Pub Date : 2024-11-04DOI: 10.1186/s13568-024-01781-6
Maryam Pourhajibagher, Zahra Javanmard, Abbas Bahador
Acinetobacter baumannii's extensive antibiotic resistance makes its infections difficult to treat, so effective strategies to fight this bacterium are urgently needed. This study aims to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) mediated by Rutin-Gal(III) complex and Quercetin against A. baumannii. Absorbance spectra, fluorescence spectra, and minimum inhibitory concentration (MIC) of Rutin-Gal(III) complex and Quercetin were determined. The intracellular reactive oxygen species (ROS), extracellular polymeric substances (EPS), cell membrane permeability, expression of ompA and blaOXA-23, anti-biofilm activity, and anti-metabolic activity of Rutin-Gal(III) complex- and Quercetin-mediated aPDT were measured. Rutin-Gal(III) complex and Quercetin revealed absorption peaks in the visible spectra. Quercetin and Rutin-Gal(III) complex displayed fluorescence peaks at 524 nm and 540 nm, respectively. MIC values for the Rutin-Gal(III) complex and Quercetin were 64 µg/mL and 256 µg/mL, respectively. Quercetin- and Rutin-Gal(III) complex-mediated aPDT significantly reduced the colony forming units/mL (58.4% and 67.5%), EPS synthesis (47.4% and 56.5%), metabolic activity (30.5% and 36.3%), ompA (5.5- and 10.5-fold), and blaOXA-23 (4.1-fold and 7.8-fold) genes expression (respectively; all P < 0.05). Quercetin- and Rutin-Gal(III) complex-mediated aPDT enhanced notable biofilm degradation (36.2% and 40.6%), ROS production (2.55- and 2.90-folds), and membrane permeability (10.8- and 9.6-folds) (respectively; all P < 0.05). The findings indicate that Rutin-Gal(III) complex- and Quercetin-mediated aPDT exhibits antibacterial properties and could serve as a valuable adjunctive strategy to conventional antibiotic treatments for A. baumannii infections. One limitation of this study is that it was conducted solely on the standard strain; testing on clinical isolates would allow for more reliable interpretation of the results.
{"title":"In vitro antibacterial activity of photoactivated flavonoid glycosides against Acinetobacter baumannii.","authors":"Maryam Pourhajibagher, Zahra Javanmard, Abbas Bahador","doi":"10.1186/s13568-024-01781-6","DOIUrl":"10.1186/s13568-024-01781-6","url":null,"abstract":"<p><p>Acinetobacter baumannii's extensive antibiotic resistance makes its infections difficult to treat, so effective strategies to fight this bacterium are urgently needed. This study aims to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) mediated by Rutin-Gal(III) complex and Quercetin against A. baumannii. Absorbance spectra, fluorescence spectra, and minimum inhibitory concentration (MIC) of Rutin-Gal(III) complex and Quercetin were determined. The intracellular reactive oxygen species (ROS), extracellular polymeric substances (EPS), cell membrane permeability, expression of ompA and bla<sub>OXA-23</sub>, anti-biofilm activity, and anti-metabolic activity of Rutin-Gal(III) complex- and Quercetin-mediated aPDT were measured. Rutin-Gal(III) complex and Quercetin revealed absorption peaks in the visible spectra. Quercetin and Rutin-Gal(III) complex displayed fluorescence peaks at 524 nm and 540 nm, respectively. MIC values for the Rutin-Gal(III) complex and Quercetin were 64 µg/mL and 256 µg/mL, respectively. Quercetin- and Rutin-Gal(III) complex-mediated aPDT significantly reduced the colony forming units/mL (58.4% and 67.5%), EPS synthesis (47.4% and 56.5%), metabolic activity (30.5% and 36.3%), ompA (5.5- and 10.5-fold), and bla<sub>OXA-23</sub> (4.1-fold and 7.8-fold) genes expression (respectively; all P < 0.05). Quercetin- and Rutin-Gal(III) complex-mediated aPDT enhanced notable biofilm degradation (36.2% and 40.6%), ROS production (2.55- and 2.90-folds), and membrane permeability (10.8- and 9.6-folds) (respectively; all P < 0.05). The findings indicate that Rutin-Gal(III) complex- and Quercetin-mediated aPDT exhibits antibacterial properties and could serve as a valuable adjunctive strategy to conventional antibiotic treatments for A. baumannii infections. One limitation of this study is that it was conducted solely on the standard strain; testing on clinical isolates would allow for more reliable interpretation of the results.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"119"},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535136/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1186/s13568-024-01776-3
Hala Sh Mohammed, Salwa A Abu El Wafa, Mona H Ibrahim, Rasha Mohammad Fathy, Noha A Seif-Eldein
Methicillin-resistant Staphylococcus aureus (MRSA) infections are prevalent in hospitals and often lead to significant health complications. This study aimed to explore the chemical composition of the aerial part of Crotalaria madurensis and evaluate its antioxidant and antibacterial properties. The impact of gamma irradiation on the antibacterial properties of the plant extract and metabolite 1 against MRSA was also examined. Fourier-transform infrared (FTIR) analysis was conducted on the filtrates of untreated MRSA and MRSA treated with the plant extract and metabolite 1. Four flavonol glycosides were identified as gossypetin 8-methoxy, 3-O-β-D-xylopyranoside (metabolite 1), gossypetin 8-O-β-D-glucopyranoside (metabolite 2), kaempferol 3-O-β-D-glucpyranoside (Astragalin, metabolite 3), and herbacetin 7-methoxy-3-O-β-D-glucopyranoside (metabolite 4). All metabolites exhibited significant antioxidant properties using different assays. The antibacterial efficacy of the extract and metabolite 1, which showed substantial antioxidant properties compared to the other isolated metabolites, was evaluated. Both the plant extract and metabolite 1 significantly reduced the viability and cell count of MRSA at concentrations of 1.0 and 0.5 mg/ml. The antibacterial activity of the plant extract and metabolite 1 was assessed after gamma irradiation at 50 and 100 Gy, which did not significantly affect the antibacterial efficiency. FTIR analysis indicated that the plant extract and metabolite 1 significantly altered the band frequency values, bandwidth, and peak intensity % of the treated MRSA filtrate. Molecular docking studies suggested that metabolite 1 exhibited the highest antioxidant and anti-MRSA activity, with strong binding scores like the ligand, indicating an effective interaction and high affinity between metabolite 1 and the target molecule.
{"title":"Crotalaria madurensis flavonol glycosides' antibacterial activity against Staphylococcus aureus.","authors":"Hala Sh Mohammed, Salwa A Abu El Wafa, Mona H Ibrahim, Rasha Mohammad Fathy, Noha A Seif-Eldein","doi":"10.1186/s13568-024-01776-3","DOIUrl":"10.1186/s13568-024-01776-3","url":null,"abstract":"<p><p>Methicillin-resistant Staphylococcus aureus (MRSA) infections are prevalent in hospitals and often lead to significant health complications. This study aimed to explore the chemical composition of the aerial part of Crotalaria madurensis and evaluate its antioxidant and antibacterial properties. The impact of gamma irradiation on the antibacterial properties of the plant extract and metabolite 1 against MRSA was also examined. Fourier-transform infrared (FTIR) analysis was conducted on the filtrates of untreated MRSA and MRSA treated with the plant extract and metabolite 1. Four flavonol glycosides were identified as gossypetin 8-methoxy, 3-O-β-D-xylopyranoside (metabolite 1), gossypetin 8-O-β-D-glucopyranoside (metabolite 2), kaempferol 3-O-β-D-glucpyranoside (Astragalin, metabolite 3), and herbacetin 7-methoxy-3-O-β-D-glucopyranoside (metabolite 4). All metabolites exhibited significant antioxidant properties using different assays. The antibacterial efficacy of the extract and metabolite 1, which showed substantial antioxidant properties compared to the other isolated metabolites, was evaluated. Both the plant extract and metabolite 1 significantly reduced the viability and cell count of MRSA at concentrations of 1.0 and 0.5 mg/ml. The antibacterial activity of the plant extract and metabolite 1 was assessed after gamma irradiation at 50 and 100 Gy, which did not significantly affect the antibacterial efficiency. FTIR analysis indicated that the plant extract and metabolite 1 significantly altered the band frequency values, bandwidth, and peak intensity % of the treated MRSA filtrate. Molecular docking studies suggested that metabolite 1 exhibited the highest antioxidant and anti-MRSA activity, with strong binding scores like the ligand, indicating an effective interaction and high affinity between metabolite 1 and the target molecule.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"118"},"PeriodicalIF":3.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tobacco bacterial wilt is a major limiting factor for tobacco production and development, and it is more likely to occur under perennial single cropping of tobacco. In recent years, the rotation of tobacco-radish has gradually become popular. Therefore, we studied the effects of years of tobacco-radish rotation on tobacco bacterial wilt occurrence and rhizosphere microorganisms. The results indicated that both SY and TY could significantly reduce the risk of tobacco bacterial wilt occurrence, and SY had the lowest disease index. The rotation of radish plants significantly increased the soil pH but decreased the contents of alkali-hydrolysed nitrogen and organic matter in the soil. Alkali-hydrolysed nitrogen and pH are the key factors affecting the composition of the bacterial community. Furthermore, radish rotation changed the composition of the soil microbial community, increased the diversity of the bacterial community, and significantly altered the bacterial community structure. At the genus level, the abundance of Sphingomonas species negatively correlated with Ralstonia increased significantly, while the relative abundance of Rhodanobacter species positively correlated with Ralstonia decreased significantly. Disease index, pH and available phosphorus were the main factors affecting the variation in different bacterial genera. The network analysis results showed that Ralstonia was less connected in the network than in the CK group, and the SY treatment group had a more complex bacterial network structure. Overall, 2 years of tobacco and radish rotation improved the bacterial community structure of the rhizosphere soil and alleviated the harm caused by tobacco bacterial wilt, which is highly important for the stability and health of the rhizosphere soil ecosystem.
烟草细菌性枯萎病是制约烟草生产和发展的一个主要因素,在烟草多年单一种植的情况下更容易发生。近年来,烟草-萝卜轮作逐渐流行起来。因此,我们研究了烟草-萝卜轮作年限对烟草细菌性枯萎病发生和根瘤微生物的影响。结果表明,SY 和 TY 均能显著降低烟草细菌性枯萎病的发生风险,其中 SY 的发病指数最低。萝卜植株轮作能明显提高土壤 pH 值,但会降低土壤中碱水解氮和有机质的含量。碱水解氮和 pH 值是影响细菌群落组成的关键因素。此外,萝卜轮作改变了土壤微生物群落的组成,增加了细菌群落的多样性,并显著改变了细菌群落结构。在菌属水平上,与 Ralstonia 负相关的 Sphingomonas 菌种的丰度显著增加,而与 Ralstonia 正相关的 Rhodanobacter 菌种的相对丰度显著下降。病害指数、pH 值和可利用磷是影响不同细菌属变化的主要因素。网络分析结果表明,与 CK 组相比,Ralstonia 在网络中的连接程度较低,而 SY 处理组的细菌网络结构更为复杂。总之,2 年的烟草和萝卜轮作改善了根圈土壤的细菌群落结构,减轻了烟草细菌性枯萎病的危害,对根圈土壤生态系统的稳定和健康具有重要意义。
{"title":"Effect of tobacco-radish rotation for different years on bacterial wilt and rhizosphere microbial communities.","authors":"Yuhao Dai, Jixiu Li, Zhenzhen Wang, Shaoqi Yang, Qingju Xiao, Zipeng Gao, Fengjing Zhang, Chenran Zhao, Liang Yang, Shaopeng Chen, Wei Ding","doi":"10.1186/s13568-024-01760-x","DOIUrl":"https://doi.org/10.1186/s13568-024-01760-x","url":null,"abstract":"<p><p>Tobacco bacterial wilt is a major limiting factor for tobacco production and development, and it is more likely to occur under perennial single cropping of tobacco. In recent years, the rotation of tobacco-radish has gradually become popular. Therefore, we studied the effects of years of tobacco-radish rotation on tobacco bacterial wilt occurrence and rhizosphere microorganisms. The results indicated that both SY and TY could significantly reduce the risk of tobacco bacterial wilt occurrence, and SY had the lowest disease index. The rotation of radish plants significantly increased the soil pH but decreased the contents of alkali-hydrolysed nitrogen and organic matter in the soil. Alkali-hydrolysed nitrogen and pH are the key factors affecting the composition of the bacterial community. Furthermore, radish rotation changed the composition of the soil microbial community, increased the diversity of the bacterial community, and significantly altered the bacterial community structure. At the genus level, the abundance of Sphingomonas species negatively correlated with Ralstonia increased significantly, while the relative abundance of Rhodanobacter species positively correlated with Ralstonia decreased significantly. Disease index, pH and available phosphorus were the main factors affecting the variation in different bacterial genera. The network analysis results showed that Ralstonia was less connected in the network than in the CK group, and the SY treatment group had a more complex bacterial network structure. Overall, 2 years of tobacco and radish rotation improved the bacterial community structure of the rhizosphere soil and alleviated the harm caused by tobacco bacterial wilt, which is highly important for the stability and health of the rhizosphere soil ecosystem.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"116"},"PeriodicalIF":3.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486869/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1186/s13568-024-01769-2
Nima Mohammadzadeh, Shabnam Razavi, Gholamhossein Ebrahimipour
Bariatric surgery is vital for sustainable weight loss and metabolic improvement in obese individuals, but its effects on gut microbiota and their role in these benefits require further investigation. Investigate the temporal changes in gut microbiota in obese patients undergoing bariatric surgery (gastric sleeve gastrectomy or Roux-en-Y Gastric Bypass (RYGB)) compared to healthy controls, aiming to understand their role in weight loss and metabolic health improvement. A case-control study included 30 obese patients aged 65-95 undergoing bariatric surgery, and 18 matched healthy controls. Selection criteria were based on age, race, BMI, history of antibiotics, probiotics, and prebiotics usage. Stool samples were collected at baseline, three months, and six months post-surgery for DNA extraction and quantitative real-time PCR analysis to assess gut microbiota changes. Physical activity and dietary intake were evaluated using standardized questionnaires. Statistical analyses were performed using R. Post-surgery, patients showed significant reductions in weight and BMI, with changes in dietary habits and physical activity. Quantitative real-time PCR analysis revealed substantial alterations in bacterial groups such as Bacteroides and Fusobacterium. However, some groups showed no significant changes, indicating a complex interaction between gut microbiota and bariatric surgery. Notable correlations were found between body weight, BMI, and specific bacterial groups like the C. cluster IV and Lactobacillus, particularly in RYGB patients. Bariatric surgery significantly alters gut microbiota, aiding weight loss and metabolic regulation in obese patients. Understanding these changes is crucial for developing effective obesity management strategies, requiring further research to optimize outcomes.
减肥手术对于肥胖者持续减轻体重和改善代谢至关重要,但它对肠道微生物群的影响及其在这些益处中的作用还需要进一步研究。与健康对照组相比,调查接受减肥手术(胃袖状切除术或 Roux-en-Y 胃旁路术 (RYGB))的肥胖患者肠道微生物群的时间变化,旨在了解它们在减轻体重和改善代谢健康中的作用。病例对照研究包括 30 名接受减肥手术的 65-95 岁肥胖患者和 18 名匹配的健康对照者。选择标准基于年龄、种族、体重指数、抗生素、益生菌和益生元使用史。在基线期、术后三个月和六个月收集粪便样本,进行 DNA 提取和定量实时 PCR 分析,以评估肠道微生物群的变化。采用标准化问卷对身体活动和饮食摄入量进行评估。手术后,患者的体重和体重指数显著下降,饮食习惯和体育锻炼也发生了变化。定量实时 PCR 分析显示,细菌群(如乳酸杆菌和镰刀菌)发生了重大变化。然而,有些细菌群没有发生明显变化,这表明肠道微生物群与减肥手术之间存在复杂的相互作用。体重、体重指数(BMI)和特定细菌群(如第 IV 群乳酸杆菌和乳酸杆菌)之间存在明显的相关性,特别是在 RYGB 患者中。减肥手术大大改变了肠道微生物群,有助于肥胖患者减轻体重和调节代谢。了解这些变化对于制定有效的肥胖管理策略至关重要,需要进一步研究以优化结果。
{"title":"Impact of bariatric surgery on gut microbiota composition in obese patients compared to healthy controls.","authors":"Nima Mohammadzadeh, Shabnam Razavi, Gholamhossein Ebrahimipour","doi":"10.1186/s13568-024-01769-2","DOIUrl":"https://doi.org/10.1186/s13568-024-01769-2","url":null,"abstract":"<p><p>Bariatric surgery is vital for sustainable weight loss and metabolic improvement in obese individuals, but its effects on gut microbiota and their role in these benefits require further investigation. Investigate the temporal changes in gut microbiota in obese patients undergoing bariatric surgery (gastric sleeve gastrectomy or Roux-en-Y Gastric Bypass (RYGB)) compared to healthy controls, aiming to understand their role in weight loss and metabolic health improvement. A case-control study included 30 obese patients aged 65-95 undergoing bariatric surgery, and 18 matched healthy controls. Selection criteria were based on age, race, BMI, history of antibiotics, probiotics, and prebiotics usage. Stool samples were collected at baseline, three months, and six months post-surgery for DNA extraction and quantitative real-time PCR analysis to assess gut microbiota changes. Physical activity and dietary intake were evaluated using standardized questionnaires. Statistical analyses were performed using R. Post-surgery, patients showed significant reductions in weight and BMI, with changes in dietary habits and physical activity. Quantitative real-time PCR analysis revealed substantial alterations in bacterial groups such as Bacteroides and Fusobacterium. However, some groups showed no significant changes, indicating a complex interaction between gut microbiota and bariatric surgery. Notable correlations were found between body weight, BMI, and specific bacterial groups like the C. cluster IV and Lactobacillus, particularly in RYGB patients. Bariatric surgery significantly alters gut microbiota, aiding weight loss and metabolic regulation in obese patients. Understanding these changes is crucial for developing effective obesity management strategies, requiring further research to optimize outcomes.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"115"},"PeriodicalIF":3.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Postbiotics are the non-viable bacterial products or the low molecular weight metabolites produced by probiotics that have received considerable attention owing to their health promoting effects. The present study aimed to investigate the safety and antibacterial properties of postbiotic components of Lacticaseibacillus rhamnosus (Lra) and Limosilactobacillus reuteri (Lre) for their potential applications in food products. The freeze dried postbiotic metabolites (FD-P) from Lra and Lre were extensively analyzed for their physico-chemical properties and antibacterial actions against common food borne pathogens. Higher levels of total flavonoids (1971.79 ± 20 mg Qu/ g), total short-chain fatty acid (23 µg/g), sugar contents, CAT, and SOD anti-oxidative enzymes were detected in the Lra postbiotic, while GSH-px levels and riboflavin were higher in Lre postbiotics (P < 0.01). No significant differences were recorded in the total phenolic (2501 and 2518 mg GAE/ L) and crude protein contents (305. 58 and 296.23 µg/g) of the postbiotics (p ≥ 0.05), respectively. Both FD-P samples showed enhanced activities against Gram-Positive pathogens compared to Gram-Negative pathogens (p < 0.05), while combining the two postbiotics further potentiated the antibacterial actions. Both FD-P samples were non-hemolytic to human erythrocyte cells, and exhibited low cytotoxicity in MRC 5 and IPEC-J2 cell lines at the highest used concentrations (150 mg/ml). In summary, the postbiotics derived from Lra and Lre are safe bioactive ingredients with enhanced antibacterial and antioxidant capabilities, having potential applications as a natural preservatives in food system, potentially enhancing safety and extending the shelf life of food products.
{"title":"Functional properties and safety traits of L. rhamnosus and L. reuteri postbiotic extracts.","authors":"Safura Jalali, Naheed Mojgani, Mohammad Reza Sanjabi, Solmaz Saremnezhad, Setareh Haghighat","doi":"10.1186/s13568-024-01768-3","DOIUrl":"10.1186/s13568-024-01768-3","url":null,"abstract":"<p><p>Postbiotics are the non-viable bacterial products or the low molecular weight metabolites produced by probiotics that have received considerable attention owing to their health promoting effects. The present study aimed to investigate the safety and antibacterial properties of postbiotic components of Lacticaseibacillus rhamnosus (Lra) and Limosilactobacillus reuteri (Lre) for their potential applications in food products. The freeze dried postbiotic metabolites (FD-P) from Lra and Lre were extensively analyzed for their physico-chemical properties and antibacterial actions against common food borne pathogens. Higher levels of total flavonoids (1971.79 ± 20 mg Qu/ g), total short-chain fatty acid (23 µg/g), sugar contents, CAT, and SOD anti-oxidative enzymes were detected in the Lra postbiotic, while GSH-px levels and riboflavin were higher in Lre postbiotics (P < 0.01). No significant differences were recorded in the total phenolic (2501 and 2518 mg GAE/ L) and crude protein contents (305. 58 and 296.23 µg/g) of the postbiotics (p ≥ 0.05), respectively. Both FD-P samples showed enhanced activities against Gram-Positive pathogens compared to Gram-Negative pathogens (p < 0.05), while combining the two postbiotics further potentiated the antibacterial actions. Both FD-P samples were non-hemolytic to human erythrocyte cells, and exhibited low cytotoxicity in MRC 5 and IPEC-J2 cell lines at the highest used concentrations (150 mg/ml). In summary, the postbiotics derived from Lra and Lre are safe bioactive ingredients with enhanced antibacterial and antioxidant capabilities, having potential applications as a natural preservatives in food system, potentially enhancing safety and extending the shelf life of food products.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"114"},"PeriodicalIF":3.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465093/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The functionality of Moloney murine leukemia virus reverse transcriptase (MMLV RT) will increase with the improvement of its solubility and thermal stability. Introduce directed mutation at specific positions of the MMLV RT sequence and codon optimization is needed to achieve these properties. The two RT coding sequences with (rRT-K) and without directed mutations (rRT-L) were versatility optimized and expressed to analyze the ribonuclease H (RNase H) inactivity and thermostable polymerase activity. For this purpose, the five-point mutations (438-442aa) and three-point mutations (530, 568, and 659 aa) were done at the RT connection domain and RNase H active site, respectively. High expression levels of rRT-L and rRT-K were obtained in E. coli BL21(DE3) and BL21(shuffle) strains, 0.5 mM IPTG concentration at 37 °C, and 8 hours' post-induction condition. Then, recombinant enzymes were purified and verified by Ni-NTA resin and western blotting. Insilico analysis (IUpred 3.0) showed that the directed mutation in the RNase H domain caused the formation of disorder regions or instability in the RNase H domain of rRT-K compared to rRT-L. The modified RT-PCR and the RT-LAMP reactions proved the RNase H inactivity of rRT-K. In addition, increasing of thermostability of rRT-K compared to rRT-L and commercial RT was evaluated by the RT-PCR and RT-LAMP reactions. The results showed that rRT-K could successfully tolerate 60 ºC in the two methods. This study revealed that the directed mutations and the versatile sequence optimization can promise to produce thermostable commercial enzymes to decrease non-specific one-step RT-PCR and RT-LAMP products.
{"title":"Expression of thermostable MMLV reverse transcriptase in Escherichia coli by directed mutation.","authors":"Marzieh Divbandi, Ahad Yamchi, Hadi Razavi Nikoo, Abdolvahab Moradi, Alijan Tabarraei","doi":"10.1186/s13568-024-01773-6","DOIUrl":"10.1186/s13568-024-01773-6","url":null,"abstract":"<p><p>The functionality of Moloney murine leukemia virus reverse transcriptase (MMLV RT) will increase with the improvement of its solubility and thermal stability. Introduce directed mutation at specific positions of the MMLV RT sequence and codon optimization is needed to achieve these properties. The two RT coding sequences with (rRT-K) and without directed mutations (rRT-L) were versatility optimized and expressed to analyze the ribonuclease H (RNase H) inactivity and thermostable polymerase activity. For this purpose, the five-point mutations (438-442aa) and three-point mutations (530, 568, and 659 aa) were done at the RT connection domain and RNase H active site, respectively. High expression levels of rRT-L and rRT-K were obtained in E. coli BL21(DE3) and BL21(shuffle) strains, 0.5 mM IPTG concentration at 37 °C, and 8 hours' post-induction condition. Then, recombinant enzymes were purified and verified by Ni-NTA resin and western blotting. Insilico analysis (IUpred 3.0) showed that the directed mutation in the RNase H domain caused the formation of disorder regions or instability in the RNase H domain of rRT-K compared to rRT-L. The modified RT-PCR and the RT-LAMP reactions proved the RNase H inactivity of rRT-K. In addition, increasing of thermostability of rRT-K compared to rRT-L and commercial RT was evaluated by the RT-PCR and RT-LAMP reactions. The results showed that rRT-K could successfully tolerate 60 ºC in the two methods. This study revealed that the directed mutations and the versatile sequence optimization can promise to produce thermostable commercial enzymes to decrease non-specific one-step RT-PCR and RT-LAMP products.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"113"},"PeriodicalIF":3.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1186/s13568-024-01770-9
Pamela Hindieh, Joseph Yaghi, Jean Claude Assaf, Ali Chokr, Ali Atoui, Nicolas Louka, André El Khoury
The continuous growth of biofilm infections and their resilience to conventional cleaning methods and antimicrobial agents pose a worldwide challenge across diverse sectors. This persistent medical, industrial, and environmental issue contributes to treatment challenges and chronic diseases. Lactic acid bacteria have garnered global attention for their substantial antimicrobial effects against pathogens and established beneficial roles. Notably, their biofilms are also predicted to show a promising control strategy against pathogenic biofilm formation. The prevalence of biofilm-related problems underscores the need for extensive research and innovative solutions to tackle this global challenge. This novel study investigates the effect of different extracts (external, internal, and mixed extracts) obtained from Lactobacillus rhamnosus GG biofilm on pathogenic-formed biofilms. Subsequently, external extracts presented an important eradication effectiveness. Furthermore, a 6-fold concentration of these extracts led to eradication percentages of 57%, 67%, and 76% for Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa biofilms, respectively, and around 99.9% bactericidal effect of biofilm cells was observed for the three strains. The results of this research could mark a significant breakthrough in the field of anti-biofilm and antimicrobial strategies. Further studies and molecular research will be necessary to detect the molecules secreted by the biofilm, and their mechanisms of action engaged in new anti-biofilm strategies.
{"title":"Unlocking the potential of lactic acid bacteria mature biofilm extracts as antibiofilm agents.","authors":"Pamela Hindieh, Joseph Yaghi, Jean Claude Assaf, Ali Chokr, Ali Atoui, Nicolas Louka, André El Khoury","doi":"10.1186/s13568-024-01770-9","DOIUrl":"10.1186/s13568-024-01770-9","url":null,"abstract":"<p><p>The continuous growth of biofilm infections and their resilience to conventional cleaning methods and antimicrobial agents pose a worldwide challenge across diverse sectors. This persistent medical, industrial, and environmental issue contributes to treatment challenges and chronic diseases. Lactic acid bacteria have garnered global attention for their substantial antimicrobial effects against pathogens and established beneficial roles. Notably, their biofilms are also predicted to show a promising control strategy against pathogenic biofilm formation. The prevalence of biofilm-related problems underscores the need for extensive research and innovative solutions to tackle this global challenge. This novel study investigates the effect of different extracts (external, internal, and mixed extracts) obtained from Lactobacillus rhamnosus GG biofilm on pathogenic-formed biofilms. Subsequently, external extracts presented an important eradication effectiveness. Furthermore, a 6-fold concentration of these extracts led to eradication percentages of 57%, 67%, and 76% for Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa biofilms, respectively, and around 99.9% bactericidal effect of biofilm cells was observed for the three strains. The results of this research could mark a significant breakthrough in the field of anti-biofilm and antimicrobial strategies. Further studies and molecular research will be necessary to detect the molecules secreted by the biofilm, and their mechanisms of action engaged in new anti-biofilm strategies.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"112"},"PeriodicalIF":3.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450114/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1186/s13568-024-01759-4
Nafiseh Farazandehnia, Farzaneh Sotoudegan, Abbas Akhavan Sepahy, Mohamad Reza Fazeli
The research aimed to evaluate the antioxidative and antibacterial characteristics of aqueous sumac extract on methicillin-resistant Staphylococcus aureus through in-vitro and in-vivo study. Sumac extract has been obtained through the soaking method, and its antioxidant properties were gauged using the DPPH free radical scavenging method. The minimum inhibitory concentration (MIC) of sumac extract was determined on S. aureus obtained from hospitalized patients, as well as an assessment of biofilm-formation and the release of bacterial intracellular compounds. in vivo experimentation involved injecting bacteria (108 cfu/ml) into mice, which subsequently manifested indicators of symptoms of infection, and the number of bacteria within their bloodstream was quantified. The Sumac extract demonstrated strong antioxidant properties at concentrations of 1000 mg/ml. Furthermore, the agar tests for the gram staining, mannitol, coagulase, and DNase revealed that 190 cultured bacteria samples were identified as Staphylococcus aureus. These bacteria were resistant to clindamycin, ciprofloxacin, and methicillin antibiotics, but sensitive to erythromycin and penicillin antibiotics. Additionally, the bacteria displayed significant methicillin resistance and formed a strong biofilm (65.78%). The sumac extract showed a MIC range of 125-1000 µg/ml against Staphylococcus aureus. Treatment with concentrations above the MIC was found to prevent the formation of biofilm and increase the release of bacterial intracellular compounds. Sumac extract led to a decrease in bacterial count in the blood of mice and reduced signs of infection. Sumac extract demonstrated powerful antioxidant and antibacterial effects against resistant microorganisms, suggesting its potential as a promising compound for the treatment of resistant infections in future research.
该研究旨在通过体外和体内研究,评估苏木水提取物对耐甲氧西林金黄色葡萄球菌的抗氧化和抗菌特性。苏木提取物通过浸泡法获得,并采用 DPPH 自由基清除法测定其抗氧化性。体内实验包括向小鼠注射细菌(108 cfu/ml),小鼠随后表现出感染症状,并对其血液中的细菌数量进行量化。浓度为 1000 毫克/毫升的黄栌提取物具有很强的抗氧化性。此外,革兰氏染色、甘露醇、凝固酶和 DNase 琼脂测试显示,190 个培养细菌样本被鉴定为金黄色葡萄球菌。这些细菌对克林霉素、环丙沙星和甲氧西林抗生素耐药,但对红霉素和青霉素抗生素敏感。此外,这些细菌对甲氧西林有明显的耐药性,并形成了很强的生物膜(65.78%)。苏木萃取物对金黄色葡萄球菌的 MIC 范围为 125-1000 µg/ml。用高于 MIC 的浓度处理可防止生物膜的形成,并增加细菌胞内化合物的释放。黄栌提取物可减少小鼠血液中的细菌数量,并减轻感染症状。黄栌提取物对耐药性微生物具有强大的抗氧化和抗菌作用,这表明它有可能成为未来研究中治疗耐药性感染的一种有前途的化合物。
{"title":"Antibacterial and antioxidant properties of sumac extract on methicillin-resistant Staphylococcus aureus.","authors":"Nafiseh Farazandehnia, Farzaneh Sotoudegan, Abbas Akhavan Sepahy, Mohamad Reza Fazeli","doi":"10.1186/s13568-024-01759-4","DOIUrl":"10.1186/s13568-024-01759-4","url":null,"abstract":"<p><p>The research aimed to evaluate the antioxidative and antibacterial characteristics of aqueous sumac extract on methicillin-resistant Staphylococcus aureus through in-vitro and in-vivo study. Sumac extract has been obtained through the soaking method, and its antioxidant properties were gauged using the DPPH free radical scavenging method. The minimum inhibitory concentration (MIC) of sumac extract was determined on S. aureus obtained from hospitalized patients, as well as an assessment of biofilm-formation and the release of bacterial intracellular compounds. in vivo experimentation involved injecting bacteria (10<sup>8</sup> cfu/ml) into mice, which subsequently manifested indicators of symptoms of infection, and the number of bacteria within their bloodstream was quantified. The Sumac extract demonstrated strong antioxidant properties at concentrations of 1000 mg/ml. Furthermore, the agar tests for the gram staining, mannitol, coagulase, and DNase revealed that 190 cultured bacteria samples were identified as Staphylococcus aureus. These bacteria were resistant to clindamycin, ciprofloxacin, and methicillin antibiotics, but sensitive to erythromycin and penicillin antibiotics. Additionally, the bacteria displayed significant methicillin resistance and formed a strong biofilm (65.78%). The sumac extract showed a MIC range of 125-1000 µg/ml against Staphylococcus aureus. Treatment with concentrations above the MIC was found to prevent the formation of biofilm and increase the release of bacterial intracellular compounds. Sumac extract led to a decrease in bacterial count in the blood of mice and reduced signs of infection. Sumac extract demonstrated powerful antioxidant and antibacterial effects against resistant microorganisms, suggesting its potential as a promising compound for the treatment of resistant infections in future research.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"111"},"PeriodicalIF":3.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450108/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142363968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1186/s13568-024-01758-5
Lei Han, Jie Ren, Yishu Xue, Jianwei Gao, Qiang Fu, Ping Shao, Hui Zhu, Min Zhang, Fengming Ding
PA1895-1897 is a quorum sensing (QS) operon regulated by the anti-activator LuxR homologue QscR in Pseudomonas aeruginosa. We aimed to investigate its impact on bacterial metabolism, and whether it contributes to the delayed QS activation. We performed liquid chromatograph-mass spectrometer-based metabolomics using wildtype PAO1, PA1895-1897-knockout mutant, and mutant with pJN105.PA1895-1897 overexpression vector. The impact of metabolites on QS signaling molecule (3OC12-HSL and C4-HSL) concentrations, pyocyanin production, and QS gene (lasR, lasI, rhlR, and rhlI) expression was examined. Metabolomics analysis found that fatty acid biosynthesis had the highest fold enrichment among all metabolic pathways in PA1895-1897-overexpressed mutants. Among these enriched fatty acids, palmitoleic acid and acetic acid were the predominantly abundant ones that significantly affected by PA1895-1897 operon. When different doses of exogenous palmitoleic acid or acetic acid were added to the cultures of PA1895-1897 knockout mutants, their levels of 3OC12-HSL, C4-HSL, and pyocyanin were decreased in a dose-dependent manner. High doses of palmitoleic acid and acetic acid suppressed the mRNA expression of lasR, rhlR, and rhlI. Inhibition of fatty acid biosynthesis increased the production of 3OC12-HSL, C4-HSL, and pyocyanin in PA1895-1897-overexpressed cultures. Our data suggest that fatty acid synthesis is promoted by PA1895-1897 operon, and contributes the delayed expression of QS phenotypes, furthering the understanding about the regulation of bacterial QS activation.
{"title":"Fatty acid synthesis promoted by PA1895-1897 operon delays quorum sensing activation in Pseudomonas aeruginosa.","authors":"Lei Han, Jie Ren, Yishu Xue, Jianwei Gao, Qiang Fu, Ping Shao, Hui Zhu, Min Zhang, Fengming Ding","doi":"10.1186/s13568-024-01758-5","DOIUrl":"10.1186/s13568-024-01758-5","url":null,"abstract":"<p><p>PA1895-1897 is a quorum sensing (QS) operon regulated by the anti-activator LuxR homologue QscR in Pseudomonas aeruginosa. We aimed to investigate its impact on bacterial metabolism, and whether it contributes to the delayed QS activation. We performed liquid chromatograph-mass spectrometer-based metabolomics using wildtype PAO1, PA1895-1897-knockout mutant, and mutant with pJN105.PA1895-1897 overexpression vector. The impact of metabolites on QS signaling molecule (3OC12-HSL and C4-HSL) concentrations, pyocyanin production, and QS gene (lasR, lasI, rhlR, and rhlI) expression was examined. Metabolomics analysis found that fatty acid biosynthesis had the highest fold enrichment among all metabolic pathways in PA1895-1897-overexpressed mutants. Among these enriched fatty acids, palmitoleic acid and acetic acid were the predominantly abundant ones that significantly affected by PA1895-1897 operon. When different doses of exogenous palmitoleic acid or acetic acid were added to the cultures of PA1895-1897 knockout mutants, their levels of 3OC12-HSL, C4-HSL, and pyocyanin were decreased in a dose-dependent manner. High doses of palmitoleic acid and acetic acid suppressed the mRNA expression of lasR, rhlR, and rhlI. Inhibition of fatty acid biosynthesis increased the production of 3OC12-HSL, C4-HSL, and pyocyanin in PA1895-1897-overexpressed cultures. Our data suggest that fatty acid synthesis is promoted by PA1895-1897 operon, and contributes the delayed expression of QS phenotypes, furthering the understanding about the regulation of bacterial QS activation.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"110"},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445212/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1186/s13568-024-01767-4
Jorge Adalberto Cayetano De Jesús, Mona Mohamed Mohamed Yasseen Elghandour, Moyosore Joseph Adegbeye, Daniel López Aguirre, José Alejandro Roque-Jimenez, Maximilian Lackner, Abdelfattah Zeidan Mohamed Salem
This study aimed to evaluate the effect of nano-encapsulation of four essential amino acids (AA), threonine, methionine, tryptophan, and lysine on in vitro ruminal total gas, methane, carbon monoxide, and hydrogen sulfide production as well as the rumen fermentation profile in cattle. The highest (P < 0.001) rate and asymptotic gas production after 48 h of incubation was observed in the diets that had threonine, followed by lysine, methionine, and tryptophan. Asymptotic methane gas production decreased in the following order: threonine > lysine > tryptophan > methionine (P < 0.0001) and the rate of production per hour followed the same trend (P = 0.0259). CH4 parameters showed that in 4 h, 24 h, and 48 h of incubation the lowest methane production was obtained in the diet with methionine (P < 0.05) and the highest one in diet supplemented with threonine. Methane fractions showed that methionine-containing diets resulted in more (P < 0.05) metabolizable energy versus methane, followed by tryptophan-containing, and then lysine-containing diets. Methionine-fortified diets seem to be the most eco-friendly among those studied regarding methane output. However, based on methane, CO, and H2S output as well as the rumen fermentation profile nano-encapsulated lysine is recommended for use in ruminant nutrition.
{"title":"Nano-encapsulation of essential amino acids: ruminal methane, carbon monoxide, hydrogen sulfide and fermentation.","authors":"Jorge Adalberto Cayetano De Jesús, Mona Mohamed Mohamed Yasseen Elghandour, Moyosore Joseph Adegbeye, Daniel López Aguirre, José Alejandro Roque-Jimenez, Maximilian Lackner, Abdelfattah Zeidan Mohamed Salem","doi":"10.1186/s13568-024-01767-4","DOIUrl":"10.1186/s13568-024-01767-4","url":null,"abstract":"<p><p>This study aimed to evaluate the effect of nano-encapsulation of four essential amino acids (AA), threonine, methionine, tryptophan, and lysine on in vitro ruminal total gas, methane, carbon monoxide, and hydrogen sulfide production as well as the rumen fermentation profile in cattle. The highest (P < 0.001) rate and asymptotic gas production after 48 h of incubation was observed in the diets that had threonine, followed by lysine, methionine, and tryptophan. Asymptotic methane gas production decreased in the following order: threonine > lysine > tryptophan > methionine (P < 0.0001) and the rate of production per hour followed the same trend (P = 0.0259). CH<sub>4</sub> parameters showed that in 4 h, 24 h, and 48 h of incubation the lowest methane production was obtained in the diet with methionine (P < 0.05) and the highest one in diet supplemented with threonine. Methane fractions showed that methionine-containing diets resulted in more (P < 0.05) metabolizable energy versus methane, followed by tryptophan-containing, and then lysine-containing diets. Methionine-fortified diets seem to be the most eco-friendly among those studied regarding methane output. However, based on methane, CO, and H<sub>2</sub>S output as well as the rumen fermentation profile nano-encapsulated lysine is recommended for use in ruminant nutrition.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"109"},"PeriodicalIF":3.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442736/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}