I. Paterson, H. Klein, P. Muskett, T. C. Griffith, S. Mayonde, K. Mofokeng, Z. Mnqeta, N. Venter
Cactaceae are among the most problematic invasive alien plants in South Africa, posing serious negative consequences to agriculture and natural ecosystems. Fortunately, South Africa has a long and successful history of controlling cactus weeds using biological control (biocontrol). This paper reviews all the biocontrol programmes against invasive alien Cactaceae in South Africa, focusing on the decade since the last review published in 2011, up to, and including 2020. Biocontrol programmes against 16 target weeds are summarised, all of which rely on either the galling mealybug, Hypogeococcus sp. (Pseudococcidae), or various species or intraspecific lineages of cochineal insects (Dactylopius spp., Dactylopiidae) as agents. New agents are being considered for the three target weed species, Opuntia elata Salm-Dyck, Opuntia megapotamica Arechav. and Trichocereus spachianus (Lem.) Riccob., while permission to release a new agent against Cylindropuntia pallida (Rose) F.M. Knuth has recently been granted. The biocontrol agent, Dactylopius opuntiae (Cockrell) ‘stricta’, which has been utilised for the successful control of Opuntia stricta Haw., has shown some promise as an agent against one of the worst cactus weeds in the country, the North Cape/Free State variety of Opuntia engelmannii Salm-Dyck. Post-release monitoring and recent observations of the status of control for the 11 other cactus weeds, all of which have well-established agents, are provided. Taxonomic uncertainties and misidentifications of both target weeds and agents has been a constraint to biocontrol efforts, but this has been partially overcome through the use of genetic techniques. Biocontrol is particularly successful in controlling cactus weeds compared to most other taxonomic groups, and it is likely that past successes can be repeated with new target weeds. Mass-rearing and redistribution of agents are essential to gain the maximum possible benefit from cactus biocontrol agents, and recent increases in mass-rearing outputs have been beneficial.
{"title":"Biological Control of Cactaceae in South Africa","authors":"I. Paterson, H. Klein, P. Muskett, T. C. Griffith, S. Mayonde, K. Mofokeng, Z. Mnqeta, N. Venter","doi":"10.4001/003.029.0713","DOIUrl":"https://doi.org/10.4001/003.029.0713","url":null,"abstract":"Cactaceae are among the most problematic invasive alien plants in South Africa, posing serious negative consequences to agriculture and natural ecosystems. Fortunately, South Africa has a long and successful history of controlling cactus weeds using biological control (biocontrol). This paper reviews all the biocontrol programmes against invasive alien Cactaceae in South Africa, focusing on the decade since the last review published in 2011, up to, and including 2020. Biocontrol programmes against 16 target weeds are summarised, all of which rely on either the galling mealybug, Hypogeococcus sp. (Pseudococcidae), or various species or intraspecific lineages of cochineal insects (Dactylopius spp., Dactylopiidae) as agents. New agents are being considered for the three target weed species, Opuntia elata Salm-Dyck, Opuntia megapotamica Arechav. and Trichocereus spachianus (Lem.) Riccob., while permission to release a new agent against Cylindropuntia pallida (Rose) F.M. Knuth has recently been granted. The biocontrol agent, Dactylopius opuntiae (Cockrell) ‘stricta’, which has been utilised for the successful control of Opuntia stricta Haw., has shown some promise as an agent against one of the worst cactus weeds in the country, the North Cape/Free State variety of Opuntia engelmannii Salm-Dyck. Post-release monitoring and recent observations of the status of control for the 11 other cactus weeds, all of which have well-established agents, are provided. Taxonomic uncertainties and misidentifications of both target weeds and agents has been a constraint to biocontrol efforts, but this has been partially overcome through the use of genetic techniques. Biocontrol is particularly successful in controlling cactus weeds compared to most other taxonomic groups, and it is likely that past successes can be repeated with new target weeds. Mass-rearing and redistribution of agents are essential to gain the maximum possible benefit from cactus biocontrol agents, and recent increases in mass-rearing outputs have been beneficial.","PeriodicalId":7566,"journal":{"name":"African Entomology","volume":"29 1","pages":"713 - 734"},"PeriodicalIF":0.8,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42032189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Olckers, J. Coetzee, D. Egli, G. Martin, I. Paterson, G. Sutton, A. Wood
South Africa supports a rich floral diversity, with 21 643 native plant taxa that include a high proportion (76.3%) of endemic species, and many of these favoured as ornamentals, both locally and globally. Consequently, South Africa has contributed substantially to global plant invasions, with 1093 native taxa (5% of all species) naturalized in other countries. At least 80 taxa are invasive in natural or semi-natural ecosystems elsewhere, while an additional 132 taxa are potentially invasive. Of the global naturalized flora, 8.2% originate from South Africa and largely comprise species of Poaceae, Asteraceae, Iridaceae and Fabaceae. Australia, in particular, but also Europe and North America are major recipients of South African weeds. However, few countries have targeted South African plants for biological control (biocontrol), with most efforts undertaken by Australia. Previous and current targets have involved only 26 species with 17 agents (15 insects, one mite and one rust fungus) of South African origin released on five target species in Australia and the United States of America. South Africa's history of weed biocontrol, together with a large cohort of active scientists, is currently facilitating several internationally funded programmes targeting invasive plants of South African origin. In particular, the recently inaugurated Centre for Biological Control at Rhodes University and the University of KwaZulu-Natal have provided the impetus for novel efforts on five new target species and renewed efforts on four previously targeted species. In this contribution, we review the history of earlier biocontrol programmes against weeds of South African origin and the status of projects currently in progress in South Africa.
{"title":"Biological Control of South African Plants that are Invasive Elsewhere in the World: A Review of Earlier and Current Programmes","authors":"T. Olckers, J. Coetzee, D. Egli, G. Martin, I. Paterson, G. Sutton, A. Wood","doi":"10.4001/003.029.1005","DOIUrl":"https://doi.org/10.4001/003.029.1005","url":null,"abstract":"South Africa supports a rich floral diversity, with 21 643 native plant taxa that include a high proportion (76.3%) of endemic species, and many of these favoured as ornamentals, both locally and globally. Consequently, South Africa has contributed substantially to global plant invasions, with 1093 native taxa (5% of all species) naturalized in other countries. At least 80 taxa are invasive in natural or semi-natural ecosystems elsewhere, while an additional 132 taxa are potentially invasive. Of the global naturalized flora, 8.2% originate from South Africa and largely comprise species of Poaceae, Asteraceae, Iridaceae and Fabaceae. Australia, in particular, but also Europe and North America are major recipients of South African weeds. However, few countries have targeted South African plants for biological control (biocontrol), with most efforts undertaken by Australia. Previous and current targets have involved only 26 species with 17 agents (15 insects, one mite and one rust fungus) of South African origin released on five target species in Australia and the United States of America. South Africa's history of weed biocontrol, together with a large cohort of active scientists, is currently facilitating several internationally funded programmes targeting invasive plants of South African origin. In particular, the recently inaugurated Centre for Biological Control at Rhodes University and the University of KwaZulu-Natal have provided the impetus for novel efforts on five new target species and renewed efforts on four previously targeted species. In this contribution, we review the history of earlier biocontrol programmes against weeds of South African origin and the status of projects currently in progress in South Africa.","PeriodicalId":7566,"journal":{"name":"African Entomology","volume":"29 1","pages":"1005 - 1029"},"PeriodicalIF":0.8,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41331179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Strathie, B. Cowie, A. McConnachie, F. Chidawanyika, J. N. Musedeli, Shin'ichiro Sambo, E.X. Magoso, M. Gareeb
The annual herb, Parthenium hysterophorus L. (Asteraceae: Heliantheae) is a severe terrestrial invader globally. Infestations reduce crop yield, limit available grazing, hinder conservation efforts, and affect human and animal health in Africa, Asia and Australia, and on associated islands. Due to the impact and threat of further invasion of P. hysterophorus, a biological control (biocontrol) programme was initiated in 2003 in South Africa. This review discusses the research and implementation activities undertaken on the insect agents from 2011 to 2020. During this period, the stem-boring weevil Listronotus setosipennis Hustache (Coleoptera: Curculionidae), leaf-feeding beetle Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae) and seed-feeding weevil Smicronyx lutulentus Dietz (Coleoptera: Curculionidae), were found to be host specific and approved for release. Releases of mass-reared insect agents have been concentrated particularly in north-eastern South Africa, where P. hysterophorus infestations are most prolific. Post-release monitoring studies indicated localised establishment and impact of L. setosipennis and S. lutulentus. Listronotus setosipennis persisted through severe drought conditions, and although it disperses slowly, larval feeding is structurally damaging. Establishment of S. lutulentus is improving, reducing seed production where it is established. Zygogramma bicolorata resulted in defoliation at a few sites, but establishment has been poor and the beetle has been absent since 2019. Although a combination of fungal and insect agents were demonstrated to reduce P. hysterophorus, additional natural enemies could improve control. Consequently, the stem-galling moth Epiblema strenuana Walker (Lepidoptera: Tortricidae) and root-crown boring moth Carmenta sp. nr. ithacae (Beutenmüller) (Lepidoptera: Sesiidae) remain under evaluation. The management of P. hysterophorus in South Africa has been guided by the development of a national strategy, which incorporates multiple management methods, including biocontrol. International collaborations have intensified as a growing number of countries begin to utilize biocontrol to manage P. hysterophorus. Despite the progress towards biocontrol of P. hysterophorus during this period, increased utilisation of approved agents and the introduction of additional agents are necessary to achieve greater control.
{"title":"A Decade of Biological Control of Parthenium hysterophorus L. (Asteraceae) in South Africa Reviewed: Introduction of Insect Agents and Their Status","authors":"L. Strathie, B. Cowie, A. McConnachie, F. Chidawanyika, J. N. Musedeli, Shin'ichiro Sambo, E.X. Magoso, M. Gareeb","doi":"10.4001/003.029.0809","DOIUrl":"https://doi.org/10.4001/003.029.0809","url":null,"abstract":"The annual herb, Parthenium hysterophorus L. (Asteraceae: Heliantheae) is a severe terrestrial invader globally. Infestations reduce crop yield, limit available grazing, hinder conservation efforts, and affect human and animal health in Africa, Asia and Australia, and on associated islands. Due to the impact and threat of further invasion of P. hysterophorus, a biological control (biocontrol) programme was initiated in 2003 in South Africa. This review discusses the research and implementation activities undertaken on the insect agents from 2011 to 2020. During this period, the stem-boring weevil Listronotus setosipennis Hustache (Coleoptera: Curculionidae), leaf-feeding beetle Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae) and seed-feeding weevil Smicronyx lutulentus Dietz (Coleoptera: Curculionidae), were found to be host specific and approved for release. Releases of mass-reared insect agents have been concentrated particularly in north-eastern South Africa, where P. hysterophorus infestations are most prolific. Post-release monitoring studies indicated localised establishment and impact of L. setosipennis and S. lutulentus. Listronotus setosipennis persisted through severe drought conditions, and although it disperses slowly, larval feeding is structurally damaging. Establishment of S. lutulentus is improving, reducing seed production where it is established. Zygogramma bicolorata resulted in defoliation at a few sites, but establishment has been poor and the beetle has been absent since 2019. Although a combination of fungal and insect agents were demonstrated to reduce P. hysterophorus, additional natural enemies could improve control. Consequently, the stem-galling moth Epiblema strenuana Walker (Lepidoptera: Tortricidae) and root-crown boring moth Carmenta sp. nr. ithacae (Beutenmüller) (Lepidoptera: Sesiidae) remain under evaluation. The management of P. hysterophorus in South Africa has been guided by the development of a national strategy, which incorporates multiple management methods, including biocontrol. International collaborations have intensified as a growing number of countries begin to utilize biocontrol to manage P. hysterophorus. Despite the progress towards biocontrol of P. hysterophorus during this period, increased utilisation of approved agents and the introduction of additional agents are necessary to achieve greater control.","PeriodicalId":7566,"journal":{"name":"African Entomology","volume":"29 1","pages":"809 - 836"},"PeriodicalIF":0.8,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47750206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Byrne, S. Mayonde, N. Venter, F. Chidawanyika, C. Zachariades, G. Martin
Three weed biological control (biocontrol) programmes are described, all of which are considered to be ‘transfer projects’ that were initiated elsewhere, and on which South Africa has piggybacked its biocontrol efforts. Using knowledge and expertise from international collaborators, South African weed researchers are following a long tradition of transfer projects, which has been a largely successful and practical approach to biocontrol. Two Brazilian weeds, the Brazilian pepper tree Schinus terebinthifolia and the spiderwort Tradescantia fluminensis are being targeted, along with the Old-World trees Tamarix ramosissima and T. chinensis. The potential biocontrol agents are described and ranked for the two trees according to what has been discovered elsewhere, while the agent already released against T. fluminensis is rated (as poor), and other potential agents are considered. The addition of molecular techniques, climate matching and remote sensing in transfer projects can increase the chance of successful biocontrol and the inclusion of these techniques in the three new programmes is discussed. Transfer projects are a cost-effective and pragmatic way to pick winning biocontrol programmes.
{"title":"Three New Biological Control Programmes for South Africa: Brazilian Pepper, Tamarix and Tradescantia","authors":"M. Byrne, S. Mayonde, N. Venter, F. Chidawanyika, C. Zachariades, G. Martin","doi":"10.4001/003.029.0965","DOIUrl":"https://doi.org/10.4001/003.029.0965","url":null,"abstract":"Three weed biological control (biocontrol) programmes are described, all of which are considered to be ‘transfer projects’ that were initiated elsewhere, and on which South Africa has piggybacked its biocontrol efforts. Using knowledge and expertise from international collaborators, South African weed researchers are following a long tradition of transfer projects, which has been a largely successful and practical approach to biocontrol. Two Brazilian weeds, the Brazilian pepper tree Schinus terebinthifolia and the spiderwort Tradescantia fluminensis are being targeted, along with the Old-World trees Tamarix ramosissima and T. chinensis. The potential biocontrol agents are described and ranked for the two trees according to what has been discovered elsewhere, while the agent already released against T. fluminensis is rated (as poor), and other potential agents are considered. The addition of molecular techniques, climate matching and remote sensing in transfer projects can increase the chance of successful biocontrol and the inclusion of these techniques in the three new programmes is discussed. Transfer projects are a cost-effective and pragmatic way to pick winning biocontrol programmes.","PeriodicalId":7566,"journal":{"name":"African Entomology","volume":"29 1","pages":"965 - 982"},"PeriodicalIF":0.8,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42187969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Hill, D. Conlong, C. Zachariades, J. Coetzee, I. Paterson, B. Miller, L. Foxcroft, L. van der Westhuizen
It has been documented that the continual release of high numbers of biological control (biocontrol) agents for weeds increases the likelihood of agent establishment and has been shown to reduce the time between the first release and subsequent control of the target weed. Here we review the mass-rearing activities for weed biocontrol agents in South Africa between 2011 and 2020. Some 4.7 million individual insects from 40 species of biocontrol agent have been released on 31 weed species at over 2000 sites throughout South Africa during the last decade. These insects were produced at mass-rearing facilities at eight research institutions, five schools and 10 Non-Governmental Organizations. These mass-rearing activities have created employment for 41 fulltime, fixed contract staff, of which 11 are people living with physical disabilities. To improve the uptake of mass-rearing through community engagement, appropriate protocols are required to ensure that agents are produced in high numbers to suppress invasive alien plant populations in South Africa.
{"title":"The Role of Mass-Rearing in Weed Biological Control Projects in South Africa","authors":"M. Hill, D. Conlong, C. Zachariades, J. Coetzee, I. Paterson, B. Miller, L. Foxcroft, L. van der Westhuizen","doi":"10.4001/003.029.1030","DOIUrl":"https://doi.org/10.4001/003.029.1030","url":null,"abstract":"It has been documented that the continual release of high numbers of biological control (biocontrol) agents for weeds increases the likelihood of agent establishment and has been shown to reduce the time between the first release and subsequent control of the target weed. Here we review the mass-rearing activities for weed biocontrol agents in South Africa between 2011 and 2020. Some 4.7 million individual insects from 40 species of biocontrol agent have been released on 31 weed species at over 2000 sites throughout South Africa during the last decade. These insects were produced at mass-rearing facilities at eight research institutions, five schools and 10 Non-Governmental Organizations. These mass-rearing activities have created employment for 41 fulltime, fixed contract staff, of which 11 are people living with physical disabilities. To improve the uptake of mass-rearing through community engagement, appropriate protocols are required to ensure that agents are produced in high numbers to suppress invasive alien plant populations in South Africa.","PeriodicalId":7566,"journal":{"name":"African Entomology","volume":"29 1","pages":"1030 - 1044"},"PeriodicalIF":0.8,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46198494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There are 14 species of Australian Acacia now known to be invasive in South Africa, ten of which are under some form of biological control (biocontrol). The biocontrol agents introduced against this group include a fungal pathogen, Uromycladium morrisii Doungsa-ard, McTaggart, Geering & R.G. Shivas (Pucciniales: Raveneliaceae) for Acacia saligna (Labill.) H.L.Wendl., and ten insect species, including two bud-galling wasps, five seed-feeding weevils and three flower-galling fly species, all of which supress reproductive output of their hosts. There are also two native fungal pathogens that have become associated with the introduced acacias, and which have been developed for potential mycoherbicide use. Screening and importation of new agents has seen limited activity in the ten-year period reviewed here (i.e., 2011–2020). Most attention has been focussed on efforts to evaluate the effectiveness of the established agents and, importantly, to gain an understanding of the role of seeds in the population dynamics of the host plants.
{"title":"A Review of Research and Developments with Insect Agents Used for Biological Control of Australian Acacia Species (Caesalpinioideae) in South Africa","authors":"F. Impson, C. Kleinjan, J. Hoffmann, P. Mudavanhu","doi":"10.4001/003.029.0693","DOIUrl":"https://doi.org/10.4001/003.029.0693","url":null,"abstract":"There are 14 species of Australian Acacia now known to be invasive in South Africa, ten of which are under some form of biological control (biocontrol). The biocontrol agents introduced against this group include a fungal pathogen, Uromycladium morrisii Doungsa-ard, McTaggart, Geering & R.G. Shivas (Pucciniales: Raveneliaceae) for Acacia saligna (Labill.) H.L.Wendl., and ten insect species, including two bud-galling wasps, five seed-feeding weevils and three flower-galling fly species, all of which supress reproductive output of their hosts. There are also two native fungal pathogens that have become associated with the introduced acacias, and which have been developed for potential mycoherbicide use. Screening and importation of new agents has seen limited activity in the ten-year period reviewed here (i.e., 2011–2020). Most attention has been focussed on efforts to evaluate the effectiveness of the established agents and, importantly, to gain an understanding of the role of seeds in the population dynamics of the host plants.","PeriodicalId":7566,"journal":{"name":"African Entomology","volume":"29 1","pages":"693 - 712"},"PeriodicalIF":0.8,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42986391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. M. King, I. Paterson, D. Simelane, L. van der Westhuizen, K. V. Mawela, Z. Mnqeta
Vines and other climbing plants typically invest their resources into growth at the expense of accumulating self-supporting biomass. Adaptive traits that have arisen because of the life history needs of climbing species, such as rapid and extensive growth, as well as resilience to physical damage, make these plants highly competitive. Introduced climbing species therefore have the potential to be particularly damaging in novel ranges where they escape pressure from natural enemies. In South Africa, invasive climbing species negatively influence biodiversity and plant-community structure, and as conventional management is often difficult, biological control (biocontrol) is viewed as the only viable long-term control method. This paper consolidates the work done on biocontrol programmes against climbing species in South Africa, including Anredera cordifolia (Ten.) Steenis (Basellaceae), Cardiospermum grandiflorum Sw. (Sapindaceae), Dolichandra unguis-cati (L.) L.G.Lohmann (Bignoniaceae) and Pereskia aculeata Miller (Cactaceae). To date, these programmes have investigated some 27 potential biocontrol agents, of which nine have been approved for release in the country. Since 2010, three new agents have been introduced, and considerable progress made with post-release evaluations of all the introduced agents. Some positive results have been achieved, most notably the successful reduction in seed set of C. grandiflorum due to Cissanthonomus tuberculipennis Hustache (Curculionidae), but considerable variation in efficacy over time and between infestations has been recorded for many of the other agents. Further work may help explain the factors limiting success, leading to improved control, but in some cases, such as for A. cordifolia, new biocontrol agents should be considered.
{"title":"Biological Control of Invasive Climbing Plants in South Africa","authors":"A. M. King, I. Paterson, D. Simelane, L. van der Westhuizen, K. V. Mawela, Z. Mnqeta","doi":"10.4001/003.029.0905","DOIUrl":"https://doi.org/10.4001/003.029.0905","url":null,"abstract":"Vines and other climbing plants typically invest their resources into growth at the expense of accumulating self-supporting biomass. Adaptive traits that have arisen because of the life history needs of climbing species, such as rapid and extensive growth, as well as resilience to physical damage, make these plants highly competitive. Introduced climbing species therefore have the potential to be particularly damaging in novel ranges where they escape pressure from natural enemies. In South Africa, invasive climbing species negatively influence biodiversity and plant-community structure, and as conventional management is often difficult, biological control (biocontrol) is viewed as the only viable long-term control method. This paper consolidates the work done on biocontrol programmes against climbing species in South Africa, including Anredera cordifolia (Ten.) Steenis (Basellaceae), Cardiospermum grandiflorum Sw. (Sapindaceae), Dolichandra unguis-cati (L.) L.G.Lohmann (Bignoniaceae) and Pereskia aculeata Miller (Cactaceae). To date, these programmes have investigated some 27 potential biocontrol agents, of which nine have been approved for release in the country. Since 2010, three new agents have been introduced, and considerable progress made with post-release evaluations of all the introduced agents. Some positive results have been achieved, most notably the successful reduction in seed set of C. grandiflorum due to Cissanthonomus tuberculipennis Hustache (Curculionidae), but considerable variation in efficacy over time and between infestations has been recorded for many of the other agents. Further work may help explain the factors limiting success, leading to improved control, but in some cases, such as for A. cordifolia, new biocontrol agents should be considered.","PeriodicalId":7566,"journal":{"name":"African Entomology","volume":"29 1","pages":"905 - 934"},"PeriodicalIF":0.8,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47821973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solanum mauritianum Scop. (Solanaceae), colloquially referred to as bugweed in South Africa, remains a widespread invasive tree of global significance. Although biological control (biocontrol) efforts were undertaken from 1984 -2003 in South Africa, the programme eventually only released two agents, the sap-sucking lace bug Gargaphia decoris Drake (Hemiptera: Tingidae) and flowerbud-feeding weevil Anthonomus santacruzi Hustache (Coleoptera: Curculionidae). To date, these agents have been relatively ineffective in controlling S. mauritianum, largely due to low establishment success due to climatic incompatibility in relation to the widespread distribution of S. mauritianum. This has prompted the revival of S. mauritianum biocontrol research in 2018, with the programme focused largely on sourcing additional agents from climatically suitable regions in the plant's native range in South America. Climate matching between cooler regions of South Africa and known S. mauritianum sites in South America identified Uruguay as a promising source of new agents. Field collections in Uruguay focused mainly on Anthonomus spp. but included stem-boring and shoot-galling weevils. Low incidence in the field and difficulties in culturing candidate species temporarily precluded research into stem-boring and shoot-galling candidates, but the rearing and assessment of the flowerbud-feeding weevil Anthonomus morticinus Clark (Coleoptera: Curculionidae) is ongoing. Host-specificity testing of A. morticinus has thus far confirmed a narrow host range, suggesting it has potential as a new agent.
{"title":"Current and Future Biological Control Efforts Against Solanum mauritianum (Solanaceae) in South Africa","authors":"N. Venter, B. Cowie, T. Olckers, M. Byrne","doi":"10.4001/003.029.0875","DOIUrl":"https://doi.org/10.4001/003.029.0875","url":null,"abstract":"Solanum mauritianum Scop. (Solanaceae), colloquially referred to as bugweed in South Africa, remains a widespread invasive tree of global significance. Although biological control (biocontrol) efforts were undertaken from 1984 -2003 in South Africa, the programme eventually only released two agents, the sap-sucking lace bug Gargaphia decoris Drake (Hemiptera: Tingidae) and flowerbud-feeding weevil Anthonomus santacruzi Hustache (Coleoptera: Curculionidae). To date, these agents have been relatively ineffective in controlling S. mauritianum, largely due to low establishment success due to climatic incompatibility in relation to the widespread distribution of S. mauritianum. This has prompted the revival of S. mauritianum biocontrol research in 2018, with the programme focused largely on sourcing additional agents from climatically suitable regions in the plant's native range in South America. Climate matching between cooler regions of South Africa and known S. mauritianum sites in South America identified Uruguay as a promising source of new agents. Field collections in Uruguay focused mainly on Anthonomus spp. but included stem-boring and shoot-galling weevils. Low incidence in the field and difficulties in culturing candidate species temporarily precluded research into stem-boring and shoot-galling candidates, but the rearing and assessment of the flowerbud-feeding weevil Anthonomus morticinus Clark (Coleoptera: Curculionidae) is ongoing. Host-specificity testing of A. morticinus has thus far confirmed a narrow host range, suggesting it has potential as a new agent.","PeriodicalId":7566,"journal":{"name":"African Entomology","volume":"29 1","pages":"875 - 888"},"PeriodicalIF":0.8,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42108168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although Hakea sericea Schrad. & J.C. Wendl. (Proteaceae) remains a significant invasive species in parts of South Africa, efforts made to curtail its spread over the past decade have shown varying levels of success. Here, we describe progress-to-date with the insect agents and factors that have contributed to their success or failure. In particular we cover: (i) research on the ability of the seed-feeding weevil, Erytenna consputa Pascoe (Coleoptera: Curculionidae) to recolonise burnt areas after fire; (ii) the impacts and dispersal ability of the seed-feeding moth, Carposina autologa Meyrick (Lepidoptera: Carposinidae); (iii) the impacts and future prospects for the stem-boring beetle, Aphanasium australe (Boisduval) (Coleoptera: Cerambycidae); and (iv) the establishment discrepancy observed for the flowerbud-feeding weevil, Dicomada rufa Blackburn (Coleoptera: Curculionidae). In general, findings show: (i) E. consputa is able to quickly re-establish populations after fires; (ii) that C. autologa has a modest impact and disperses slowly; (iii) A. australe is performing relatively well in the field, with healthy localised populations in South Africa which should be left to increase before harvesting and redistribution of the beetle commences; (iv) climate mismatch between native and introduced ranges is a problem for D. rufa, along with other possible causes for establishment discrepancies which are still under investigation. As a result of these findings, we provide suggestions for possible management plans for some of the agents, so as to maximize resources and increase the overall impact of the H. sericea biological control programme in South Africa.
{"title":"Research on the Biological Control of Hakea sericea Over the Past Ten Years: Lessons Informing Future Management of the Species in the Western Cape Province, South Africa","authors":"C. Lyons, K. English, J. Hoffmann","doi":"10.4001/003.029.0768","DOIUrl":"https://doi.org/10.4001/003.029.0768","url":null,"abstract":"Although Hakea sericea Schrad. & J.C. Wendl. (Proteaceae) remains a significant invasive species in parts of South Africa, efforts made to curtail its spread over the past decade have shown varying levels of success. Here, we describe progress-to-date with the insect agents and factors that have contributed to their success or failure. In particular we cover: (i) research on the ability of the seed-feeding weevil, Erytenna consputa Pascoe (Coleoptera: Curculionidae) to recolonise burnt areas after fire; (ii) the impacts and dispersal ability of the seed-feeding moth, Carposina autologa Meyrick (Lepidoptera: Carposinidae); (iii) the impacts and future prospects for the stem-boring beetle, Aphanasium australe (Boisduval) (Coleoptera: Cerambycidae); and (iv) the establishment discrepancy observed for the flowerbud-feeding weevil, Dicomada rufa Blackburn (Coleoptera: Curculionidae). In general, findings show: (i) E. consputa is able to quickly re-establish populations after fires; (ii) that C. autologa has a modest impact and disperses slowly; (iii) A. australe is performing relatively well in the field, with healthy localised populations in South Africa which should be left to increase before harvesting and redistribution of the beetle commences; (iv) climate mismatch between native and introduced ranges is a problem for D. rufa, along with other possible causes for establishment discrepancies which are still under investigation. As a result of these findings, we provide suggestions for possible management plans for some of the agents, so as to maximize resources and increase the overall impact of the H. sericea biological control programme in South Africa.","PeriodicalId":7566,"journal":{"name":"African Entomology","volume":"29 1","pages":"768 - 774"},"PeriodicalIF":0.8,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49049553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}