The testing of durum wheat (Triticum turgidum subsp. durum) varieties in different irrigated environments is critical for determining the stability of their performance and adaptation. In this study, 12 popular and newly developed durum wheat varieties were examined in eight irrigated locations with the purpose of investigating genotype–environment interaction and their effect on Ethiopian tetraploid wheat yield stability across diverse environments. The field experiment has two replications with a randomized complete block design. Multivariate (analysis of variance, additive main effect and multiplicative interaction [AMMI], and genetics, genetics × environment [GGE] biplot) and univariate (bi [regression coefficient], S2d [deviation from regression], σi2 [Shukla's stability variance], Wi2 [Wricke's ecovalence], YSi [yield stability statistic], and CVi [coefficient of variance]) analysis methods were used to identify stable varieties. The AMMI analysis showed that the genetic × environmental interaction was highly significant (p > 0.01), while the genotype and environment variation were not significant. The first two principal component axes (IPCA1 and IPCA2) were highly significant (p > 0.01) and contributed 79% of the total GE interaction. Univariate statistical models indicate that Bulala is a stable, high-yielding variety that can adapt to various environments. GGE biplot analysis revealed that the eight test environments were clustered into three mega-environments, ranked Bulala as the most stable variety across diverse environments. The results of the combined mean analysis, multivariate and univariate models revealed that Bulala is a high yielder (3.46 tons ha−1) and stable variety across all test environments, while Mukiye variety has a high yield (3.43 tons ha−1) but is not as stable or adaptive to multiple locations. As a result, Bulala was recommended for further demonstration and popularization in test locations and places with similar agroecologies under irrigation.
{"title":"Application of univariate, multivariate, and mixed models to the stability analysis of Ethiopian tetraploid wheat cultivars under irrigation condition","authors":"Geleta Gerema, Girma Mengistu, Tilahun Bayisa, Urgaya Balcha","doi":"10.1002/agg2.20574","DOIUrl":"https://doi.org/10.1002/agg2.20574","url":null,"abstract":"<p>The testing of durum wheat (<i>Triticum turgidum </i>subsp.<i> durum</i>) varieties in different irrigated environments is critical for determining the stability of their performance and adaptation. In this study, 12 popular and newly developed durum wheat varieties were examined in eight irrigated locations with the purpose of investigating genotype–environment interaction and their effect on Ethiopian tetraploid wheat yield stability across diverse environments. The field experiment has two replications with a randomized complete block design. Multivariate (analysis of variance, additive main effect and multiplicative interaction [AMMI], and genetics, genetics × environment [GGE] biplot) and univariate (b<sub>i</sub> [regression coefficient], S<sup>2</sup><sub>d</sub> [deviation from regression], σ<sub>i</sub><sup>2</sup> [Shukla's stability variance], W<sub>i</sub><sup>2</sup> [Wricke's ecovalence], YS<sub>i</sub> [yield stability statistic], and CV<sub>i</sub> [coefficient of variance]) analysis methods were used to identify stable varieties. The AMMI analysis showed that the genetic × environmental interaction was highly significant (<i>p</i> > 0.01), while the genotype and environment variation were not significant. The first two principal component axes (IPCA1 and IPCA2) were highly significant (<i>p</i> > 0.01) and contributed 79% of the total GE interaction. Univariate statistical models indicate that Bulala is a stable, high-yielding variety that can adapt to various environments. GGE biplot analysis revealed that the eight test environments were clustered into three mega-environments, ranked Bulala as the most stable variety across diverse environments. The results of the combined mean analysis, multivariate and univariate models revealed that Bulala is a high yielder (3.46 tons ha<sup>−1</sup>) and stable variety across all test environments, while Mukiye variety has a high yield (3.43 tons ha<sup>−1</sup>) but is not as stable or adaptive to multiple locations. As a result, Bulala was recommended for further demonstration and popularization in test locations and places with similar agroecologies under irrigation.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20574","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dani Degenhardt, Angeline Van Dongen, Çağdaş Kera Yücel, Amanda Schoonmaker
The consolidation of oil sands tailings is a cost- and time-consuming process that requires treatment via active (e.g., centrifugation) and passive (e.g., self-weight consolidation) methods. The use of plants to dewater tailings is a promising concept and has previously been evaluated using agronomic grass species in greenhouse studies. This greenhouse study evaluated the short-term survivorship and growth of 32 upland and lowland native plant species (12 forbs, 14 graminoids, and six woody plants) in centrifuged tailings and benchmarked their performance against reclamation soil and undisturbed forest soil. All plant species were propagated from seed and transplanted as seedlings into containers filled with one of the three substrates. After 42 days, the height (woody species only) and total aboveground biomass were determined for all living plants. As expected, the mortality of seedlings in tailings was higher than plants grown in the other two substrates. Graminoid species, regardless of species community type (wetland or upland), had higher survival probabilities and growth compared to forb or woody species across all substrates. Of forbs and woody species evaluated, Geum aleppicum and Populus tremuloides showed the most promise amongst the upland species, and Rumex occidentalis was the wetland equivalent.
{"title":"Short-term survival and growth of 32 native boreal plants on treated oil sands tailings","authors":"Dani Degenhardt, Angeline Van Dongen, Çağdaş Kera Yücel, Amanda Schoonmaker","doi":"10.1002/agg2.20577","DOIUrl":"https://doi.org/10.1002/agg2.20577","url":null,"abstract":"<p>The consolidation of oil sands tailings is a cost- and time-consuming process that requires treatment via active (e.g., centrifugation) and passive (e.g., self-weight consolidation) methods. The use of plants to dewater tailings is a promising concept and has previously been evaluated using agronomic grass species in greenhouse studies. This greenhouse study evaluated the short-term survivorship and growth of 32 upland and lowland native plant species (12 forbs, 14 graminoids, and six woody plants) in centrifuged tailings and benchmarked their performance against reclamation soil and undisturbed forest soil. All plant species were propagated from seed and transplanted as seedlings into containers filled with one of the three substrates. After 42 days, the height (woody species only) and total aboveground biomass were determined for all living plants. As expected, the mortality of seedlings in tailings was higher than plants grown in the other two substrates. Graminoid species, regardless of species community type (wetland or upland), had higher survival probabilities and growth compared to forb or woody species across all substrates. Of forbs and woody species evaluated, <i>Geum aleppicum</i> and <i>Populus tremuloides</i> showed the most promise amongst the upland species, and <i>Rumex occidentalis</i> was the wetland equivalent.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20577","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142525182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andre A. Diatta, César Bassène, Anicet G. B. Manga, Yolande Senghor, Mariama Sambou, Cheikh Mbow
The integration of aquaculture and agriculture in arid and semi-arid environments is crucial for maximizing water and land productivity, especially considering the increasing global water scarcity and the simultaneous use of water for crop and fish production. A greenhouse study was conducted to determine the effects of fish effluent on the growth, yield parameters, and yield of cowpea (Vigna unguiculata). The experiment involved 13 fertilization treatments, including three types of irrigation water (river water—control, Nile tilapia (Oreochromis niloticus), African sharp-toothed catfish (Clarias gariepinus), four fertilizers (poultry, cattle, and sheep manures at 10 t ha−1), recommended rate of inorganic fertilizer (150 kg ha−1 of NPK 6-20-10), and six mixed treatments with fish effluent and 50% of the applied rate of manure alone (5 t ha−1). The combined use of C. gariepinus effluent + 50% poultry manure significantly increased stem diameter, nodules per plant, pods per plant, and seed yield compared to NPK treatments. The shortest days to reach 50% flowering were obtained with the effluent of O. niloticus + 50% sheep manure, C. gariepinus/O. niloticus + 50% poultry manure, and 10 t ha−1 poultry manure. However, fertilization treatments did not significantly influence the number of branches, pod and root length, number of pods per plant, 100-seed weight, and leaf chlorophyll concentrations. This study suggests that fish effluents, when combined with manure, can improve plant growth and seed yield, providing a cost-effective alternative to inorganic fertilizers for smallholder farmers.
{"title":"Enhancing the sustainability of cowpea production through the integrated use of fish effluents and animal manure","authors":"Andre A. Diatta, César Bassène, Anicet G. B. Manga, Yolande Senghor, Mariama Sambou, Cheikh Mbow","doi":"10.1002/agg2.20578","DOIUrl":"https://doi.org/10.1002/agg2.20578","url":null,"abstract":"<p>The integration of aquaculture and agriculture in arid and semi-arid environments is crucial for maximizing water and land productivity, especially considering the increasing global water scarcity and the simultaneous use of water for crop and fish production. A greenhouse study was conducted to determine the effects of fish effluent on the growth, yield parameters, and yield of cowpea (<i>Vigna unguiculata</i>). The experiment involved 13 fertilization treatments, including three types of irrigation water (river water—control, Nile tilapia (<i>Oreochromis niloticus</i>), African sharp-toothed catfish (<i>Clarias gariepinus</i>), four fertilizers (poultry, cattle, and sheep manures at 10 t ha<sup>−1</sup>), recommended rate of inorganic fertilizer (150 kg ha<sup>−1</sup> of NPK 6-20-10), and six mixed treatments with fish effluent and 50% of the applied rate of manure alone (5 t ha<sup>−1</sup>). The combined use of <i>C. gariepinus</i> effluent + 50% poultry manure significantly increased stem diameter, nodules per plant, pods per plant, and seed yield compared to NPK treatments. The shortest days to reach 50% flowering were obtained with the effluent of <i>O. niloticus</i> + 50% sheep manure, <i>C. gariepinus</i>/<i>O. niloticus</i> + 50% poultry manure, and 10 t ha<sup>−1</sup> poultry manure. However, fertilization treatments did not significantly influence the number of branches, pod and root length, number of pods per plant, 100-seed weight, and leaf chlorophyll concentrations. This study suggests that fish effluents, when combined with manure, can improve plant growth and seed yield, providing a cost-effective alternative to inorganic fertilizers for smallholder farmers.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20578","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. C. Ortel, T. L. Roberts, L. C. Purcell, W. J. Ross, K. A. Hoegenauer, C. A. Followell, M. Victorio Pessotto
Potassium (K) nutrition and drought stress affect soybean (Glycine max (L.) Merr.) vigor and productivity through the combined impacts on water regulation. A study was conducted with soybean grown in 18.9-L buckets under a rain out shelter to determine how the interaction between these crop stresses at various growth stages influences the crop leaf K concentration, biomass production, total K uptake (TKU), grain yield, and temperature of the uppermost fully expanded trifoliate. Treatments included soybean grown with and without preplant fertilizer K, soil moisture at 50% (drought) or 80% (well-watered) field capacity, imposed drought during vegetative growth (V3–V7), flowering (R1–R3), pod development (R4–early R6), and seed development (R5–mid-R6) on two different silt loam soils. Widespread K deficiencies were observed during the study across all treatments. Drought stress significantly (p < 0.05) reduced the TKU, aboveground biomass production, and grain yield. The crop growth stage when drought stress was imposed was a significant factor, with greater reductions in plant response parameters when stress was imposed during reproductive growth. Preplant fertilizer K increased trifoliolate K concentrations and TKU in drought conditions, but did not increase the grain yield of well-watered soybean. Leaf temperature increased when under drought stress compared to well-watered soybean (p < 0.0001) but the impact of crop K nutrition status on leaf temperature was inconclusive because of widespread K deficiencies. Results emphasize the complexity of the interactions between K nutrition and drought stress in soybean, as drought stress impeded K uptake, exacerbated K deficiencies, and limited yield.
{"title":"Interaction of drought stress and potassium deficiency on soybean vigor and leaf temperature","authors":"C. C. Ortel, T. L. Roberts, L. C. Purcell, W. J. Ross, K. A. Hoegenauer, C. A. Followell, M. Victorio Pessotto","doi":"10.1002/agg2.20576","DOIUrl":"https://doi.org/10.1002/agg2.20576","url":null,"abstract":"<p>Potassium (K) nutrition and drought stress affect soybean (<i>Glycine max</i> (L.) Merr.) vigor and productivity through the combined impacts on water regulation. A study was conducted with soybean grown in 18.9-L buckets under a rain out shelter to determine how the interaction between these crop stresses at various growth stages influences the crop leaf K concentration, biomass production, total K uptake (TKU), grain yield, and temperature of the uppermost fully expanded trifoliate. Treatments included soybean grown with and without preplant fertilizer K, soil moisture at 50% (drought) or 80% (well-watered) field capacity, imposed drought during vegetative growth (V3–V7), flowering (R1–R3), pod development (R4–early R6), and seed development (R5–mid-R6) on two different silt loam soils. Widespread K deficiencies were observed during the study across all treatments. Drought stress significantly (<i>p</i> < 0.05) reduced the TKU, aboveground biomass production, and grain yield. The crop growth stage when drought stress was imposed was a significant factor, with greater reductions in plant response parameters when stress was imposed during reproductive growth. Preplant fertilizer K increased trifoliolate K concentrations and TKU in drought conditions, but did not increase the grain yield of well-watered soybean. Leaf temperature increased when under drought stress compared to well-watered soybean (<i>p</i> < 0.0001) but the impact of crop K nutrition status on leaf temperature was inconclusive because of widespread K deficiencies. Results emphasize the complexity of the interactions between K nutrition and drought stress in soybean, as drought stress impeded K uptake, exacerbated K deficiencies, and limited yield.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20576","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Little is known about the relative impact of lighting duration and light intensity on lettuce production, as well as whether daily light integrals (DLIs) play a significant role during different plant growth stages. Four DLIs were tested: 8.64, 11.52, 12.96, and 17.28 mol m−2 day−1 as supplemental lighting, which were obtained from a combination of supplemental light intensities at 200 and 300 µmol m−2 day−1 for 12 and 16 h. Sunlight was used as control. A direct correlation was observed between DLIs and yield, total fresh weight, and total dry weight. Under supplemental lighting, relative growth rate (RGR) increased due to an increase in net assimilation rate (NAR) rather than in leaf area ratio (LAR). Plants in the seedling stage were more sensitive to an elevation in DLI than in the head stage. This was confirmed by a greater increase in NAR compared to their corresponding control under the same DLI. Increasing DLI also improved lettuce quality via reducing nitrate and increasing protein content. Higher DLIs (12.96 and 17.28 mol m−2 day−1) led to a decrease in maximum quantum yield of photosystem II and an increase in performance index. In conclusion, manipulating RGR through NAR adjustments proved to be more effective than changes in LAR, and adjusting supplemental DLI at each stage was necessary to achieve a larger NAR and, consequently, a larger RGR.
{"title":"Trait component analysis of lettuce in response to daily light integrals at two growth stages","authors":"Hossein Sheikhi, Mojtaba Delshad, Sasan Aliniaeifard, Mesbah Babalar, Rasool Nasiri, Seyed Habib Shojaei, Kamahldin Haghbeen","doi":"10.1002/agg2.20579","DOIUrl":"https://doi.org/10.1002/agg2.20579","url":null,"abstract":"<p>Little is known about the relative impact of lighting duration and light intensity on lettuce production, as well as whether daily light integrals (DLIs) play a significant role during different plant growth stages. Four DLIs were tested: 8.64, 11.52, 12.96, and 17.28 mol m<sup>−2</sup> day<sup>−1</sup> as supplemental lighting, which were obtained from a combination of supplemental light intensities at 200 and 300 µmol m<sup>−2</sup> day<sup>−1</sup> for 12 and 16 h. Sunlight was used as control. A direct correlation was observed between DLIs and yield, total fresh weight, and total dry weight. Under supplemental lighting, relative growth rate (RGR) increased due to an increase in net assimilation rate (NAR) rather than in leaf area ratio (LAR). Plants in the seedling stage were more sensitive to an elevation in DLI than in the head stage. This was confirmed by a greater increase in NAR compared to their corresponding control under the same DLI. Increasing DLI also improved lettuce quality via reducing nitrate and increasing protein content. Higher DLIs (12.96 and 17.28 mol m<sup>−2</sup> day<sup>−1</sup>) led to a decrease in maximum quantum yield of photosystem II and an increase in performance index. In conclusion, manipulating RGR through NAR adjustments proved to be more effective than changes in LAR, and adjusting supplemental DLI at each stage was necessary to achieve a larger NAR and, consequently, a larger RGR.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20579","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142449194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ravinder Singh, Steven Sawatzky, Matthew Thomas, Samuel Akin, William R. Raun, Hailin Zhang, D. Brian Arnall
The interaction between nitrogen (N), phosphorus (P), and potassium (K) fertilizers significantly impacts the uptake of micronutrients in corn, influencing their availability in soil and uptake by plants. Understanding the interaction of macro- and micronutrients is a prerequisite to targeting nutrient balance in crop production. Therefore, a 2-year field experiment was conducted to determine the effect of NPK fertilization on micronutrient uptake of rain-fed corn (Zea mays L.). A randomized complete block design was employed with 12 treatments replicated three times. Different combinations of N, P, and K fertilizer rates were investigated for micronutrient concentration and uptake in rain-fed corn. Findings revealed the order of nutrient accumulation in corn plants: iron (Fe) > manganese (Mn) > zinc (Zn) > copper (Cu). Nitrogen application influenced nutrient concentrations and uptake. Increasing N rates increased micronutrient concentrations in corn grain, except for Cu. Interestingly, Cu content in grains exhibited no correlation with nutrient supply, biomass, or other concentrations. As the N application rate increased, micronutrient content increased at early growth stage and physiological maturity. Phosphorus application showed negligible impact on grain micronutrient concentration and uptake. However, K application notably increased Mn, Fe, and Cu uptake in grains. This study underscores the need to consider not only grain yield but also nutritional quality when determining optimal NPK rates in rain-fed corn cultivation.
{"title":"Micronutrients concentration and content in corn as affected by nitrogen, phosphorus, and potassium fertilization","authors":"Ravinder Singh, Steven Sawatzky, Matthew Thomas, Samuel Akin, William R. Raun, Hailin Zhang, D. Brian Arnall","doi":"10.1002/agg2.20568","DOIUrl":"https://doi.org/10.1002/agg2.20568","url":null,"abstract":"<p>The interaction between nitrogen (N), phosphorus (P), and potassium (K) fertilizers significantly impacts the uptake of micronutrients in corn, influencing their availability in soil and uptake by plants. Understanding the interaction of macro- and micronutrients is a prerequisite to targeting nutrient balance in crop production. Therefore, a 2-year field experiment was conducted to determine the effect of NPK fertilization on micronutrient uptake of rain-fed corn (<i>Zea mays</i> L.). A randomized complete block design was employed with 12 treatments replicated three times. Different combinations of N, P, and K fertilizer rates were investigated for micronutrient concentration and uptake in rain-fed corn. Findings revealed the order of nutrient accumulation in corn plants: iron (Fe) > manganese (Mn) > zinc (Zn) > copper (Cu). Nitrogen application influenced nutrient concentrations and uptake. Increasing N rates increased micronutrient concentrations in corn grain, except for Cu. Interestingly, Cu content in grains exhibited no correlation with nutrient supply, biomass, or other concentrations. As the N application rate increased, micronutrient content increased at early growth stage and physiological maturity. Phosphorus application showed negligible impact on grain micronutrient concentration and uptake. However, K application notably increased Mn, Fe, and Cu uptake in grains. This study underscores the need to consider not only grain yield but also nutritional quality when determining optimal NPK rates in rain-fed corn cultivation.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20568","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abbas Saidi, Ali Barati, Habibollah Ghazvini, Zohreh Hajibarat
Successful improvement of stable genotypes is dependent on the interaction of genotype with environment, which has a great influence on breeding new barley (Hordeum vulgare) varieties. The main objectives of this study were to (1) evaluate the effectiveness of drought tolerance indices for the selection of drought-tolerant barley genotypes, (2) identify stable high-yielding genotypes in variable environments, and (3) survey physiological traits of five contrasting genotypes under water deficit. In this experiment, 18 spring barley genotypes were evaluated under two moisture regimes (normal and deficit irrigations) for 2 years during the crop periods of 2022–2023 in Varamin Agriculture Experimental Station. In order to identify drought-tolerant barley genotypes in response to water deficit, GGE (genotype and genotype by environment interaction) biplot and AMMI (additive main effects and multiplicative interaction) analysis, stability parameters, and drought indices under water deficit and normal condition were used. Also, physiological traits in three tissues (leaf, penultimate, and peduncle) were measured. Based on our results, AMMI and GGE biplot analysis revealed that the G15 genotype was superior to other genotypes under water-deficit condition. Based on the physiological traits, the G3 and G15 had higher chlorophyll content and carotenoids than other genotypes under water deficit as compared to normal condition. Our results demonstrate the efficiency of the stability evaluation techniques to select genotypes that are high-yielding and responsive to drought stress condition.
{"title":"Combination of AMMI, GGE biplot, stability parameters, and physiological traits in promising barley genotypes under water-deficit condition","authors":"Abbas Saidi, Ali Barati, Habibollah Ghazvini, Zohreh Hajibarat","doi":"10.1002/agg2.20575","DOIUrl":"https://doi.org/10.1002/agg2.20575","url":null,"abstract":"<p>Successful improvement of stable genotypes is dependent on the interaction of genotype with environment, which has a great influence on breeding new barley (<i>Hordeum vulgare</i>) varieties. The main objectives of this study were to (1) evaluate the effectiveness of drought tolerance indices for the selection of drought-tolerant barley genotypes, (2) identify stable high-yielding genotypes in variable environments, and (3) survey physiological traits of five contrasting genotypes under water deficit. In this experiment, 18 spring barley genotypes were evaluated under two moisture regimes (normal and deficit irrigations) for 2 years during the crop periods of 2022–2023 in Varamin Agriculture Experimental Station. In order to identify drought-tolerant barley genotypes in response to water deficit, GGE (genotype and genotype by environment interaction) biplot and AMMI (additive main effects and multiplicative interaction) analysis, stability parameters, and drought indices under water deficit and normal condition were used. Also, physiological traits in three tissues (leaf, penultimate, and peduncle) were measured. Based on our results, AMMI and GGE biplot analysis revealed that the G15 genotype was superior to other genotypes under water-deficit condition. Based on the physiological traits, the G3 and G15 had higher chlorophyll content and carotenoids than other genotypes under water deficit as compared to normal condition. Our results demonstrate the efficiency of the stability evaluation techniques to select genotypes that are high-yielding and responsive to drought stress condition.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20575","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Harpreet Kaur, Gurbir Singh, Karl Williard, Jon Schoonover, Kelly A. Nelson, Gurpreet Kaur
Winter cover crops (CCs) have the potential to reduce phosphorus (P) loss by temporarily fixing P into CC biomass. A field experiment with no-tillage (NT) and conventional tillage (CT) was used to study the ability of different CC species planted after corn (Zea mays L.) and soybean (Glycine max L.) harvests to reduce the P availability in soil solution. The effect of three crop rotations (corn–no CC–soybean–no CC [C–S], corn–cereal rye (Secale cereale)–soybean–hairy vetch (Vicia villosa) [C–R–S–HV], corn–cereal rye–soybean–oats (Avena sativa)+ radish (Raphanus sativus L.) [C–R–S–OR]) and two tillage (NT and CT) treatments was determined on soil available P and soil solution P content through pan (A horizon) and tension (100-cm depth) cup lysimeters. The experiment was set up as a randomized complete block design with tillage as a split factor with three replicates. Over the study period, incorporating hairy vetch in C–R–S–HV rotation reduced the Mehlich-3 P content in soil by 26%–29% compared to the C–S and C–R–S–OR rotation. Both CC rotations (C–R–S–HV and C–R–S–OR) were effective in reducing dissolved reactive P (DRP) concentration in pan and tension cup lysimeters compared to the C–S in both CT and NT systems. However, these results varied with CC species grown and seasonal variability in precipitation. A significantly lower DRP load with crop rotation and tillage treatments was observed mainly during the CC growing season. During the study period, crop rotations with reduced labile soil P content and DRP loss were ranked in an order of C–R–S–HV > C–R–S–OR > C–S. Overall, this study showed that CCs have the potential in both CT and NT systems to significantly reduce P in soil and soil solution, and these effects are resilient to a wide range of precipitation conditions.
冬季覆盖作物(CC)可将磷暂时固定在CC生物量中,从而减少磷的流失。一项采用免耕(NT)和常规耕作(CT)的田间试验被用来研究在玉米(Zea mays L.)和大豆(Glycine max L.)收获后种植的不同CC品种降低土壤溶液中可利用磷的能力。三种作物轮作(玉米-无 CC-大豆-无 CC [C-S]、玉米-黑麦(Secale cereale)-大豆-毛薇菜(Vicia villosa)[C-R-S-HV]、玉米-黑麦-大豆-燕麦(Avena sativa)+萝卜(Raphanus sativus L.C-R-S-OR])和两种耕作(NT 和 CT)处理对土壤可利用钾和土壤溶液钾含量的影响。试验采用随机完全区组设计,以耕作为分割因子,设三个重复。在研究期间,与 C-S 和 C-R-S-OR 轮作相比,在 C-R-S-HV 轮作中种植毛茸茸的 vetch 可使土壤中的 Mehlich-3 P 含量减少 26%-29%。在 CT 和 NT 系统中,与 C-S 轮作相比,CC 轮作(C-R-S-HV 和 C-R-S-OR)都能有效降低盘式和张力杯式溶液池中的溶解性活性磷(DRP)浓度。然而,这些结果随种植的 CC 种类和降水的季节性变化而变化。主要在 CC 生长季节,轮作和耕作处理的 DRP 负荷明显降低。在研究期间,轮作减少了土壤中的易失性 P 含量和 DRP 损失,轮作顺序为 C-R-S-HV > C-R-S-OR > C-S。总之,这项研究表明,在CT和NT系统中,CC都有可能显著减少土壤和土壤溶液中的钾,而且这些效果能够适应各种降水条件。
{"title":"Tillage and cover cropping influence phosphorus dynamics in soil and water pools","authors":"Harpreet Kaur, Gurbir Singh, Karl Williard, Jon Schoonover, Kelly A. Nelson, Gurpreet Kaur","doi":"10.1002/agg2.20570","DOIUrl":"https://doi.org/10.1002/agg2.20570","url":null,"abstract":"<p>Winter cover crops (CCs) have the potential to reduce phosphorus (P) loss by temporarily fixing P into CC biomass. A field experiment with no-tillage (NT) and conventional tillage (CT) was used to study the ability of different CC species planted after corn (<i>Zea mays</i> L.) and soybean (<i>Glycine max</i> L.) harvests to reduce the P availability in soil solution. The effect of three crop rotations (corn–no CC–soybean–no CC [C–S], corn–cereal rye (<i>Secale cereale</i>)–soybean–hairy vetch (<i>Vicia villosa</i>) [C–R–S–HV], corn–cereal rye–soybean–oats (<i>Avena sativa</i>)+ radish (<i>Raphanus sativus</i> L.) [C–R–S–OR]) and two tillage (NT and CT) treatments was determined on soil available P and soil solution P content through pan (A horizon) and tension (100-cm depth) cup lysimeters. The experiment was set up as a randomized complete block design with tillage as a split factor with three replicates. Over the study period, incorporating hairy vetch in C–R–S–HV rotation reduced the Mehlich-3 P content in soil by 26%–29% compared to the C–S and C–R–S–OR rotation. Both CC rotations (C–R–S–HV and C–R–S–OR) were effective in reducing dissolved reactive P (DRP) concentration in pan and tension cup lysimeters compared to the C–S in both CT and NT systems. However, these results varied with CC species grown and seasonal variability in precipitation. A significantly lower DRP load with crop rotation and tillage treatments was observed mainly during the CC growing season. During the study period, crop rotations with reduced labile soil P content and DRP loss were ranked in an order of C–R–S–HV > C–R–S–OR > C–S. Overall, this study showed that CCs have the potential in both CT and NT systems to significantly reduce P in soil and soil solution, and these effects are resilient to a wide range of precipitation conditions.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20570","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142429554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Ballester, Rodrigo Filev-Maia, John Hornbuckle
The viability of modern horticulture heavily relies on adopting sustainable practices. Understanding soil spatial variability on heavy clay soils and its impact on young trees is crucial to design suitable soil and water management strategies that guarantee the sustainability of orchards. The objective of this study was to assess in an orchard with heavy clay soils of the Riverine Plain, NSW, the impact of soil spatial variability on the development of young almond (Prunus dulcis (Mill.) D. A. Webb) trees and evaluate the use of remote and proximal sensing tools for identifying threatening factors for the sustainability of the crop. Soil and aerial surveys were used to assess the soil and crop spatial variability in an 8.3-ha irrigation block. The site was divided into five areas based on apparent electrical conductivity (ECa) measurements where soil samples were collected. Tree growth, soil, and plant water status were monitored in two contrasting areas in ECa. In the first year of study, a significant and positive correlation was found between ECa and percentage of ground canopy cover. Soil analysis and soil moisture monitoring revealed that high values of exchangeable sodium percentage, which are indicative of sodic soils prone to dispersion, and limited water infiltration were the cause of the reduced tree growth in areas with low ECa. The impact of soil spatial variability on tree growth decreased in the second growing season due to weather and water management factors that influenced soil water content. This study showcases the usefulness of remote and proximal sensing in assessing potential soil-spatial-related issues in newly established orchards as well as the impact soil spatial variability can have on tree development in the first years after planting.
现代园艺的生存在很大程度上依赖于采用可持续的实践方法。了解重粘土的土壤空间变异性及其对幼树的影响,对于设计合适的水土管理策略以保证果园的可持续性至关重要。本研究的目的是评估新南威尔士州河岸平原重粘土果园中土壤空间变异性对杏仁(Prunus dulcis (Mill.) D. A. Webb)幼树生长的影响,并评估遥感和近距离传感工具的使用情况,以确定威胁作物可持续性的因素。在一个 8.3 公顷的灌溉区,利用土壤和航空勘测来评估土壤和作物的空间变异性。根据表观电导率(ECa)测量结果将灌溉区划分为五个区域,并采集了土壤样本。在 ECa 值对比强烈的两个区域监测树木生长、土壤和植物水分状况。第一年的研究发现,ECa 与地面树冠覆盖率之间存在显著的正相关关系。土壤分析和土壤水分监测结果表明,可交换钠百分比值高(表明土壤含钠量高、易流失)和水分渗透受限是导致低 ECa 地区树木生长量下降的原因。在第二个生长季,由于天气和水管理因素影响了土壤含水量,土壤空间变化对树木生长的影响有所减弱。这项研究展示了遥感和近距离传感在评估新建果园中潜在的土壤空间相关问题方面的实用性,以及土壤空间变异性在种植后最初几年对树木生长的影响。
{"title":"Impact of soil spatial variability on young almond trees: A case study on heavy clay soils","authors":"Carlos Ballester, Rodrigo Filev-Maia, John Hornbuckle","doi":"10.1002/agg2.20572","DOIUrl":"https://doi.org/10.1002/agg2.20572","url":null,"abstract":"<p>The viability of modern horticulture heavily relies on adopting sustainable practices. Understanding soil spatial variability on heavy clay soils and its impact on young trees is crucial to design suitable soil and water management strategies that guarantee the sustainability of orchards. The objective of this study was to assess in an orchard with heavy clay soils of the Riverine Plain, NSW, the impact of soil spatial variability on the development of young almond (<i>Prunus dulcis</i> (Mill.) D. A. Webb) trees and evaluate the use of remote and proximal sensing tools for identifying threatening factors for the sustainability of the crop. Soil and aerial surveys were used to assess the soil and crop spatial variability in an 8.3-ha irrigation block. The site was divided into five areas based on apparent electrical conductivity (EC<sub>a</sub>) measurements where soil samples were collected. Tree growth, soil, and plant water status were monitored in two contrasting areas in EC<sub>a</sub>. In the first year of study, a significant and positive correlation was found between EC<sub>a</sub> and percentage of ground canopy cover. Soil analysis and soil moisture monitoring revealed that high values of exchangeable sodium percentage, which are indicative of sodic soils prone to dispersion, and limited water infiltration were the cause of the reduced tree growth in areas with low EC<sub>a</sub>. The impact of soil spatial variability on tree growth decreased in the second growing season due to weather and water management factors that influenced soil water content. This study showcases the usefulness of remote and proximal sensing in assessing potential soil-spatial-related issues in newly established orchards as well as the impact soil spatial variability can have on tree development in the first years after planting.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20572","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jesus Loya, Sen Subramanian, Audrey Kalil, Clair Keene, Debankur Sanyal, Jed Eberly, Christopher Graham
Biological nitrogen fixation by rhizobia bacteria plays a pivotal role in sustainable agriculture by converting atmospheric nitrogen into a form that plants can assimilate, thereby reducing the need for synthetic fertilizers. This process can be dramatically reduced by various abiotic stressors. Native rhizobia strains, which are naturally occurring, may be better adapted to the local soil and climatic conditions, making them more resilient to stress factors such as drought, salinity, temperature extremes, and pH variations compared to commercial strains that may have been developed in and for different environments. This study aimed to compare the efficacy of native rhizobia species with a commercial inoculant and uninoculated controls in maintaining nitrogen fixation under induced stress by delayed planting in field peas over two growing seasons (2021 and 2022) in central South Dakota. Our findings indicate that native rhizobia, while not outperforming the commercial inoculant, demonstrated competitive nitrogen fixation capacities. Overall, total nitrogen fixation was not statistically different between a commercial inoculant and native rhizobia formulations. Planting date emerged as a significant factor influencing nitrogen fixation, with later planting substantially reducing overall effectiveness. These results highlight the potential of native rhizobia as an alternative to commercial inoculants and underscore the need for increased screening throughput and improved methods to assess rhizobia efficacy and nodule competition in field settings.
{"title":"Assessing the use of native rhizobia to improve nitrogen fixation under abiotic stress","authors":"Jesus Loya, Sen Subramanian, Audrey Kalil, Clair Keene, Debankur Sanyal, Jed Eberly, Christopher Graham","doi":"10.1002/agg2.20573","DOIUrl":"https://doi.org/10.1002/agg2.20573","url":null,"abstract":"<p>Biological nitrogen fixation by rhizobia bacteria plays a pivotal role in sustainable agriculture by converting atmospheric nitrogen into a form that plants can assimilate, thereby reducing the need for synthetic fertilizers. This process can be dramatically reduced by various abiotic stressors. Native rhizobia strains, which are naturally occurring, may be better adapted to the local soil and climatic conditions, making them more resilient to stress factors such as drought, salinity, temperature extremes, and pH variations compared to commercial strains that may have been developed in and for different environments. This study aimed to compare the efficacy of native rhizobia species with a commercial inoculant and uninoculated controls in maintaining nitrogen fixation under induced stress by delayed planting in field peas over two growing seasons (2021 and 2022) in central South Dakota. Our findings indicate that native rhizobia, while not outperforming the commercial inoculant, demonstrated competitive nitrogen fixation capacities. Overall, total nitrogen fixation was not statistically different between a commercial inoculant and native rhizobia formulations. Planting date emerged as a significant factor influencing nitrogen fixation, with later planting substantially reducing overall effectiveness. These results highlight the potential of native rhizobia as an alternative to commercial inoculants and underscore the need for increased screening throughput and improved methods to assess rhizobia efficacy and nodule competition in field settings.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 4","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20573","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}