Pub Date : 2024-04-09DOI: 10.1007/s44154-023-00137-7
Abhaya Kumar Sahu, Punam Kumari, B. Mittra
{"title":"Immunocompromisation of wheat host by L-BSO and 2,4-DPA induces susceptibility to the fungal pathogen Fusarium oxysporum","authors":"Abhaya Kumar Sahu, Punam Kumari, B. Mittra","doi":"10.1007/s44154-023-00137-7","DOIUrl":"https://doi.org/10.1007/s44154-023-00137-7","url":null,"abstract":"","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"94 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140725142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-20DOI: 10.1007/s44154-024-00155-z
Karen Thulasi Devendrakumar, Tony ShengZhe Peng, Leon Pierdzig, Edan Jackson, Volker Lipka, Xin Li
The Arabidopsis pi4kβ1,2 mutant is mutated in the phosphatidylinositol 4-kinase (PI4K) β1 and PI4Kβ2 enzymes which are involved in the biosynthesis of phosphatidylinositol 4-phosphate (PI4P), a minor membrane lipid with important signaling roles. pi4kβ1,2 plants display autoimmunity and shorter roots. Though the pi4kβ1,2 mutant has been extensively characterized, the source of its autoimmunity remains largely unknown. In this study, through a genetic suppressor screen, we identified multiple partial loss-of-function alleles of signal peptide peptidase (spp) that can suppress all the defects of pi4kβ1,2. SPP is an intramembrane cleaving aspartic protease. Interestingly, pi4kβ1,2 plants display enhanced ER stress response and mutations in SPP can suppress such phenotype. Furthermore, reduced ER stress responses were observed in the spp single mutants. Overall, our study reveals a previously unknown function of PI4Kβ and SPP in ER stress and plant immunity.
{"title":"Signal Peptide Peptidase and PI4Kβ1/2 play opposite roles in plant ER stress response and immunity.","authors":"Karen Thulasi Devendrakumar, Tony ShengZhe Peng, Leon Pierdzig, Edan Jackson, Volker Lipka, Xin Li","doi":"10.1007/s44154-024-00155-z","DOIUrl":"10.1007/s44154-024-00155-z","url":null,"abstract":"<p><p>The Arabidopsis pi4kβ1,2 mutant is mutated in the phosphatidylinositol 4-kinase (PI4K) β1 and PI4Kβ2 enzymes which are involved in the biosynthesis of phosphatidylinositol 4-phosphate (PI4P), a minor membrane lipid with important signaling roles. pi4kβ1,2 plants display autoimmunity and shorter roots. Though the pi4kβ1,2 mutant has been extensively characterized, the source of its autoimmunity remains largely unknown. In this study, through a genetic suppressor screen, we identified multiple partial loss-of-function alleles of signal peptide peptidase (spp) that can suppress all the defects of pi4kβ1,2. SPP is an intramembrane cleaving aspartic protease. Interestingly, pi4kβ1,2 plants display enhanced ER stress response and mutations in SPP can suppress such phenotype. Furthermore, reduced ER stress responses were observed in the spp single mutants. Overall, our study reveals a previously unknown function of PI4Kβ and SPP in ER stress and plant immunity.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"20"},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10954597/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140178157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-18DOI: 10.1007/s44154-024-00159-9
Liangjie Niu, Wenkang Wang, Yingxue Li, Xiaolin Wu, Wei Wang
Drought-induced osmotic stress severely affects the growth and yield of maize. However, the mechanisms underlying the different responses of young and old maize leaves to osmotic stress remain unclear. To gain a systematic understanding of age-related stress responses, we compared osmotic-stress-induced changes in maize leaves of different ages using multi-omics approaches. After short-term osmotic stress, old leaves suffered more severe water deficits than young leaves. The adjustments of transcriptomes, proteomes, and hormones in response to osmotic stress were more dynamic in old leaves. Metabolic activities, stress signaling pathways, and hormones (especially abscisic acid) responded to osmotic stress in an age-dependent manner. We identified multiple functional clusters of genes and proteins with potential roles in stress adaptation. Old leaves significantly accumulated stress proteins such as dehydrin, aquaporin, and chaperones to cope with osmotic stress, accompanied by senescence-like cellular events, whereas young leaves exhibited an effective water conservation strategy mainly by hydrolyzing transitory starch and increasing proline production. The stress responses of individual leaves are primarily determined by their intracellular water status, resulting in differential transcriptomes, proteomes, and hormones. This study extends our understanding of the mechanisms underlying plant responses to osmotic stress.
{"title":"Maize multi-omics reveal leaf water status controlling of differential transcriptomes, proteomes and hormones as mechanisms of age-dependent osmotic stress response in leaves.","authors":"Liangjie Niu, Wenkang Wang, Yingxue Li, Xiaolin Wu, Wei Wang","doi":"10.1007/s44154-024-00159-9","DOIUrl":"10.1007/s44154-024-00159-9","url":null,"abstract":"<p><p>Drought-induced osmotic stress severely affects the growth and yield of maize. However, the mechanisms underlying the different responses of young and old maize leaves to osmotic stress remain unclear. To gain a systematic understanding of age-related stress responses, we compared osmotic-stress-induced changes in maize leaves of different ages using multi-omics approaches. After short-term osmotic stress, old leaves suffered more severe water deficits than young leaves. The adjustments of transcriptomes, proteomes, and hormones in response to osmotic stress were more dynamic in old leaves. Metabolic activities, stress signaling pathways, and hormones (especially abscisic acid) responded to osmotic stress in an age-dependent manner. We identified multiple functional clusters of genes and proteins with potential roles in stress adaptation. Old leaves significantly accumulated stress proteins such as dehydrin, aquaporin, and chaperones to cope with osmotic stress, accompanied by senescence-like cellular events, whereas young leaves exhibited an effective water conservation strategy mainly by hydrolyzing transitory starch and increasing proline production. The stress responses of individual leaves are primarily determined by their intracellular water status, resulting in differential transcriptomes, proteomes, and hormones. This study extends our understanding of the mechanisms underlying plant responses to osmotic stress.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"19"},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10948690/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140159722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-14DOI: 10.1007/s44154-024-00157-x
Ping Wang, Ping He
In plant immunity, a well-orchestrated cascade is initiated by the dimerization of receptor-like kinases (RLKs), followed by the phosphorylation of receptor-like cytoplasmic kinases (RLCKs) and subsequent activation of NADPH oxidases for ROS generation. Recent findings by Zhong et al. illustrated that a maize signaling module comprising ZmWAKL-ZmWIK-ZmBLK1-ZmRBOH4 governs quantitative disease resistance to grey leaf spot, a pervasive fungal disease in maize worldwide, unveiling the conservation of this signaling quartet in plant immunity.
{"title":"The symphony of maize signaling quartet defending against gray leaf spot.","authors":"Ping Wang, Ping He","doi":"10.1007/s44154-024-00157-x","DOIUrl":"10.1007/s44154-024-00157-x","url":null,"abstract":"<p><p>In plant immunity, a well-orchestrated cascade is initiated by the dimerization of receptor-like kinases (RLKs), followed by the phosphorylation of receptor-like cytoplasmic kinases (RLCKs) and subsequent activation of NADPH oxidases for ROS generation. Recent findings by Zhong et al. illustrated that a maize signaling module comprising ZmWAKL-ZmWIK-ZmBLK1-ZmRBOH4 governs quantitative disease resistance to grey leaf spot, a pervasive fungal disease in maize worldwide, unveiling the conservation of this signaling quartet in plant immunity.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"18"},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940558/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140133473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Persimmon anthracnose, a severe disease caused by the hemibiotrophic fungus Colletotrichum horii, poses a substantial threat to China's persimmon industry. Previous research showed that 'Kangbing Jianshi' cultivar exhibits strong resistance to anthracnose. Notably, 'Kangbing Jianshi' branches exhibit greater lignification compared with the susceptible 'Fuping Jianshi' cultivar. In this study, higher lignin content was observed in 'Kangbing Jianshi' compared with 'Fuping Jianshi', and this difference was associated with disease resistance. Transcriptome and metabolome analyses revealed that the majority of differentially expressed genes and differentially accumulated metabolites were primarily enriched in the phenylpropanoid biosynthesis and lignin synthesis pathways. Furthermore, significant upregulation of DkCAD1, a pivotal gene involved in lignin metabolism, was observed in the resistant cultivar when inoculated with C. horii. Transient overexpression of DkCAD1 substantially increased lignin content and improved resistance to C. horii in a susceptible cultivar. Furthermore, through yeast one-hybrid (Y1H) assays, we identified two WRKY transcription factors, DkWRKY8 and DkWRKY10, which interacts with the DkCAD1 promoter and induces its activity. Overexpression of DkWRKY8 and DkWRKY10 not only increased leaf lignin content but also enhanced persimmon tolerance to C. horii. Moreover, the expression levels of DkCAD1, DkWRKY8, and DkWRKY10 were significantly increased in response to salicylic acid and jasmonic acid in the resistant cultivar. These findings enhance our understanding of the molecular functions of DkWRKY8, DkWRKY10, and DkCAD1 in persimmons, as well as their involvement in molecular breeding processes in persimmons.
{"title":"DkWRKY transcription factors enhance persimmon resistance to Colletotrichum horii by promoting lignin accumulation through DkCAD1 promotor interaction.","authors":"Hanyue Fan, Xiaoxia Shen, Yu Ding, Yongkuan Li, Shuyuan Liu, Yong Yang, Yuduan Ding, Changfei Guan","doi":"10.1007/s44154-024-00154-0","DOIUrl":"10.1007/s44154-024-00154-0","url":null,"abstract":"<p><p>Persimmon anthracnose, a severe disease caused by the hemibiotrophic fungus Colletotrichum horii, poses a substantial threat to China's persimmon industry. Previous research showed that 'Kangbing Jianshi' cultivar exhibits strong resistance to anthracnose. Notably, 'Kangbing Jianshi' branches exhibit greater lignification compared with the susceptible 'Fuping Jianshi' cultivar. In this study, higher lignin content was observed in 'Kangbing Jianshi' compared with 'Fuping Jianshi', and this difference was associated with disease resistance. Transcriptome and metabolome analyses revealed that the majority of differentially expressed genes and differentially accumulated metabolites were primarily enriched in the phenylpropanoid biosynthesis and lignin synthesis pathways. Furthermore, significant upregulation of DkCAD1, a pivotal gene involved in lignin metabolism, was observed in the resistant cultivar when inoculated with C. horii. Transient overexpression of DkCAD1 substantially increased lignin content and improved resistance to C. horii in a susceptible cultivar. Furthermore, through yeast one-hybrid (Y1H) assays, we identified two WRKY transcription factors, DkWRKY8 and DkWRKY10, which interacts with the DkCAD1 promoter and induces its activity. Overexpression of DkWRKY8 and DkWRKY10 not only increased leaf lignin content but also enhanced persimmon tolerance to C. horii. Moreover, the expression levels of DkCAD1, DkWRKY8, and DkWRKY10 were significantly increased in response to salicylic acid and jasmonic acid in the resistant cultivar. These findings enhance our understanding of the molecular functions of DkWRKY8, DkWRKY10, and DkCAD1 in persimmons, as well as their involvement in molecular breeding processes in persimmons.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"17"},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897097/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-20DOI: 10.1007/s44154-024-00151-3
Rui Yin, Juanli Cheng, Jinshui Lin
The type VI secretion system (T6SS) is a powerful bacterial molecular weapon that can inject effector proteins into prokaryotic or eukaryotic cells, thereby participating in the competition between bacteria and improving bacterial environmental adaptability. Although most current studies of the T6SS have focused on animal bacteria, this system is also significant for the adaptation of plant-associated bacteria. This paper briefly introduces the structure and biological functions of the T6SS. We summarize the role of plant-associated bacterial T6SS in adaptability to host plants and the external environment, including resistance to biotic stresses such as host defenses and competition from other bacteria. We review the role of the T6SS in response to abiotic factors such as acid stress, oxidation stress, and osmotic stress. This review provides an important reference for exploring the functions of the T6SS in plant-associated bacteria. In addition, characterizing these anti-stress functions of the T6SS may provide new pathways toward eliminating plant pathogens and controlling agricultural losses.
{"title":"The role of the type VI secretion system in the stress resistance of plant-associated bacteria.","authors":"Rui Yin, Juanli Cheng, Jinshui Lin","doi":"10.1007/s44154-024-00151-3","DOIUrl":"10.1007/s44154-024-00151-3","url":null,"abstract":"<p><p>The type VI secretion system (T6SS) is a powerful bacterial molecular weapon that can inject effector proteins into prokaryotic or eukaryotic cells, thereby participating in the competition between bacteria and improving bacterial environmental adaptability. Although most current studies of the T6SS have focused on animal bacteria, this system is also significant for the adaptation of plant-associated bacteria. This paper briefly introduces the structure and biological functions of the T6SS. We summarize the role of plant-associated bacterial T6SS in adaptability to host plants and the external environment, including resistance to biotic stresses such as host defenses and competition from other bacteria. We review the role of the T6SS in response to abiotic factors such as acid stress, oxidation stress, and osmotic stress. This review provides an important reference for exploring the functions of the T6SS in plant-associated bacteria. In addition, characterizing these anti-stress functions of the T6SS may provide new pathways toward eliminating plant pathogens and controlling agricultural losses.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"16"},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139907097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-16DOI: 10.1007/s44154-024-00152-2
Pei Miao, Jian-Min Zhou, Wei Wang
Many Gram-negative pathogens employ the type III secretion system (T3SS) to deliver effector proteins into host cells, thereby modulating host cellular processes and suppressing host immunity to facilitate pathogenesis and colonization. In this study, we developed a straightforward, rapid, and quantitative method for detecting T3SS-mediated translocation of Pseudomonas syringae effectors using a self-assembling split Nano luciferase (Nluc)-based reporter system. It was demonstrated that this system can detect effector secretion in vitro with an exceptionally high signal-to-noise ratio and sensitivity, attributed to the strong affinity between the split domains of Nluc and the intense luminescence generated by functional Nluc. During natural infections, effectors fused to a small C-terminal fragment of Nluc were successfully translocated into plant cells and retained their virulence functions. Furthermore, upon infection of plants expressing the N-terminal fragment of Nluc with these P. syringae strains, functional Nluc proteins were spontaneously assembled and produced bright luminescence, demonstrating that this system enables the straightforward and rapid assessment of P. syringae T3SS-mediated effector translocation during natural infections. In conclusion, the self-assembling split Nluc-based reporting system developed in this study is suitable for efficient in vitro and in planta detection of effectors secreted via T3SS.
许多革兰氏阴性病原体利用 III 型分泌系统(T3SS)将效应蛋白输送到宿主细胞中,从而调节宿主细胞过程并抑制宿主免疫,以促进致病和定殖。在这项研究中,我们开发了一种直接、快速和定量的方法,利用基于自组装分裂纳米荧光素酶(Nluc)的报告系统来检测 T3SS 介导的丁香假单胞菌效应蛋白的转运。研究表明,该系统能以极高的信噪比和灵敏度在体外检测效应物的分泌,这归功于 Nluc 的分裂结构域之间的强亲和力和功能性 Nluc 产生的强发光。在自然感染过程中,与 Nluc C 端小片段融合的效应物成功转运到植物细胞中,并保留了其毒力功能。此外,当表达 Nluc N 端片段的植物感染这些 P. syringae 菌株时,功能性 Nluc 蛋白会自发组装并产生明亮的荧光,这表明该系统能够直接、快速地评估 P. syringae T3SS 在自然感染过程中介导的效应物转运。总之,本研究开发的基于 Nluc 的自组装分裂报告系统适用于在体外和植物体内高效检测通过 T3SS 分泌的效应物。
{"title":"A self-assembling split Nano luciferase-based assay for investigating Pseudomonas syringae effector secretion.","authors":"Pei Miao, Jian-Min Zhou, Wei Wang","doi":"10.1007/s44154-024-00152-2","DOIUrl":"10.1007/s44154-024-00152-2","url":null,"abstract":"<p><p>Many Gram-negative pathogens employ the type III secretion system (T3SS) to deliver effector proteins into host cells, thereby modulating host cellular processes and suppressing host immunity to facilitate pathogenesis and colonization. In this study, we developed a straightforward, rapid, and quantitative method for detecting T3SS-mediated translocation of Pseudomonas syringae effectors using a self-assembling split Nano luciferase (Nluc)-based reporter system. It was demonstrated that this system can detect effector secretion in vitro with an exceptionally high signal-to-noise ratio and sensitivity, attributed to the strong affinity between the split domains of Nluc and the intense luminescence generated by functional Nluc. During natural infections, effectors fused to a small C-terminal fragment of Nluc were successfully translocated into plant cells and retained their virulence functions. Furthermore, upon infection of plants expressing the N-terminal fragment of Nluc with these P. syringae strains, functional Nluc proteins were spontaneously assembled and produced bright luminescence, demonstrating that this system enables the straightforward and rapid assessment of P. syringae T3SS-mediated effector translocation during natural infections. In conclusion, the self-assembling split Nluc-based reporting system developed in this study is suitable for efficient in vitro and in planta detection of effectors secreted via T3SS.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"14"},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873255/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-16DOI: 10.1007/s44154-024-00153-1
S Sanjana, K Jazeel, E Janeeshma, Sarath G Nair, A M Shackira
Pollution by toxic heavy metals creates a significant impact on the biotic community of the ecosystem. Nowadays, a solution to this problem is an eco-friendly approach like phytoremediation, in which plants are used to ameliorate heavy metals. In addition, various amendments are used to enhance the potential of heavy metal phytoremediation. Symbiotic microorganisms such as phosphate-solubilizing bacteria (PSB), endophytes, mycorrhiza and plant growth-promoting rhizobacteria (PGPR) play a significant role in the improvement of heavy metal phytoremediation potential along with promoting the growth of plants that are grown in contaminated environments. Various chemical chelators (Indole 3-acetic acid, ethylene diamine tetra acetic acid, ethylene glycol tetra acetic acid, ethylenediamine-N, N-disuccinic acid and nitrilotri-acetic acid) and their combined action with other agents also contribute to heavy metal phytoremediation enhancement. With modern techniques, transgenic plants and microorganisms are developed to open up an alternative strategy for phytoremediation. Genomics, proteomics, transcriptomics and metabolomics are widely used novel approaches to develop competent phytoremediators. This review accounts for the synergistic interactions of the ameliorating agent's role in enhancing heavy metal phytoremediation, intending to highlight the importance of these various approaches in reducing heavy metal pollution.
{"title":"Synergistic interactions of assorted ameliorating agents to enhance the potential of heavy metal phytoremediation.","authors":"S Sanjana, K Jazeel, E Janeeshma, Sarath G Nair, A M Shackira","doi":"10.1007/s44154-024-00153-1","DOIUrl":"10.1007/s44154-024-00153-1","url":null,"abstract":"<p><p>Pollution by toxic heavy metals creates a significant impact on the biotic community of the ecosystem. Nowadays, a solution to this problem is an eco-friendly approach like phytoremediation, in which plants are used to ameliorate heavy metals. In addition, various amendments are used to enhance the potential of heavy metal phytoremediation. Symbiotic microorganisms such as phosphate-solubilizing bacteria (PSB), endophytes, mycorrhiza and plant growth-promoting rhizobacteria (PGPR) play a significant role in the improvement of heavy metal phytoremediation potential along with promoting the growth of plants that are grown in contaminated environments. Various chemical chelators (Indole 3-acetic acid, ethylene diamine tetra acetic acid, ethylene glycol tetra acetic acid, ethylenediamine-N, N-disuccinic acid and nitrilotri-acetic acid) and their combined action with other agents also contribute to heavy metal phytoremediation enhancement. With modern techniques, transgenic plants and microorganisms are developed to open up an alternative strategy for phytoremediation. Genomics, proteomics, transcriptomics and metabolomics are widely used novel approaches to develop competent phytoremediators. This review accounts for the synergistic interactions of the ameliorating agent's role in enhancing heavy metal phytoremediation, intending to highlight the importance of these various approaches in reducing heavy metal pollution.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"13"},"PeriodicalIF":0.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10873264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}