Dissolution of cellulose is crucial for its regeneration and chemical modification, such as homogeneous transesterification, for example. The cellulose dissolution in ionic liquid (IL) media is suggested as a prospective environmentally friendly alternative to conventional solvents. In this study, novel distillable ionic liquid 5-methyl-1,5,7-triaza-bicyclo-[4.3.0]non-6-enium acetate, [mTBNH][OAc] was used for cellulose dissolution. This IL has high dissolving power towards cellulose and durability for recycling. However, the disadvantage of ILs is their high viscosity, which limits the supreme cellulose concentration in IL solutions, and their high cost, hindering their commercialization. The addition of low-viscous, low-cost, and naturally derived co-solvents can reduce the overall viscosity and cost. In this study, rheology experiments were conducted to investigate the flow behavior of cellulose in [mTBNH][OAc] ionic liquid mixed with the green co-solvents such as γ-Valerolactone (GVL), dimethyl isosorbide (DMI), and N,N′-dimethylpropyleneurea (DMPU). A study of the rheology showed that the viscosity reduces at low doses of co-solvent (≤ 50 wt%) but causes the structuring of the cellulose solution and its gelation (or phase separation) at high doses (≥ 50 wt%). The rheological study also indicated that the flow activation energy of cellulose in IL/co-solvent systems is lower than that in pure IL and decays in the order of DMPU > DMI > GVL > DMSO.