27 DOI: 10.1007/s44154-023-00098-x
Penghao Sun, Mengli Wang, Wei Zheng, Shuzhen Li, Xiaoyan Zhu, Xuejun Chai, Shanting Zhao

Stability is a fundamental ecological property of the gut microbiota and is associated with host health. Numerous studies have shown that unbalanced dietary components disturb the gut microbial composition and thereby contribute to the onset and progression of disease. However, the impact of unbalanced diets on the stability of the gut microbiota is poorly understood. In the present study, four-week-old mice were fed a plant-based diet high in refined carbohydrates or a high-fat diet for four weeks to simulate a persistent unbalanced diet. We found that persistent unbalanced diets significantly reduced the gut bacterial richness and increased the complexity of bacterial co-occurrence networks. Furthermore, the gut bacterial response to unbalanced diets was phylogenetically conserved, which reduced network modularity and enhanced the proportion of positive associations between community taxon, thereby amplifying the co-oscillation of perturbations among community species to destabilize gut microbial communities. The disturbance test revealed that the gut microbiota of mice fed with unbalanced diets was less resistant to antibiotic perturbation and pathogenic bacteria invasion. This study may fill a gap in the mechanistic understanding of the gut microbiota stability in response to diet and provide new insights into the gut microbial ecology.

稳定性是肠道菌群的基本生态特性,与宿主健康有关。大量研究表明,不平衡的饮食成分会扰乱肠道微生物组成,从而导致疾病的发生和发展。然而,不平衡饮食对肠道菌群稳定性的影响尚不清楚。在目前的研究中,四周大的老鼠被喂食高精制碳水化合物的植物性饮食或高脂肪饮食四周,以模拟持续的不平衡饮食。我们发现,持续不平衡的饮食显著降低了肠道细菌的丰富度,增加了细菌共生网络的复杂性。此外,肠道细菌对不平衡饮食的反应在系统发育上是保守的,这降低了网络模块性,增加了群落分类群之间正相关的比例,从而放大了群落物种间扰动的共振荡,从而破坏了肠道微生物群落的稳定。干扰试验表明,饲喂不平衡饮食的小鼠肠道微生物群对抗生素干扰和致病菌入侵的抵抗力较弱。该研究可能填补了肠道微生物群对饮食反应稳定性机制理解的空白,并为肠道微生物生态学提供了新的见解。
{"title":"Unbalanced diets enhance the complexity of gut microbial network but destabilize its stability and resistance.","authors":"Penghao Sun,&nbsp;Mengli Wang,&nbsp;Wei Zheng,&nbsp;Shuzhen Li,&nbsp;Xiaoyan Zhu,&nbsp;Xuejun Chai,&nbsp;Shanting Zhao","doi":"10.1007/s44154-023-00098-x","DOIUrl":"https://doi.org/10.1007/s44154-023-00098-x","url":null,"abstract":"<p><p>Stability is a fundamental ecological property of the gut microbiota and is associated with host health. Numerous studies have shown that unbalanced dietary components disturb the gut microbial composition and thereby contribute to the onset and progression of disease. However, the impact of unbalanced diets on the stability of the gut microbiota is poorly understood. In the present study, four-week-old mice were fed a plant-based diet high in refined carbohydrates or a high-fat diet for four weeks to simulate a persistent unbalanced diet. We found that persistent unbalanced diets significantly reduced the gut bacterial richness and increased the complexity of bacterial co-occurrence networks. Furthermore, the gut bacterial response to unbalanced diets was phylogenetically conserved, which reduced network modularity and enhanced the proportion of positive associations between community taxon, thereby amplifying the co-oscillation of perturbations among community species to destabilize gut microbial communities. The disturbance test revealed that the gut microbiota of mice fed with unbalanced diets was less resistant to antibiotic perturbation and pathogenic bacteria invasion. This study may fill a gap in the mechanistic understanding of the gut microbiota stability in response to diet and provide new insights into the gut microbial ecology.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"20"},"PeriodicalIF":0.0,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441997/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10556598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rescuing the Golgi from heat damages by ATG8: restoration rather than clean-up. 用ATG8拯救高尔基体免受热损伤:修复而不是清理。
Pub Date : 2023-06-26 DOI: 10.1007/s44154-023-00100-6
Anni Luo, Jian-Xiang Liu

High temperature stress poses significant adverse effects on crop yield and quality. Yet the molecular mechanisms underlying heat stress tolerance in plants/crops, especially regarding the organellar remodeling and homeostasis, are largely unknown. In a recent study, Zhou et al. reported that autophagy-related 8 (ATG8), a famous regulator involved in autophagy, plays a new role in Golgi restoration upon heat stress. Golgi apparatus is vacuolated following short-term acute heat stress, and ATG8 is translocated to the dilated Golgi membrane and interacts with CLATHRIN LIGHT CHAIN 2 (CLC2) to facilitate Golgi restoration, which is dependent on the ATG conjugation system, but not of the upstream autophagic initiators. These exciting findings broaden the fundamental role of ATG8, and elucidate the organelle-level restoration mechanism of Golgi upon heat stress in plants.

高温胁迫对作物的产量和品质有显著的不利影响。然而,植物/作物耐热性的分子机制,特别是关于细胞器重塑和体内平衡的分子机制,在很大程度上是未知的。在最近的一项研究中,Zhou等报道了自噬相关8 (autophagy-related 8, ATG8),一种著名的参与自噬的调节因子,在热应激下高尔基恢复中发挥了新的作用。短期急性热应激后高尔基体空泡化,ATG8转移到扩张的高尔基膜上,并与CLATHRIN轻链2 (CLC2)相互作用,促进高尔基体恢复,这依赖于ATG偶联系统,而不是上游自噬启动物。这些令人兴奋的发现扩大了ATG8的基本作用,并阐明了高尔基体在植物热胁迫下的细胞器水平恢复机制。
{"title":"Rescuing the Golgi from heat damages by ATG8: restoration rather than clean-up.","authors":"Anni Luo,&nbsp;Jian-Xiang Liu","doi":"10.1007/s44154-023-00100-6","DOIUrl":"https://doi.org/10.1007/s44154-023-00100-6","url":null,"abstract":"<p><p>High temperature stress poses significant adverse effects on crop yield and quality. Yet the molecular mechanisms underlying heat stress tolerance in plants/crops, especially regarding the organellar remodeling and homeostasis, are largely unknown. In a recent study, Zhou et al. reported that autophagy-related 8 (ATG8), a famous regulator involved in autophagy, plays a new role in Golgi restoration upon heat stress. Golgi apparatus is vacuolated following short-term acute heat stress, and ATG8 is translocated to the dilated Golgi membrane and interacts with CLATHRIN LIGHT CHAIN 2 (CLC2) to facilitate Golgi restoration, which is dependent on the ATG conjugation system, but not of the upstream autophagic initiators. These exciting findings broaden the fundamental role of ATG8, and elucidate the organelle-level restoration mechanism of Golgi upon heat stress in plants.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"19"},"PeriodicalIF":0.0,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10187817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VmPacC-mediated pH regulation of Valsa mali confers to host acidification identified by comparative proteomics analysis. vmpacc介导的马里瓦尔萨pH调节通过比较蛋白质组学分析确定宿主酸化。
Pub Date : 2023-06-21 DOI: 10.1007/s44154-023-00097-y
Liangsheng Xu, Hailong Liu, Shan Zhu, Yangguang Meng, Yinghao Wang, Jianyu Li, Feiran Zhang, Lili Huang

Apple valsa canker caused by the Ascomycete fungus Valsa mali is one of the most serious diseases of apple, resulting in huge economic losses in the apple-growing area of China. Previous study found that the pathogen could acidify the infected tissues to make lower ambient pH (from 6.0 to 3.5) for their successfully colonization. The pH signaling transcription factor VmPacC is required for acidification of its environment and for full virulence in V. mali. It is known that the functional cooperation of proteins secreted by V. mali plays pivotal role in its successful colonization of host plants. In this study, we used tandem mass tag (TMT) labeling coupled with LC-MS/MS-based quantitative proteomics to analyze the VmPacC-mediated pH regulation in V. mali, focusing on differentially expressed proteins (DEPs). We identified 222 DEPs specific to VmPacC deletion, and 921 DEPs specific to different pH conditions (pH 6.0 and 3.4). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that these DEPs were mainly involved in pathways associated with carbon metabolism, biosynthesis of antibiotics, citrate cycle (TCA cycle), glycolysis/gluconeogenesis, glutathione metabolism, ribosomes, and pentose phosphate pathways. Additionally, we identified 119 DEPs that were shared among the VmPacC deletion mutant and different pH conditions, which were mainly related to energy metabolism pathways, providing the energy required for the hyphal growth and responses to environmental stresses. A protein-protein interaction (PPI) network analysis indicated that most of the shared proteins were mapped to an interaction network with a medium confidence score of 0.4. Notably, one uncharacterized protein (KUI69106.1), and two known proteins (heat shock protein 60 (KUI73579.1), aspartate aminotransferase (KUI73864.1)) located in the core of the network were highly connected (with ≥ 38 directed edges) with the other shared DEPs. Our results suggest that VmPacC participates in the pathogen's regulation to ambient pH through the regulation of energy metabolism pathways such as the glycolysis/gluconeogenesis pathway and TCA cycle. Finally, we proposed a sophisticated molecular regulatory network to explain pH decrease in V. mali. Our study, by providing insights into V. mali regulating pH, helps to elucidate the mechanisms of host acidification during pathogen infection.

由子囊菌真菌引起的苹果溃疡病是苹果最严重的病害之一,在中国苹果产区造成了巨大的经济损失。先前的研究发现,病原菌可以使感染组织酸化,使环境pH值降低(从6.0到3.5),以使其成功定植。pH信号转录因子VmPacC是其环境酸化和在马里弧菌中完全毒力所必需的。已知马利弧菌分泌的蛋白质的功能合作在其成功定植寄主植物中起着关键作用。在本研究中,我们采用串联质量标签(TMT)标记结合LC-MS/MS-based定量蛋白质组学分析了vmpacc介导的马里弧菌pH调节,重点研究了差异表达蛋白(DEPs)。我们鉴定出222个VmPacC缺失特异性DEPs, 921个不同pH条件下(pH 6.0和3.4)特异性DEPs。基因本体(GO)和京都基因与基因组百科全书(KEGG)途径分析表明,这些DEPs主要参与碳代谢、抗生素生物合成、柠檬酸循环(TCA循环)、糖酵解/糖异生、谷胱甘肽代谢、核糖体和戊糖磷酸途径相关的途径。此外,我们还发现了119个在VmPacC缺失突变体和不同pH条件下共有的DEPs,这些DEPs主要与能量代谢途径有关,为菌丝生长和对环境胁迫的响应提供了所需的能量。蛋白质-蛋白质相互作用(PPI)网络分析表明,大多数共享蛋白质被映射到相互作用网络,中等置信度评分为0.4。值得注意的是,位于网络核心的一个未知蛋白(KUI69106.1)和两个已知蛋白(热休克蛋白60 (KUI73579.1)、天冬氨酸氨基转移酶(KUI73864.1)与其他共享dep高度连接(具有≥38个有向边)。我们的研究结果表明,VmPacC通过调节糖酵解/糖异生途径和TCA循环等能量代谢途径参与了病原体对环境pH的调节。最后,我们提出了一个复杂的分子调控网络来解释马里弧菌的pH降低。我们的研究,通过提供马里弧菌调节pH值的见解,有助于阐明病原体感染过程中宿主酸化的机制。
{"title":"VmPacC-mediated pH regulation of Valsa mali confers to host acidification identified by comparative proteomics analysis.","authors":"Liangsheng Xu,&nbsp;Hailong Liu,&nbsp;Shan Zhu,&nbsp;Yangguang Meng,&nbsp;Yinghao Wang,&nbsp;Jianyu Li,&nbsp;Feiran Zhang,&nbsp;Lili Huang","doi":"10.1007/s44154-023-00097-y","DOIUrl":"https://doi.org/10.1007/s44154-023-00097-y","url":null,"abstract":"<p><p>Apple valsa canker caused by the Ascomycete fungus Valsa mali is one of the most serious diseases of apple, resulting in huge economic losses in the apple-growing area of China. Previous study found that the pathogen could acidify the infected tissues to make lower ambient pH (from 6.0 to 3.5) for their successfully colonization. The pH signaling transcription factor VmPacC is required for acidification of its environment and for full virulence in V. mali. It is known that the functional cooperation of proteins secreted by V. mali plays pivotal role in its successful colonization of host plants. In this study, we used tandem mass tag (TMT) labeling coupled with LC-MS/MS-based quantitative proteomics to analyze the VmPacC-mediated pH regulation in V. mali, focusing on differentially expressed proteins (DEPs). We identified 222 DEPs specific to VmPacC deletion, and 921 DEPs specific to different pH conditions (pH 6.0 and 3.4). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that these DEPs were mainly involved in pathways associated with carbon metabolism, biosynthesis of antibiotics, citrate cycle (TCA cycle), glycolysis/gluconeogenesis, glutathione metabolism, ribosomes, and pentose phosphate pathways. Additionally, we identified 119 DEPs that were shared among the VmPacC deletion mutant and different pH conditions, which were mainly related to energy metabolism pathways, providing the energy required for the hyphal growth and responses to environmental stresses. A protein-protein interaction (PPI) network analysis indicated that most of the shared proteins were mapped to an interaction network with a medium confidence score of 0.4. Notably, one uncharacterized protein (KUI69106.1), and two known proteins (heat shock protein 60 (KUI73579.1), aspartate aminotransferase (KUI73864.1)) located in the core of the network were highly connected (with ≥ 38 directed edges) with the other shared DEPs. Our results suggest that VmPacC participates in the pathogen's regulation to ambient pH through the regulation of energy metabolism pathways such as the glycolysis/gluconeogenesis pathway and TCA cycle. Finally, we proposed a sophisticated molecular regulatory network to explain pH decrease in V. mali. Our study, by providing insights into V. mali regulating pH, helps to elucidate the mechanisms of host acidification during pathogen infection.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"18"},"PeriodicalIF":0.0,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441875/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10556992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Exploring the precision redox map during fasting-refeeding and satiation in C. elegans. 探究线虫在禁食-再摄食和饱食过程中的精确氧化还原图谱。
Pub Date : 2023-06-12 DOI: 10.1007/s44154-023-00096-z
Xinhua Qiao, Lu Kang, Chang Shi, Aojun Ye, Dongli Wu, Yuyunfei Huang, Minghao Deng, Jiarui Wang, Yuzheng Zhao, Chang Chen

Fasting is a popular dietary strategy because it grants numerous advantages, and redox regulation is one mechanism involved. However, the precise redox changes with respect to the redox species, organelles and tissues remain unclear, which hinders the understanding of the metabolic mechanism, and exploring the precision redox map under various dietary statuses is of great significance. Twelve redox-sensitive C. elegans strains stably expressing genetically encoded redox fluorescent probes (Hyperion sensing H2O2 and Grx1-roGFP2 sensing GSH/GSSG) in three organelles (cytoplasm, mitochondria and endoplasmic reticulum (ER)) were constructed in two tissues (body wall muscle and neurons) and were confirmed to respond to redox challenge. The H2O2 and GSSG/GSH redox changes in two tissues and three organelles were obtained by confocal microscopy during fasting, refeeding, and satiation. We found that under fasting condition, H2O2 decreased in most compartments, except for an increase in mitochondria, while GSSG/GSH increased in the cytoplasm of body muscle and the ER of neurons. After refeeding, the redox changes in H2O2 and GSSG/GSH caused by fasting were reversed in most organelles of the body wall muscle and neurons. In the satiated state, H2O2 increased markedly in the cytoplasm, mitochondria and ER of muscle and the ER of neurons, while GSSG/GSH exhibited no change in most organelles of the two tissues except for an increase in the ER of muscle. Our study systematically and precisely presents the redox characteristics under different dietary states in living animals and provides a basis for further investigating the redox mechanism in metabolism and optimizing dietary guidance.

禁食是一种流行的饮食策略,因为它具有许多优点,氧化还原调节是其中一种机制。然而,氧化还原物质、细胞器和组织的精确氧化还原变化尚不清楚,这阻碍了对代谢机制的理解,探索不同膳食状态下的精确氧化还原图谱具有重要意义。在两种组织(体壁肌肉和神经元)中构建了12株对氧化还原敏感的线虫菌株,在细胞器(细胞质、线粒体和内质网)中稳定表达遗传编码的氧化还原荧光探针(Hyperion感应H2O2和Grx1-roGFP2感应GSH/GSSG),并证实它们对氧化还原挑战有反应。共聚焦显微镜观察两种组织和三种细胞器中H2O2和GSSG/GSH在禁食、再喂食和饱食期间的氧化还原变化。我们发现,在禁食条件下,除线粒体内H2O2含量增加外,其他大部分区室H2O2含量均下降,而体肌细胞质和神经元内质网中GSSG/GSH含量增加。再喂养后,禁食引起的H2O2和GSSG/GSH氧化还原变化在大多数体壁、肌肉和神经元细胞器中被逆转。在饱食状态下,肌肉细胞质、线粒体、内质网和神经元内质网中H2O2明显增加,而GSSG/GSH在两种组织中除肌肉内质网增加外,其余细胞器中均无变化。本研究系统、准确地呈现了活体动物在不同膳食状态下的氧化还原特性,为进一步研究氧化还原代谢机制和优化膳食指导提供依据。
{"title":"Exploring the precision redox map during fasting-refeeding and satiation in C. elegans.","authors":"Xinhua Qiao,&nbsp;Lu Kang,&nbsp;Chang Shi,&nbsp;Aojun Ye,&nbsp;Dongli Wu,&nbsp;Yuyunfei Huang,&nbsp;Minghao Deng,&nbsp;Jiarui Wang,&nbsp;Yuzheng Zhao,&nbsp;Chang Chen","doi":"10.1007/s44154-023-00096-z","DOIUrl":"https://doi.org/10.1007/s44154-023-00096-z","url":null,"abstract":"<p><p>Fasting is a popular dietary strategy because it grants numerous advantages, and redox regulation is one mechanism involved. However, the precise redox changes with respect to the redox species, organelles and tissues remain unclear, which hinders the understanding of the metabolic mechanism, and exploring the precision redox map under various dietary statuses is of great significance. Twelve redox-sensitive C. elegans strains stably expressing genetically encoded redox fluorescent probes (Hyperion sensing H<sub>2</sub>O<sub>2</sub> and Grx1-roGFP2 sensing GSH/GSSG) in three organelles (cytoplasm, mitochondria and endoplasmic reticulum (ER)) were constructed in two tissues (body wall muscle and neurons) and were confirmed to respond to redox challenge. The H<sub>2</sub>O<sub>2</sub> and GSSG/GSH redox changes in two tissues and three organelles were obtained by confocal microscopy during fasting, refeeding, and satiation. We found that under fasting condition, H<sub>2</sub>O<sub>2</sub> decreased in most compartments, except for an increase in mitochondria, while GSSG/GSH increased in the cytoplasm of body muscle and the ER of neurons. After refeeding, the redox changes in H<sub>2</sub>O<sub>2</sub> and GSSG/GSH caused by fasting were reversed in most organelles of the body wall muscle and neurons. In the satiated state, H<sub>2</sub>O<sub>2</sub> increased markedly in the cytoplasm, mitochondria and ER of muscle and the ER of neurons, while GSSG/GSH exhibited no change in most organelles of the two tissues except for an increase in the ER of muscle. Our study systematically and precisely presents the redox characteristics under different dietary states in living animals and provides a basis for further investigating the redox mechanism in metabolism and optimizing dietary guidance.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"17"},"PeriodicalIF":0.0,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442001/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10242500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid alkalinization factor: function, regulation, and potential applications in agriculture. 快速碱化因子:功能、调控及其在农业中的潜在应用。
Pub Date : 2023-05-29 DOI: 10.1007/s44154-023-00093-2
Ran Zhang, Peng-Tao Shi, Min Zhou, Huai-Zeng Liu, Xiao-Jing Xu, Wen-Ting Liu, Kun-Ming Chen

Rapid alkalinization factor (RALF) is widespread throughout the plant kingdom and controls many aspects of plant life. Current studies on the regulatory mechanism underlying RALF function mainly focus on Arabidopsis, but little is known about the role of RALF in crop plants. Here, we systematically and comprehensively analyzed the relation between RALF family genes from five important crops and those in the model plant Arabidopsis thaliana. Simultaneously, we summarized the functions of RALFs in controlling growth and developmental behavior using conservative motifs as cues and predicted the regulatory role of RALFs in cereal crops. In conclusion, RALF has considerable application potential in improving crop yields and increasing economic benefits. Using gene editing technology or taking advantage of RALF as a hormone additive are effective way to amplify the role of RALF in crop plants.

快速碱化因子(RALF)广泛存在于植物界,控制着植物生命的许多方面。目前对RALF功能调控机制的研究主要集中在拟南芥,但对RALF在作物植物中的作用知之甚少。本文系统、全面地分析了5种重要作物的RALF家族基因与模式植物拟南芥(Arabidopsis thaliana)的关系。同时,我们以保守基序为线索,总结了ralf在控制谷类作物生长发育行为中的功能,并预测了ralf在谷类作物中的调控作用。综上所述,RALF在提高作物产量和经济效益方面具有相当大的应用潜力。利用基因编辑技术或利用RALF作为激素添加剂是放大RALF在作物中的作用的有效途径。
{"title":"Rapid alkalinization factor: function, regulation, and potential applications in agriculture.","authors":"Ran Zhang,&nbsp;Peng-Tao Shi,&nbsp;Min Zhou,&nbsp;Huai-Zeng Liu,&nbsp;Xiao-Jing Xu,&nbsp;Wen-Ting Liu,&nbsp;Kun-Ming Chen","doi":"10.1007/s44154-023-00093-2","DOIUrl":"https://doi.org/10.1007/s44154-023-00093-2","url":null,"abstract":"<p><p>Rapid alkalinization factor (RALF) is widespread throughout the plant kingdom and controls many aspects of plant life. Current studies on the regulatory mechanism underlying RALF function mainly focus on Arabidopsis, but little is known about the role of RALF in crop plants. Here, we systematically and comprehensively analyzed the relation between RALF family genes from five important crops and those in the model plant Arabidopsis thaliana. Simultaneously, we summarized the functions of RALFs in controlling growth and developmental behavior using conservative motifs as cues and predicted the regulatory role of RALFs in cereal crops. In conclusion, RALF has considerable application potential in improving crop yields and increasing economic benefits. Using gene editing technology or taking advantage of RALF as a hormone additive are effective way to amplify the role of RALF in crop plants.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"16"},"PeriodicalIF":0.0,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10242508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Simple and universal function of acetic acid to overcome the drought crisis. 醋酸的简单和通用功能克服干旱危机。
Pub Date : 2023-05-26 DOI: 10.1007/s44154-023-00094-1
Toru Kudo, Taiko Kim To, Jong-Myong Kim

Acetic acid is a simple and universal compound found in various organisms. Recently, acetic acid was found to play an essential role in conferring tolerance to water deficit stress in plants. This novel mechanism of drought stress tolerance mediated by acetic acid via networks involving phytohormones, genes, and chromatin regulation has great potential for solving the global food crisis and preventing desertification caused by global warming. We highlight the functions of acetic acid in conferring tolerance to water deficit stress.

醋酸是存在于各种生物体中的一种简单而普遍的化合物。近年来,人们发现乙酸在植物对水分亏缺胁迫的耐受性中起着重要作用。这种由乙酸介导的植物激素、基因和染色质调控网络的抗旱机制在解决全球粮食危机和预防全球变暖导致的荒漠化方面具有很大的潜力。我们强调醋酸在赋予对水分亏缺胁迫的耐受性方面的功能。
{"title":"Simple and universal function of acetic acid to overcome the drought crisis.","authors":"Toru Kudo,&nbsp;Taiko Kim To,&nbsp;Jong-Myong Kim","doi":"10.1007/s44154-023-00094-1","DOIUrl":"https://doi.org/10.1007/s44154-023-00094-1","url":null,"abstract":"<p><p>Acetic acid is a simple and universal compound found in various organisms. Recently, acetic acid was found to play an essential role in conferring tolerance to water deficit stress in plants. This novel mechanism of drought stress tolerance mediated by acetic acid via networks involving phytohormones, genes, and chromatin regulation has great potential for solving the global food crisis and preventing desertification caused by global warming. We highlight the functions of acetic acid in conferring tolerance to water deficit stress.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"15"},"PeriodicalIF":0.0,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10184392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immune receptor mimicking hormone receptors: a new guarding strategy. 免疫受体模拟激素受体:一种新的防御策略。
Pub Date : 2023-05-26 DOI: 10.1007/s44154-023-00095-0
Xueru Liu, Josh Li, Tony ShengZhe Peng, Xin Li

Plant intracellular nucleotide-binding domain leucine-rich repeat (NLR) receptors play crucial roles in immune responses against pathogens. How diverse NLRs recognize different pathogen effectors remains a significant question. A recent study published in Nature uncovered how pepper NLR Tsw detects phytohormone receptors' interference caused by tomato spotted wilt virus (TSWV) effector, triggering a robust immune response, showcasing a new manner of NLR guarding.

植物胞内核苷酸结合域富亮氨酸重复序列(NLR)受体在抵抗病原体的免疫应答中起重要作用。不同的nlr如何识别不同的病原体效应仍然是一个重要的问题。最近发表在《自然》杂志上的一项研究揭示了辣椒NLR Tsw如何检测番茄斑点枯萎病毒(TSWV)效应物引起的植物激素受体干扰,引发强大的免疫反应,展示了一种新的NLR防御方式。
{"title":"Immune receptor mimicking hormone receptors: a new guarding strategy.","authors":"Xueru Liu,&nbsp;Josh Li,&nbsp;Tony ShengZhe Peng,&nbsp;Xin Li","doi":"10.1007/s44154-023-00095-0","DOIUrl":"https://doi.org/10.1007/s44154-023-00095-0","url":null,"abstract":"<p><p>Plant intracellular nucleotide-binding domain leucine-rich repeat (NLR) receptors play crucial roles in immune responses against pathogens. How diverse NLRs recognize different pathogen effectors remains a significant question. A recent study published in Nature uncovered how pepper NLR Tsw detects phytohormone receptors' interference caused by tomato spotted wilt virus (TSWV) effector, triggering a robust immune response, showcasing a new manner of NLR guarding.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"14"},"PeriodicalIF":0.0,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442019/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10177224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CIMBL55: a repository for maize drought resistance alleles. 玉米抗旱等位基因库。
Pub Date : 2023-05-19 DOI: 10.1007/s44154-023-00091-4
Tian Tian, Feng Qin

Droughts threaten crop yields worldwide. Compared to other major staple cereal crops, maize (Zea mays) is especially sensitive to drought, which can cause dramatic fluctuations in its yield potential. Natural maize populations contain many superior alleles that can enhance drought resistance through complex regulatory mechanisms. We recently de novo assembled the genome of a prominent drought-resistant maize germplasm, CIMBL55, and systematically dissected the genetic basis for its drought resistance on the genome, transcriptome, and epigenome levels. These analyses revealed 65 favorable drought resistance alleles in CIMBL55. Subsequently, we genetically verified the functions of the drought resistance genes ZmABF4, ZmNAC075, and ZmRtn16 and unraveled the function of ZmRtn16 on a molecular level.

干旱威胁着全世界的农作物产量。与其他主要谷类作物相比,玉米(Zea mays)对干旱特别敏感,这可能导致其产量潜力的剧烈波动。天然玉米群体中含有许多优良的等位基因,它们通过复杂的调控机制增强抗旱性。最近,我们重新组装了一种突出的抗旱玉米种质CIMBL55的基因组,并在基因组、转录组和表观基因组水平上系统地剖析了其抗旱的遗传基础。这些分析发现了65个有利的抗旱等位基因。随后,我们从遗传角度验证了抗旱基因ZmABF4、zmac075和ZmRtn16的功能,并在分子水平上揭示了ZmRtn16的功能。
{"title":"CIMBL55: a repository for maize drought resistance alleles.","authors":"Tian Tian,&nbsp;Feng Qin","doi":"10.1007/s44154-023-00091-4","DOIUrl":"https://doi.org/10.1007/s44154-023-00091-4","url":null,"abstract":"<p><p>Droughts threaten crop yields worldwide. Compared to other major staple cereal crops, maize (Zea mays) is especially sensitive to drought, which can cause dramatic fluctuations in its yield potential. Natural maize populations contain many superior alleles that can enhance drought resistance through complex regulatory mechanisms. We recently de novo assembled the genome of a prominent drought-resistant maize germplasm, CIMBL55, and systematically dissected the genetic basis for its drought resistance on the genome, transcriptome, and epigenome levels. These analyses revealed 65 favorable drought resistance alleles in CIMBL55. Subsequently, we genetically verified the functions of the drought resistance genes ZmABF4, ZmNAC075, and ZmRtn16 and unraveled the function of ZmRtn16 on a molecular level.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"13"},"PeriodicalIF":0.0,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441843/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10556600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel discovery in roles of structural variations and RWP-RK transcription factors in heat tolerance for pearl millet. 结构变异和RWP-RK转录因子在珍珠粟耐热性中的新发现。
Pub Date : 2023-05-15 DOI: 10.1007/s44154-023-00092-3
Bingru Huang, Haidong Yan, Min Sun, Yarong Jin

Global warming adversely affects crop production worldwide. Massive efforts have been undertaken to study mechanisms regulating heat tolerance in plants. However, the roles of structural variations (SVs) in heat stress tolerance remain unclear. In a recent article, Yan et al. (Nat Genet 1-12, 2023) constructed the first pan-genome of pearl millet (Pennisetum glaucum) and identified key SVs linked to genes involved in regulating plant tolerance to heat stress for an important crop with a superior ability to thrive in extremely hot and arid climates. Through multi-omics analyses integrating by pan-genomics, comparative genomics, transcriptomics, population genetics and and molecular biological technologies, they found RWP-RK transcription factors cooperating with endoplasmic reticulum-related genes play key roles in heat tolerance in pearl millet. The results in this paper provided novel insights to advance the understanding of the genetic and genomic basis of heat tolerance and an exceptional resource for molecular breeding to improve heat tolerance in pearl millet and other crops.

全球变暖对全球农作物生产产生不利影响。对植物耐热性调控机制的研究已经开展了大量的工作。然而,结构变异(SVs)在耐热性中的作用尚不清楚。在最近的一篇文章中,Yan等人(Nat Genet 1- 12,2023)构建了珍珠粟(Pennisetum glaucum)的首个泛基因组,并确定了与调节植物耐热性基因相关的关键SVs,珍珠粟是一种重要的作物,具有在极端炎热和干旱气候下茁壮成长的优越能力。通过泛基因组学、比较基因组学、转录组学、群体遗传学和分子生物学等综合多组学分析,发现RWP-RK转录因子与内质网相关基因协同作用在珍珠谷子耐热性中起关键作用。本研究结果为进一步了解珍珠粟等作物耐热性的遗传和基因组基础提供了新的见解,并为提高珍珠粟等作物耐热性的分子育种提供了宝贵资源。
{"title":"Novel discovery in roles of structural variations and RWP-RK transcription factors in heat tolerance for pearl millet.","authors":"Bingru Huang,&nbsp;Haidong Yan,&nbsp;Min Sun,&nbsp;Yarong Jin","doi":"10.1007/s44154-023-00092-3","DOIUrl":"https://doi.org/10.1007/s44154-023-00092-3","url":null,"abstract":"<p><p>Global warming adversely affects crop production worldwide. Massive efforts have been undertaken to study mechanisms regulating heat tolerance in plants. However, the roles of structural variations (SVs) in heat stress tolerance remain unclear. In a recent article, Yan et al. (Nat Genet 1-12, 2023) constructed the first pan-genome of pearl millet (Pennisetum glaucum) and identified key SVs linked to genes involved in regulating plant tolerance to heat stress for an important crop with a superior ability to thrive in extremely hot and arid climates. Through multi-omics analyses integrating by pan-genomics, comparative genomics, transcriptomics, population genetics and and molecular biological technologies, they found RWP-RK transcription factors cooperating with endoplasmic reticulum-related genes play key roles in heat tolerance in pearl millet. The results in this paper provided novel insights to advance the understanding of the genetic and genomic basis of heat tolerance and an exceptional resource for molecular breeding to improve heat tolerance in pearl millet and other crops.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"12"},"PeriodicalIF":0.0,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10442032/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10187816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of perinatal stress on the metabolites and lipids in plasma of dairy goats. 围产期应激对奶山羊血浆代谢产物和血脂的影响。
Pub Date : 2023-05-12 DOI: 10.1007/s44154-023-00088-z
Yan Huang, Yezi Kong, Bowen Li, Chenxu Zhao, Juan J Loor, Panpan Tan, Yang Yuan, Fangyuan Zeng, Xiaoyan Zhu, Simeng Qi, Baoyu Zhao, Jianguo Wang

Dairy goats experience metabolic stress during the peripartal period, and their ability to navigate this stage of lactation is related to the occurrence and development of metabolic diseases. Unlike dairy cows, there is a lack of comprehensive analysis of changes in the plasma profiles of peripartal dairy goats, particularly using high-throughput techniques. A subset of 9 clinically-healthy dairy goats were used from a cohort of 96 primiparous Guanzhong dairy goats (BCS, 2.75 ± 0.15). Blood samples were collected at seven time points around parturition (d 21, 14, 7 before parturition, the day of kidding, and d 7, 14, 21 postpartum), were analyzed using untargeted metabolomics and targeted lipidomics. The orthogonal partial least squares discriminant analysis model revealed a total of 31 differential metabolites including p-cresol sulfate, pyruvic acid, cholic acid, and oxoglutaric acid. The pathway enrichment analysis identified phenylalanine metabolism, aminoacyl-tRNA biosynthesis, and citrate cycle as the top three significantly-altered pathways. The Limma package identified a total of 123 differentially expressed lipids. Phosphatidylserine (PS), free fatty acids (FFA), and acylcarnitines (ACs) were significantly increased on the day of kidding, while diacylglycerols (DAG) and triacylglycerols (TAG) decreased. Ceramides (Cer) and lyso-phosphatidylinositols (LPI) were significantly increased during postpartum period, while PS, FFA, and ACs decreased postpartum and gradually returned to antepartum levels. Individual species of FFA and phosphatidylcholines (PC) were segregated based on the differences in the saturation and length of the carbon chain. Overall, this work generated the largest repository of the plasma lipidome and metabolome in dairy goats across the peripartal period, which contributed to our understanding of the multifaceted adaptations of transition dairy goats.

奶山羊在围产期经历代谢应激,其驾驭这一泌乳阶段的能力与代谢疾病的发生和发展有关。与奶牛不同,目前缺乏对产卵期奶山羊血浆谱变化的全面分析,特别是使用高通量技术。从96只关中初产奶山羊(BCS, 2.75±0.15)中选取9只临床健康的奶山羊作为研究对象。在分娩前后的7个时间点(分娩前第21、14、7天、分娩当天和产后第7、14、21天)采集血样,采用非靶向代谢组学和靶向脂质组学进行分析。正交偏最小二乘判别分析模型共发现31种差异代谢物,包括对甲酚硫酸盐、丙酮酸、胆酸和氧戊二酸。途径富集分析发现,苯丙氨酸代谢、氨基酰基- trna生物合成和柠檬酸循环是前三个显著改变的途径。Limma试剂盒共鉴定出123种差异表达的脂质。在开玩笑当天,磷脂酰丝氨酸(PS)、游离脂肪酸(FFA)和酰基肉碱(ACs)显著升高,二酰基甘油(DAG)和三酰基甘油(TAG)降低。神经酰胺(Cer)和溶磷脂酰肌醇(LPI)在产后显著升高,而PS、FFA和ACs在产后降低,并逐渐恢复到产前水平。根据饱和度和碳链长度的差异,对FFA和磷脂酰胆碱(PC)进行了分离。总的来说,这项工作产生了最大的乳山羊围产期血浆脂质组和代谢组库,这有助于我们了解过渡期乳山羊的多方面适应。
{"title":"Effects of perinatal stress on the metabolites and lipids in plasma of dairy goats.","authors":"Yan Huang,&nbsp;Yezi Kong,&nbsp;Bowen Li,&nbsp;Chenxu Zhao,&nbsp;Juan J Loor,&nbsp;Panpan Tan,&nbsp;Yang Yuan,&nbsp;Fangyuan Zeng,&nbsp;Xiaoyan Zhu,&nbsp;Simeng Qi,&nbsp;Baoyu Zhao,&nbsp;Jianguo Wang","doi":"10.1007/s44154-023-00088-z","DOIUrl":"https://doi.org/10.1007/s44154-023-00088-z","url":null,"abstract":"<p><p>Dairy goats experience metabolic stress during the peripartal period, and their ability to navigate this stage of lactation is related to the occurrence and development of metabolic diseases. Unlike dairy cows, there is a lack of comprehensive analysis of changes in the plasma profiles of peripartal dairy goats, particularly using high-throughput techniques. A subset of 9 clinically-healthy dairy goats were used from a cohort of 96 primiparous Guanzhong dairy goats (BCS, 2.75 ± 0.15). Blood samples were collected at seven time points around parturition (d 21, 14, 7 before parturition, the day of kidding, and d 7, 14, 21 postpartum), were analyzed using untargeted metabolomics and targeted lipidomics. The orthogonal partial least squares discriminant analysis model revealed a total of 31 differential metabolites including p-cresol sulfate, pyruvic acid, cholic acid, and oxoglutaric acid. The pathway enrichment analysis identified phenylalanine metabolism, aminoacyl-tRNA biosynthesis, and citrate cycle as the top three significantly-altered pathways. The Limma package identified a total of 123 differentially expressed lipids. Phosphatidylserine (PS), free fatty acids (FFA), and acylcarnitines (ACs) were significantly increased on the day of kidding, while diacylglycerols (DAG) and triacylglycerols (TAG) decreased. Ceramides (Cer) and lyso-phosphatidylinositols (LPI) were significantly increased during postpartum period, while PS, FFA, and ACs decreased postpartum and gradually returned to antepartum levels. Individual species of FFA and phosphatidylcholines (PC) were segregated based on the differences in the saturation and length of the carbon chain. Overall, this work generated the largest repository of the plasma lipidome and metabolome in dairy goats across the peripartal period, which contributed to our understanding of the multifaceted adaptations of transition dairy goats.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10441998/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10539086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Stress biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1