The dynamic yield stress associated with the flow cessation of cement pastes is measured using a rheometer equipped with various shear geometries such as vane, helical, sandblasted co-axial cylinders, and serrated parallel plates, as well as with the mini-cone spread test. Discrepancies in yield stress values are observed for cement pastes at various volume fractions, with one to two orders of magnitude difference between vane, helical and mini-cone spread measurements on the one hand, and co-axial cylinder and parallel plate measurements on the other hand. To understand this discrepancy, the flow profile of a cement paste in the parallel-plate geometry is investigated with a high-speed camera, revealing the rapid formation of an un-sheared band near the static bottom plate. The width of this band depends upon the rotational velocity of the top plate, and upon the shear time. Recalculation of shear stress shows that the reduced sheared gap alone cannot explain the low measured yield stress. Further exploration suggests the formation of zones with lower particle content, possibly linked to cement particle sedimentation. Here, we argue that the complex nature of cement pastes, composed of negatively buoyant non-Brownian particles with attractive interactions due to highly charged nano-size hydration products, accounts for their complex rheological behavior.
{"title":"Discrepancies in dynamic yield stress measurements of cement pastes","authors":"Subhransu Dhar, Teresa Liberto, Catherine Barentin, Thibaut Divoux, Agathe Robisson","doi":"10.1007/s00397-024-01465-9","DOIUrl":"10.1007/s00397-024-01465-9","url":null,"abstract":"<p>The dynamic yield stress associated with the flow cessation of cement pastes is measured using a rheometer equipped with various shear geometries such as vane, helical, sandblasted co-axial cylinders, and serrated parallel plates, as well as with the mini-cone spread test. Discrepancies in yield stress values are observed for cement pastes at various volume fractions, with one to two orders of magnitude difference between vane, helical and mini-cone spread measurements on the one hand, and co-axial cylinder and parallel plate measurements on the other hand. To understand this discrepancy, the flow profile of a cement paste in the parallel-plate geometry is investigated with a high-speed camera, revealing the rapid formation of an un-sheared band near the static bottom plate. The width of this band depends upon the rotational velocity of the top plate, and upon the shear time. Recalculation of shear stress shows that the reduced sheared gap alone cannot explain the low measured yield stress. Further exploration suggests the formation of zones with lower particle content, possibly linked to cement particle sedimentation. Here, we argue that the complex nature of cement pastes, composed of negatively buoyant non-Brownian particles with attractive interactions due to highly charged nano-size hydration products, accounts for their complex rheological behavior.</p>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"63 9-10","pages":"657 - 672"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00397-024-01465-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141886856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1007/s00397-024-01463-x
Manfred H. Wagner, Shuang Liu, Qian Huang
By considering the rotationality of shear flow, we distinguish between tube segments created by reptation before the inception of shear flow and those created during flow. Tube segments created before inception of shear flow experience both stretch and orientation, while tube segments created after inception of flow are not stretched, but are only aligned in the flow direction. Based on this idea, the Rotation Zero Stretch (RZS) model allows for a quantitative description of the start-up of shear flow and stress relaxation after step-shear strain experiments, in agreement with data of polystyrene long/short blends and corresponding polystyrene 3-arm star polymers investigated by Liu et al. (Polymer 2023, 281:126125), as well as the shear viscosity data of poly(propylene carbonate) melts reported by Yang et al. (Nihon Reoroji Gakkaishi 2022, 50:127–135). In the limit of steady-state shear flow, the RZS model converges to the Doi-Edwards IA model, which quantitatively describes the steady-state shear viscosity of linear polymer melts and long/short blends. The assumption of “non-stretching” of tube segments created during rotational flow is therefore in agreement with the available experimental evidence. Three-arm star polymers behave in a similar way as corresponding blends of long and short polymers confirming the solution effect of the short arm in asymmetric stars. The analysis of step-shear strain experiments reveals that stress relaxation is at first dominated by stretch relaxation, followed at times larger than the Rouse stretch relaxation time by relaxation of orientation as described by the damping function of the Doi-Edwards IA model. The RZS model does not require any nonlinear-viscoelastic parameter, but relies solely on the linear-viscoelastic relaxation modulus and the Rouse stretch relaxation time.