Pub Date : 2023-12-15DOI: 10.1007/s00397-023-01423-x
Mohammad Hadi Nafar Sefiddashti, Brian J. Edwards, Bamin Khomami
Flow-induced phenomena in entangled solutions of linear, monodisperse C(_{1000})H(_{2002}) polyethylene dissolved in benzene were simulated under steady-state and startup uniaxial elongational flow via nonequilibrium molecular dynamics at a concentration of (13.5c^*) of the coil-overlap concentration, (c^*). The simulations revealed that the solution exhibited a chemical phase separation of the polymer and solvent components when subjected to uniaxial extensional flow at extension rates faster than the inverse Rouse time of the solution, followed by flow-induced crystallization of the polymer-rich phase into fibrillar structures of roughly 50 Å in diameter. The polymer phase was generated by the migration of the polymer chains into locally concentrated domains due to the favorable energetics of the stretched polymer chains, which simultaneously resulted in the expulsion of the less energetically favorable solvent molecules, thus producing a configurationally-based flow-induced demixing effect of polymer and solvent.
AbstractFlow-induced phenomena in entangled solutions of linear, monodisperse C(_{1000})H(_{2002}) polyethylene dissolved in benzene were simulated under steady-state and startup uniaxial elongational flow via nonequilibrium molecular dynamics at a concentration of (13.5c^*) of the coil-overlap concentration, (c^*)。模拟结果表明,当溶液受到单轴拉伸流动时,聚合物和溶剂成分会发生化学相分离,拉伸速率快于溶液的逆劳斯时间,随后富含聚合物的相在流动诱导下结晶成直径约为 50 Å 的纤维状结构。聚合物相的产生是由于拉伸聚合物链的有利能量导致聚合物链迁移到局部集中的畴,同时导致能量较低的溶剂分子被排出,从而产生了基于构型的流动诱导聚合物和溶剂的去混合效应。
{"title":"Flow-induced phase phenomena in an entangled polyethylene/benzene solution under uniaxial elongational flow","authors":"Mohammad Hadi Nafar Sefiddashti, Brian J. Edwards, Bamin Khomami","doi":"10.1007/s00397-023-01423-x","DOIUrl":"10.1007/s00397-023-01423-x","url":null,"abstract":"<p>Flow-induced phenomena in entangled solutions of linear, monodisperse C<span>(_{1000})</span>H<span>(_{2002})</span> polyethylene dissolved in benzene were simulated under steady-state and startup uniaxial elongational flow via nonequilibrium molecular dynamics at a concentration of <span>(13.5c^*)</span> of the coil-overlap concentration, <span>(c^*)</span>. The simulations revealed that the solution exhibited a chemical phase separation of the polymer and solvent components when subjected to uniaxial extensional flow at extension rates faster than the inverse Rouse time of the solution, followed by flow-induced crystallization of the polymer-rich phase into fibrillar structures of roughly 50 Å in diameter. The polymer phase was generated by the migration of the polymer chains into locally concentrated domains due to the favorable energetics of the stretched polymer chains, which simultaneously resulted in the expulsion of the less energetically favorable solvent molecules, thus producing a configurationally-based flow-induced demixing effect of polymer and solvent.</p>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"63 2","pages":"113 - 133"},"PeriodicalIF":2.3,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138686670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-14DOI: 10.1007/s00397-023-01426-8
Franco A. Grandes, Fábio A. Cardoso, Rafael G. Pileggi
Squeeze flow has been proven as an interesting technique for the rheological evaluation of many classes of materials, being relatable to common compressive phenomena from various processing and application procedures. Despite the simplicity of the experimental setup needed to run it, the results from the test are rather complex, involving multiple variables and factors that are not fully clarified by the bulk stress response. One additional piece of information that can be valuable is the pressure distribution over the sample area, since it is related to key aspects of the flow. The addition of a pressure mapping system to the traditional setup of the test has been recently proposed as a way to enrich the information obtained, in a method deemed pressure mapped squeeze flow (PMSF). This paper presents the evolution and state of the art of this technique, and analyzes a plastic clay with two different water contents in three displacement rates to demonstrate the potential and possibilities that PMSF offers. The experimental setup is presented in detail, along with the calibration procedure and data treatment suggested, as well as multiple types of analyses including bulk stress curves, raw pressure distribution plots, measured contact area, evolution of the mean profile, comparison to theoretical models supported by error analysis, and investigation of variation over the area. With the procedure established and presented in this work, it should be possible to apply PMSF as a valuable technique throughout the materials science and engineering community.
{"title":"Expanding the understanding of squeeze flow with pressure mapping and application for concentrated suspensions","authors":"Franco A. Grandes, Fábio A. Cardoso, Rafael G. Pileggi","doi":"10.1007/s00397-023-01426-8","DOIUrl":"10.1007/s00397-023-01426-8","url":null,"abstract":"<div><p>Squeeze flow has been proven as an interesting technique for the rheological evaluation of many classes of materials, being relatable to common compressive phenomena from various processing and application procedures. Despite the simplicity of the experimental setup needed to run it, the results from the test are rather complex, involving multiple variables and factors that are not fully clarified by the bulk stress response. One additional piece of information that can be valuable is the pressure distribution over the sample area, since it is related to key aspects of the flow. The addition of a pressure mapping system to the traditional setup of the test has been recently proposed as a way to enrich the information obtained, in a method deemed pressure mapped squeeze flow (PMSF). This paper presents the evolution and state of the art of this technique, and analyzes a plastic clay with two different water contents in three displacement rates to demonstrate the potential and possibilities that PMSF offers. The experimental setup is presented in detail, along with the calibration procedure and data treatment suggested, as well as multiple types of analyses including bulk stress curves, raw pressure distribution plots, measured contact area, evolution of the mean profile, comparison to theoretical models supported by error analysis, and investigation of variation over the area. With the procedure established and presented in this work, it should be possible to apply PMSF as a valuable technique throughout the materials science and engineering community.</p></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"63 2","pages":"93 - 111"},"PeriodicalIF":2.3,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00397-023-01426-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138627999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-07DOI: 10.1007/s00397-023-01424-w
Youngdon Kwon
Recent experimental observation in fast extensional flow of polymer melts and solutions displayed as presence and absence of viscosity thinning, respectively, has necessitated and also initiated nonlinear modification of the Rouse model, the fundamental molecular model for unentangled polymeric liquids. On that account, concept of reduction of bead friction is introduced in the form of variable friction coefficient (zeta (t)) sometimes with corresponding variation of the Brownian force. This work presents mathematical constraint based on reasonable assumptions for volume conservation of deforming chains and accordingly formulates the rheological constitutive equation. The equation of constraint for volume conservation possibly relieves in part the complication introduced by the friction reduction and intrinsic flow-induced anisotropy in nonlinear modification of the Rouse model. The suggested constitutive equation expresses description in simple rheometric flows quite similar to that of the previous model with B-variation given by Sato et al. (2021) when both are formulated with effects of finite extensibility (FENE) and friction reduction. In addition, the molecular dynamics simulation demonstrates possible validity of the current hypothesis, the constraint of chain volume conservation.
Graphical abstract
最近对聚合物熔体和溶液快速延伸流动的实验观察分别表明,存在和不存在粘度变薄现象,这就有必要对单缠聚合物液体的基本分子模型--劳斯模型进行非线性修正。因此,以可变摩擦系数(zeta (t))的形式引入了珠子摩擦力减小的概念,有时布朗力也会发生相应的变化。本研究基于变形链体积守恒的合理假设,提出了数学约束条件,并据此制定了流变构成方程。体积守恒的约束方程可能会部分缓解在非线性修正 Rouse 模型时由摩擦减少和内在流动引起的各向异性所带来的复杂性。当 Sato 等人(2021 年)提出的具有 B 变量的简单流变流模型和具有有限延伸性(FENE)和摩擦减小效应的模型时,所建议的构成方程所表达的描述非常相似。此外,分子动力学模拟还证明了当前假设--链体积守恒约束--的可能有效性。
{"title":"Nonlinear modification of the Rouse model constraining volume conservation of deforming chains","authors":"Youngdon Kwon","doi":"10.1007/s00397-023-01424-w","DOIUrl":"10.1007/s00397-023-01424-w","url":null,"abstract":"<div><p>Recent experimental observation in fast extensional flow of polymer melts and solutions displayed as presence and absence of viscosity thinning, respectively, has necessitated and also initiated nonlinear modification of the Rouse model, the fundamental molecular model for unentangled polymeric liquids. On that account, concept of reduction of bead friction is introduced in the form of variable friction coefficient <span>(zeta (t))</span> sometimes with corresponding variation of the Brownian force. This work presents mathematical constraint based on reasonable assumptions for volume conservation of deforming chains and accordingly formulates the rheological constitutive equation. The equation of constraint for volume conservation possibly relieves in part the complication introduced by the friction reduction and intrinsic flow-induced anisotropy in nonlinear modification of the Rouse model. The suggested constitutive equation expresses description in simple rheometric flows quite similar to that of the previous model with B-variation given by Sato et al. (2021) when both are formulated with effects of finite extensibility (FENE) and friction reduction. In addition, the molecular dynamics simulation demonstrates possible validity of the current hypothesis, the constraint of chain volume conservation.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"63 1","pages":"79 - 91"},"PeriodicalIF":2.3,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138553067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-05DOI: 10.1007/s00397-023-01420-0
Chen Liu, Jianzhong Lin, Zhenyu Ouyang
The locomotion state and motion type of elliptical squirmers in a channel flow of power-law fluids are simulated numerically. Three locomotion states (independent, coupled, related) and three types of motions (upstream, intermediate, downstream) for pairs of squirmers are found and identified. The effect of height difference (0.5 ~ 10) between the initial positions of two squirmers, aspect ratio (0.3 ~ 1.0), particle Reynolds numbers (0.5 ~ 10), self-propelling strength of the squirmers (− 9 to 9), and power-law index (0.4 ~ 1.5) of the fluid on the locomotion state and motion type of a pair of squirmers are explored, and the corresponding hydrodynamical characteristics are analyzed in detail. Head-to-head coupled structures and body-to-body coupled structures are observed for a pair of pullers and a pair of pushers, respectively. It is found that coupled structures are easy to be broken for squirmers with larger aspect ratio or larger particle Reynolds number and self-propelling strength. The movement characteristics of squirmers are closely related to the initial positions of squirmers in strong shear-thinning fluid, but not to the initial positions in strong shear-thickening fluid. The dependence of viscosity on shear will also significantly affect the flow velocity, thus changing the motion type of squirmers.
{"title":"Hydrodynamical characteristics of a pair of elliptical squirmers in a channel flow of power-law fluids","authors":"Chen Liu, Jianzhong Lin, Zhenyu Ouyang","doi":"10.1007/s00397-023-01420-0","DOIUrl":"10.1007/s00397-023-01420-0","url":null,"abstract":"<p>The locomotion state and motion type of elliptical squirmers in a channel flow of power-law fluids are simulated numerically. Three locomotion states (independent, coupled, related) and three types of motions (upstream, intermediate, downstream) for pairs of squirmers are found and identified. The effect of height difference (0.5 ~ 10) between the initial positions of two squirmers, aspect ratio (0.3 ~ 1.0), particle Reynolds numbers (0.5 ~ 10), self-propelling strength of the squirmers (− 9 to 9), and power-law index (0.4 ~ 1.5) of the fluid on the locomotion state and motion type of a pair of squirmers are explored, and the corresponding hydrodynamical characteristics are analyzed in detail. Head-to-head coupled structures and body-to-body coupled structures are observed for a pair of pullers and a pair of pushers, respectively. It is found that coupled structures are easy to be broken for squirmers with larger aspect ratio or larger particle Reynolds number and self-propelling strength. The movement characteristics of squirmers are closely related to the initial positions of squirmers in strong shear-thinning fluid, but not to the initial positions in strong shear-thickening fluid. The dependence of viscosity on shear will also significantly affect the flow velocity, thus changing the motion type of squirmers.</p>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"63 1","pages":"61 - 78"},"PeriodicalIF":2.3,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138546548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-02DOI: 10.1007/s00397-023-01413-z
Amanda A. Howard, Justin Dong, Ravi Patel, Marta D’Elia, Martin R. Maxey, Panos Stinis
Numerical simulations are used to study the dynamics of a developing suspension Poiseuille flow with monodispersed and bidispersed neutrally buoyant particles in a planar channel, and machine learning is applied to learn the evolving stresses of the developing suspension. The particle stresses and pressure develop on a slower time scale than the volume fraction, indicating that once the particles reach a steady volume fraction profile, they rearrange to minimize the contact pressure on each particle. We consider the timescale for stress development and how the stress development connects to particle migration. For developing monodisperse suspensions, we present a new physics-informed Galerkin neural network that allows for learning the particle stresses when direct measurements are not possible. We show that when a training set of stress measurements is available, the MOR-physics operator learning method can also capture the particle stresses accurately.
{"title":"Machine learning methods for particle stress development in suspension Poiseuille flows","authors":"Amanda A. Howard, Justin Dong, Ravi Patel, Marta D’Elia, Martin R. Maxey, Panos Stinis","doi":"10.1007/s00397-023-01413-z","DOIUrl":"10.1007/s00397-023-01413-z","url":null,"abstract":"<div><p>Numerical simulations are used to study the dynamics of a developing suspension Poiseuille flow with monodispersed and bidispersed neutrally buoyant particles in a planar channel, and machine learning is applied to learn the evolving stresses of the developing suspension. The particle stresses and pressure develop on a slower time scale than the volume fraction, indicating that once the particles reach a steady volume fraction profile, they rearrange to minimize the contact pressure on each particle. We consider the timescale for stress development and how the stress development connects to particle migration. For developing monodisperse suspensions, we present a new physics-informed Galerkin neural network that allows for learning the particle stresses when direct measurements are not possible. We show that when a training set of stress measurements is available, the MOR-physics operator learning method can also capture the particle stresses accurately.</p></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"62 10","pages":"507 - 534"},"PeriodicalIF":2.3,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00397-023-01413-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138502236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study presents the development of an artificial neural network (ANN) model to predict the viscosity of ethylene–glycol based nanofluids with different types of nanoparticles using four input parameters: nanoparticle type, size, concentration, and temperature of measurement. The model was trained and validated using 470 experimental measurements. The ANN model demonstrated high accuracy in predicting the viscosity of nanofluids. The obtained statistical error metrics between the measured and predicted values of viscosity were found to be very low. MAPE values were equal to 1.19% and 2.33% for training and testing respectively. The developed model can help researchers to better understand EG-based nanofluids viscosity behavior, and this could be considered as a good step forward to help researchers design new nanofluids with enhanced properties. To make the model more accessible for engineers and researchers, a user-friendly web application was developed using Angular and Django, allowing users to input parameters and obtain viscosity predictions without dealing with complex code. The web application offers multiple output options, including figures, tables, and Excel files. This multidisciplinary research study combines web technology, data science, and fluid mechanics to provide a valuable tool to predict nanofluids’ viscosity for different input parameters.
{"title":"A web-based intelligent calculator for predicting viscosity of ethylene–glycol–based nanofluids using an artificial neural network model","authors":"Walaeddine Maaoui, Zouhaier Mehrez, Mustapha Najjari","doi":"10.1007/s00397-023-01425-9","DOIUrl":"10.1007/s00397-023-01425-9","url":null,"abstract":"<div><p>This study presents the development of an artificial neural network (ANN) model to predict the viscosity of ethylene–glycol based nanofluids with different types of nanoparticles using four input parameters: nanoparticle type, size, concentration, and temperature of measurement. The model was trained and validated using 470 experimental measurements. The ANN model demonstrated high accuracy in predicting the viscosity of nanofluids. The obtained statistical error metrics between the measured and predicted values of viscosity were found to be very low. MAPE values were equal to 1.19% and 2.33% for training and testing respectively. The developed model can help researchers to better understand EG-based nanofluids viscosity behavior, and this could be considered as a good step forward to help researchers design new nanofluids with enhanced properties. To make the model more accessible for engineers and researchers, a user-friendly web application was developed using Angular and Django, allowing users to input parameters and obtain viscosity predictions without dealing with complex code. The web application offers multiple output options, including figures, tables, and Excel files. This multidisciplinary research study combines web technology, data science, and fluid mechanics to provide a valuable tool to predict nanofluids’ viscosity for different input parameters.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"63 1","pages":"49 - 60"},"PeriodicalIF":2.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138504527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1007/s00397-023-01422-y
Stefano Amadori, Giuseppe Catania
A multi-step, iterative technique for the local non-parametric identification of the standard linear solid (SLS) material model employing fractional order time differential operators is presented. Test input data consists of a set of identified material complex modulus values estimated at different frequency values, obtained from input–output experimental measurements made on a material specimen by means of forced harmonic excitation and from experimental measurements made on the same specimen in quasi-static relaxation conditions. The proposed technique is mainly based on an algebraic procedure leading to the solution of an overdetermined system of linear equations, in order to get the optimal value of the model unknown parameters. The procedure is non-parametric, since the SLS model order is initially unknown. The optimal model size can be found by evaluating the stability properties of the solution associated to any model size and by automatically discarding computational, non-physical contributions. The identification procedure is first validated by means of numerically simulated test data from within known model examples, and then it is applied to some experimentally obtained test data associated to different materials.
{"title":"A novel approach for the fractional SLS material model experimental identification","authors":"Stefano Amadori, Giuseppe Catania","doi":"10.1007/s00397-023-01422-y","DOIUrl":"10.1007/s00397-023-01422-y","url":null,"abstract":"<div><p>A multi-step, iterative technique for the local non-parametric identification of the standard linear solid (SLS) material model employing fractional order time differential operators is presented. Test input data consists of a set of identified material complex modulus values estimated at different frequency values, obtained from input–output experimental measurements made on a material specimen by means of forced harmonic excitation and from experimental measurements made on the same specimen in quasi-static relaxation conditions. The proposed technique is mainly based on an algebraic procedure leading to the solution of an overdetermined system of linear equations, in order to get the optimal value of the model unknown parameters. The procedure is non-parametric, since the SLS model order is initially unknown. The optimal model size can be found by evaluating the stability properties of the solution associated to any model size and by automatically discarding computational, non-physical contributions. The identification procedure is first validated by means of numerically simulated test data from within known model examples, and then it is applied to some experimentally obtained test data associated to different materials.</p></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"63 1","pages":"33 - 47"},"PeriodicalIF":2.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00397-023-01422-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138504526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-27DOI: 10.1007/s00397-023-01418-8
E. E. Herrera-Valencia, M. L. Sánchez-Villavicencio, C. Soriano-Correa, O. Bautista, L.A. Ramírez-Torres, V. J. Hernández-Abad, F. Calderas
The electroosmotic flow of a viscoelastic fluid in a capillary system was investigated analytically. The rheology of the fluid was characterized by a novel generalized exponential model equation. The charge density obeys the Boltzmann distribution, which governs the electrical double-layer field and body force generated by the applied electrical field. Mathematically, this scenario can be modeled by the Poisson-Boltzmann partial differential equation, by assuming that the zeta potential is small, i.e., less than 25 mV (Debye-Hückel approximation). Considering a pulsating electric field, the shear viscosity and the alteration in the volumetric flow were presented as a function of the material parameters through the characteristic dimensionless numbers by using an exponential-type generalized rheological model. Thixotropy, shear thinning, yield stress mechanisms, and weight concentration were analyzed through numerical results. Finally, the flow properties and rheology were predicted using experimental data reported elsewhere for worm-like micellar solution of cetyl trimethyl ammonium tosilate (CTAT). The rheological equation of state proposed in this study describes the alterations in the structure resulting from applied forces (tangential and normal). These forces induced a structural evolution (kinetic model) due to the relaxation processes caused by shear strain. It is important to mention that in electroosmotic flows, complex behavior such as (i) thixotropy, (ii) rheopexy, and (iii) shear banding flow is scarcely explained in terms of the change in the structure of the fluid under flow.
Graphical Abstract
对粘弹性流体在毛细管系统中的电渗透流动进行了分析研究。用一种新的广义指数模型方程描述了流体的流变特性。电荷密度服从玻尔兹曼分布,玻尔兹曼分布支配着双电层场和外加电场产生的体力。数学上,这种情况可以通过泊松-玻尔兹曼偏微分方程来建模,假设zeta电位很小,即小于25 mV (debye - h ckel近似)。在脉动电场作用下,采用指数型广义流变模型,通过特征无因次数将剪切粘度和体积流动变化表示为材料参数的函数。通过数值结果分析了触变性、剪切变薄、屈服应力机制和重量集中。最后,利用其他地方报道的实验数据预测了虫状十六烷基三甲基甲硅酸铵胶束溶液的流动特性和流变性。本研究提出的流变状态方程描述了由施加的力(切向力和法向力)引起的结构变化。由于剪切应变引起的松弛过程,这些力诱发了结构演化(动力学模型)。值得一提的是,在电渗透流动中,复杂的行为,如(i)触变性,(ii)流变性和(iii)剪切带流动,几乎不能用流动下流体结构的变化来解释。图形抽象
{"title":"Study of the electroosmotic flow of a structured fluid with a new generalized rheological model","authors":"E. E. Herrera-Valencia, M. L. Sánchez-Villavicencio, C. Soriano-Correa, O. Bautista, L.A. Ramírez-Torres, V. J. Hernández-Abad, F. Calderas","doi":"10.1007/s00397-023-01418-8","DOIUrl":"10.1007/s00397-023-01418-8","url":null,"abstract":"<div><p>The electroosmotic flow of a viscoelastic fluid in a capillary system was investigated analytically. The rheology of the fluid was characterized by a novel generalized exponential model equation. The charge density obeys the Boltzmann distribution, which governs the electrical double-layer field and body force generated by the applied electrical field. Mathematically, this scenario can be modeled by the Poisson-Boltzmann partial differential equation, by assuming that the zeta potential is small, i.e., less than 25 mV (Debye-Hückel approximation). Considering a pulsating electric field, the shear viscosity and the alteration in the volumetric flow were presented as a function of the material parameters through the characteristic dimensionless numbers by using an exponential-type generalized rheological model. Thixotropy, shear thinning, yield stress mechanisms, and weight concentration were analyzed through numerical results. Finally, the flow properties and rheology were predicted using experimental data reported elsewhere for worm-like micellar solution of cetyl trimethyl ammonium tosilate (CTAT). The rheological equation of state proposed in this study describes the alterations in the structure resulting from applied forces (tangential and normal). These forces induced a structural evolution (kinetic model) due to the relaxation processes caused by shear strain. It is important to mention that in electroosmotic flows, complex behavior such as (i) thixotropy, (ii) rheopexy, and (iii) shear banding flow is scarcely explained in terms of the change in the structure of the fluid under flow.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"63 1","pages":"3 - 32"},"PeriodicalIF":2.3,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00397-023-01418-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138504525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-21DOI: 10.1007/s00397-023-01421-z
Jeffrey F. Morris
Developments in the last century, and especially in the last 50 years, have advanced understanding of suspension rheology greatly. Here, a limited review of suspension work over this period is presented, emphasizing advances over the last three decades in understanding of the particle pressure and strong shear thickening, which were motivated by crucial experimental observations, computational advances, and a critical review, all from the 1980s. This review serves as a preview to some outstanding challenges in suspension mechanics. This article considers primarily dispersions of spherical particles, which serve not only as a model material for understanding the rheology of more complex fluids of practical relevance, but also as a basic system for the study of nonequilibrium statistical physics.
{"title":"Progress and challenges in suspension rheology","authors":"Jeffrey F. Morris","doi":"10.1007/s00397-023-01421-z","DOIUrl":"10.1007/s00397-023-01421-z","url":null,"abstract":"<div><p>Developments in the last century, and especially in the last 50 years, have advanced understanding of suspension rheology greatly. Here, a limited review of suspension work over this period is presented, emphasizing advances over the last three decades in understanding of the particle pressure and strong shear thickening, which were motivated by crucial experimental observations, computational advances, and a critical review, all from the 1980s. This review serves as a preview to some outstanding challenges in suspension mechanics. This article considers primarily dispersions of spherical particles, which serve not only as a model material for understanding the rheology of more complex fluids of practical relevance, but also as a basic system for the study of nonequilibrium statistical physics.</p></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"62 11-12","pages":"617 - 629"},"PeriodicalIF":2.3,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138504524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}