Pub Date : 2024-12-01Epub Date: 2024-10-28DOI: 10.1152/ajpcell.00404.2024
Malhar S Chitnis, Xu Gao, Jennifer Marlena, Andrew W Holle
Primordial germ cells (PGCs) are the earliest progenitors of germline cells of the gonads in animals. The tissues that arise from primordial germ cells give rise to male and female gametes and are thus responsible for transmitting genetic information to subsequent generations. The development of gonads, from single cells to fully formed organs, is of great interest to the reproductive biology community. In most higher animals, PGCs are initially specified at a site away from the gonads. They then migrate across multiple tissue microenvironments to reach a mesodermal mass of cells called the genital ridge, where they associate with somatic cells to form sex-specific reproductive organs. Their migratory behavior has been studied extensively to identify which tissues they interact with and how this might affect gonad development. A crucial point overlooked by classical studies has been the physical environment experienced by PGCs as they migrate and the mechanical challenges they might encounter along the way. It has long been understood that migrating cells can sense and adapt to physical forces around them via a variety of mechanisms, and studies have shown that these mechanical signals can guide stem cell fate. In this review, we summarize the mechanical microenvironment of migrating PGCs in different organisms. We describe how cells can adapt to this environment and how this adaptation can influence cell fate. Finally, we propose that mechanical signals play a crucial role in the normal development of the germline and shed light on this unexplored area of developmental biology.
{"title":"The mechanical journey of primordial germ cells.","authors":"Malhar S Chitnis, Xu Gao, Jennifer Marlena, Andrew W Holle","doi":"10.1152/ajpcell.00404.2024","DOIUrl":"10.1152/ajpcell.00404.2024","url":null,"abstract":"<p><p>Primordial germ cells (PGCs) are the earliest progenitors of germline cells of the gonads in animals. The tissues that arise from primordial germ cells give rise to male and female gametes and are thus responsible for transmitting genetic information to subsequent generations. The development of gonads, from single cells to fully formed organs, is of great interest to the reproductive biology community. In most higher animals, PGCs are initially specified at a site away from the gonads. They then migrate across multiple tissue microenvironments to reach a mesodermal mass of cells called the genital ridge, where they associate with somatic cells to form sex-specific reproductive organs. Their migratory behavior has been studied extensively to identify which tissues they interact with and how this might affect gonad development. A crucial point overlooked by classical studies has been the physical environment experienced by PGCs as they migrate and the mechanical challenges they might encounter along the way. It has long been understood that migrating cells can sense and adapt to physical forces around them via a variety of mechanisms, and studies have shown that these mechanical signals can guide stem cell fate. In this review, we summarize the mechanical microenvironment of migrating PGCs in different organisms. We describe how cells can adapt to this environment and how this adaptation can influence cell fate. Finally, we propose that mechanical signals play a crucial role in the normal development of the germline and shed light on this unexplored area of developmental biology.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1532-C1545"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-30DOI: 10.1152/ajpcell.00553.2024
Wayne X Du, Craig A Goodman, Paul Gregorevic
Ubiquitination is a posttranslational modification that plays important roles in regulating protein stability, function, localization, and protein-protein interactions. Proteins are ubiquitinated via a process involving specific E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. Simultaneously, protein ubiquitination is opposed by deubiquitinating enzymes (DUBs). DUB-mediated deubiquitination can change protein function or fate and recycle ubiquitin to maintain the free ubiquitin pool. Approximately 100 DUBs have been identified in the mammalian genome, and characterized into seven classes [ubiquitin-specific protease (USP), ovarian tumor proteases (OTU), ubiquitin C-terminal hydrolase (UCH), Machado-Josephin disease (MJD), JAB1/MPN/Mov34 metalloprotease (JAMM), Ub-containing novel DUB family (MINDY), and zinc finger containing ubiquitin peptidase (ZUP) classes]. Of these 100 DUBs, there has only been relatively limited investigation of 20 specifically in skeletal muscle cells, in vitro or in vivo, using overexpression, knockdown, and knockout models. To date, evidence indicates roles for individual DUBs in regulating aspects of myogenesis, protein turnover, muscle mass, and muscle metabolism. However, the exact mechanism by which these DUBs act (i.e., the specific targets of these DUBs and the type of ubiquitin chains they target) is still largely unknown, underscoring how little we know about DUBs in skeletal muscle. This review endeavors to comprehensively summarize the current state of knowledge of the function of DUBs in skeletal muscle and highlight the opportunities for gaining a greater understanding through further research into this important area of skeletal muscle and ubiquitin biology.
{"title":"Deubiquitinases in skeletal muscle-the underappreciated side of the ubiquitination coin.","authors":"Wayne X Du, Craig A Goodman, Paul Gregorevic","doi":"10.1152/ajpcell.00553.2024","DOIUrl":"10.1152/ajpcell.00553.2024","url":null,"abstract":"<p><p>Ubiquitination is a posttranslational modification that plays important roles in regulating protein stability, function, localization, and protein-protein interactions. Proteins are ubiquitinated via a process involving specific E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. Simultaneously, protein ubiquitination is opposed by deubiquitinating enzymes (DUBs). DUB-mediated deubiquitination can change protein function or fate and recycle ubiquitin to maintain the free ubiquitin pool. Approximately 100 DUBs have been identified in the mammalian genome, and characterized into seven classes [ubiquitin-specific protease (USP), ovarian tumor proteases (OTU), ubiquitin C-terminal hydrolase (UCH), Machado-Josephin disease (MJD), JAB1/MPN/Mov34 metalloprotease (JAMM), Ub-containing novel DUB family (MINDY), and zinc finger containing ubiquitin peptidase (ZUP) classes]. Of these 100 DUBs, there has only been relatively limited investigation of 20 specifically in skeletal muscle cells, in vitro or in vivo, using overexpression, knockdown, and knockout models. To date, evidence indicates roles for individual DUBs in regulating aspects of myogenesis, protein turnover, muscle mass, and muscle metabolism. However, the exact mechanism by which these DUBs act (i.e., the specific targets of these DUBs and the type of ubiquitin chains they target) is still largely unknown, underscoring how little we know about DUBs in skeletal muscle. This review endeavors to comprehensively summarize the current state of knowledge of the function of DUBs in skeletal muscle and highlight the opportunities for gaining a greater understanding through further research into this important area of skeletal muscle and ubiquitin biology.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1651-C1665"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-30DOI: 10.1152/ajpcell.00054.2024
Salah Aburahess, Laiji Li, Aashiq Hussain, Marya Obeidat, Parnian Alavi, Abul K Azad, Nadia Jahroudi, Barbara J Ballermann
TGFβ-inhibited membrane associated protein (TIMAP), the endothelial cell-predominant protein phosphatase 1β regulatory subunit also known as PPP1R16B, promotes in vitro endothelial cell proliferation and angiogenic sprouting. TIMAP was first identified as a target of TGF-β1-mediated repression, but the molecular pathways regulating its expression in endothelial cells are not well-defined. This study examined the role of bone morphogenetic factor 9 (BMP9), hypoxia, and angiogenic growth factors in the regulation of TIMAP expression and determined whether TIMAP plays a role in tumor angiogenesis and growth in vivo. BMP9, which potently activated the SMAD1/5/8 pathway in endothelial cells, significantly reduced TIMAP mRNA and protein expression. Conversely, hypoxia and the prolyl hydroxylase inhibitor Roxadustat raised TIMAP mRNA and protein levels by inhibiting the SMAD1/5/8 pathway. Angiogenic growth factors, including VEGFA and IGF-I, raised endothelial TIMAP levels partly by attenuating SMAD1/5/8 pathway activation, but also through SMAD1/5/8-independent mechanisms. Cultured breast cancer E0771 cells released mediators that raised TIMAP expression in endothelial cells, effects that were inhibited by the VEGF inhibitor Sunitinib in conjunction with the IGF-1 inhibitor Picropodophyllin. In the mouse E0771 breast cancer model in vivo, tumor growth and tumor angiogenesis were markedly attenuated in TIMAP deficient, compared with wild-type littermates. These findings indicate that TIMAP plays a critical proangiogenic function during tumor angiogenesis in vivo, likely through hypoxia-driven inhibition of the SMAD1/5/8 pathway and through the elaboration of angiogenic growth factors by tumor cells.NEW & NOTEWORTHY The protein phosphatase 1 regulatory subunit TGFβ-inhibited membrane associated protein (TIMAP), known to activate AKT in endothelial cells (EC), was shown here to be repressed by bone morphogenetic factor 9 (BMP9). Hypoxia and angiogenic growth factors induced TIMAP expression by inhibiting the BMP9 pathway. In a mouse breast cancer model, TIMAP deletion inhibited tumor angiogenesis and tumor growth. Therefore, the proangiogenic functions of TIMAP are induced by hypoxia and angiogenic growth factors.
{"title":"Hypoxia-induced TIMAP upregulation in endothelial cells and TIMAP-dependent tumor angiogenesis.","authors":"Salah Aburahess, Laiji Li, Aashiq Hussain, Marya Obeidat, Parnian Alavi, Abul K Azad, Nadia Jahroudi, Barbara J Ballermann","doi":"10.1152/ajpcell.00054.2024","DOIUrl":"10.1152/ajpcell.00054.2024","url":null,"abstract":"<p><p>TGFβ-inhibited membrane associated protein (TIMAP), the endothelial cell-predominant protein phosphatase 1β regulatory subunit also known as PPP1R16B, promotes in vitro endothelial cell proliferation and angiogenic sprouting. TIMAP was first identified as a target of TGF-β1-mediated repression, but the molecular pathways regulating its expression in endothelial cells are not well-defined. This study examined the role of bone morphogenetic factor 9 (BMP9), hypoxia, and angiogenic growth factors in the regulation of TIMAP expression and determined whether TIMAP plays a role in tumor angiogenesis and growth in vivo. BMP9, which potently activated the SMAD1/5/8 pathway in endothelial cells, significantly reduced TIMAP mRNA and protein expression. Conversely, hypoxia and the prolyl hydroxylase inhibitor Roxadustat raised TIMAP mRNA and protein levels by inhibiting the SMAD1/5/8 pathway. Angiogenic growth factors, including VEGFA and IGF-I, raised endothelial TIMAP levels partly by attenuating SMAD1/5/8 pathway activation, but also through SMAD1/5/8-independent mechanisms. Cultured breast cancer E0771 cells released mediators that raised TIMAP expression in endothelial cells, effects that were inhibited by the VEGF inhibitor Sunitinib in conjunction with the IGF-1 inhibitor Picropodophyllin. In the mouse E0771 breast cancer model in vivo, tumor growth and tumor angiogenesis were markedly attenuated in TIMAP deficient, compared with wild-type littermates. These findings indicate that TIMAP plays a critical proangiogenic function during tumor angiogenesis in vivo, likely through hypoxia-driven inhibition of the SMAD1/5/8 pathway and through the elaboration of angiogenic growth factors by tumor cells.<b>NEW & NOTEWORTHY</b> The protein phosphatase 1 regulatory subunit TGFβ-inhibited membrane associated protein (TIMAP), known to activate AKT in endothelial cells (EC), was shown here to be repressed by bone morphogenetic factor 9 (BMP9). Hypoxia and angiogenic growth factors induced TIMAP expression by inhibiting the BMP9 pathway. In a mouse breast cancer model, TIMAP deletion inhibited tumor angiogenesis and tumor growth. Therefore, the proangiogenic functions of TIMAP are induced by hypoxia and angiogenic growth factors.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1359-C1372"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-04DOI: 10.1152/ajpcell.00466.2024
Charlotte Tacke, Peter Landgraf, Daniela C Dieterich, Andrea Kröger
Neuroplasticity is the brain's ability to reorganize and modify its neuronal connections in response to environmental stimuli, experiences, learning, and disease processes. This encompasses a variety of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in neuronal structure and function, and the generation of new neurons. Proper functioning of synapses, which facilitate neuron-to-neuron communication, is crucial for brain activity. Neuronal synapse homeostasis, which involves regulating and maintaining synaptic strength and function in the central nervous system (CNS), is vital for this process. Disruptions in synaptic balance, due to factors like inflammation, aging, or infection, can lead to impaired brain function. This review highlights the main aspects and mechanisms underlying synaptic homeostasis, particularly in the context of aging, infection, and inflammation.
{"title":"The fate of neuronal synapse homeostasis in aging, infection, and inflammation.","authors":"Charlotte Tacke, Peter Landgraf, Daniela C Dieterich, Andrea Kröger","doi":"10.1152/ajpcell.00466.2024","DOIUrl":"10.1152/ajpcell.00466.2024","url":null,"abstract":"<p><p>Neuroplasticity is the brain's ability to reorganize and modify its neuronal connections in response to environmental stimuli, experiences, learning, and disease processes. This encompasses a variety of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in neuronal structure and function, and the generation of new neurons. Proper functioning of synapses, which facilitate neuron-to-neuron communication, is crucial for brain activity. Neuronal synapse homeostasis, which involves regulating and maintaining synaptic strength and function in the central nervous system (CNS), is vital for this process. Disruptions in synaptic balance, due to factors like inflammation, aging, or infection, can lead to impaired brain function. This review highlights the main aspects and mechanisms underlying synaptic homeostasis, particularly in the context of aging, infection, and inflammation.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1546-C1563"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-22DOI: 10.1152/ajpcell.00630.2024
Lisa Hahnefeld, Juliane Hackel, Sandra Trautmann, Carlo Angioni, Yannick Schreiber, Robert Gurke, Dominique Thomas, Sabine Wicker, Gerd Geisslinger, Irmgard Tegeder
Perceived stress is thought to contribute to the pathogenesis of metabolic, vascular, mental, and immune diseases, with different susceptibilities in women and men. The present study investigated if and how perceived stress and/or demographic variables, including sex, age, body mass index, regular prescription drugs, occasional analgesics, or dietary supplements, manifested in plasma lipidomic profiles obtained by targeted and untargeted mass spectrometry analyses. The study included 217 healthy women and 108 healthy men, aged 18-68 yr, who were recruited in a 2:1 female:male ratio to account for women with/without contraceptives. As expected, dehydroepiandrosterone sulfate (DHEAS) and ceramides were higher in men than women, and DHEAS decreased with age, whereas ceramides increased. Contrary to expectations, neither DHEAS nor ceramides were associated with perceived stress [Perceived Stress Questionnaire with 30 questions (PSQ30 questionnaire)], which was, however, associated with BMI in men but not in women. None of the lipid species or classes showed a similar "age × sex × BMI" interaction, but the endocannabinoid palmitoylethanolamide (PEA) correlated with body mass index (BMI) and hypertension. Independent of perceived stress, lysophosphatidylcholines (LPCs) were lower in women than men, whereas LPC metabolites, lysophosphatidic acids (LPAs), were higher in women. The LPA:LPC ratio was particularly high in women using oral contraceptives, suggesting a strong hormone-induced extracellular conversion of LPCs to LPAs, which is catalyzed by the phospholipase D, autotaxin. The results reveal complex sex differences in perceived stress and lipidomic profiles, the latter being exacerbated by contraceptive use, but perceived stress and lipids were not directly correlated.NEW & NOTEWORTHY Perceived stress (PSQ questionnaire) depends on the interaction of "sex × age × BMI." Plasma lipid profiles depend on sex and age. Natural sex differences are exacerbated by the use of contraceptives. Perceived stress is not correlated with specific plasma lipids or lipidomic profiles. Women have high LPA:LPC ratios in association with high levels of autotaxin.
感知压力被认为是代谢、血管、精神和免疫疾病的发病机制之一,而女性和男性的易感性有所不同。本研究调查了感知到的压力和/或人口统计学变量(包括性别、年龄、体重指数、经常服用的处方药、偶尔服用的镇痛药或膳食补充剂)是否以及如何体现在通过靶向和非靶向质谱分析获得的血浆脂质体图谱中。研究对象包括 217 名健康女性和 108 名健康男性,年龄在 18-68 岁之间,男女比例为 2:1,以考虑到使用/未使用避孕药具的女性。不出所料,男性的硫酸脱氢表雄酮(DHEAS)和神经酰胺含量均高于女性,而且随着年龄的增长,DHEAS有所下降,而神经酰胺则有所增加。与预期相反,DHEAS 和神经酰胺均与压力感知(PSQ30 问卷)无关,但男性的压力感知与体重指数有关,而女性则与之无关。没有一种脂质或脂质类别显示出类似的 "年龄 X 性别 X BMI "相互作用,但内源性大麻素棕榈酰乙醇酰胺(PEA)与 BMI 和高血压相关。与感知压力无关,女性的溶血磷脂酰胆碱(LPCs)低于男性,而女性的 LPC 代谢物溶血磷脂酸(LPAs)高于男性。使用口服避孕药的女性体内 LPA 与 LPC 的比率特别高,这表明 LPCs 在细胞外转化为 LPAs 的过程中受到了激素的强烈诱导,而这种转化是由磷脂酶 D 和自体脂酶催化的。研究结果表明,在感知压力和脂质组学特征方面存在复杂的性别差异,使用避孕药会加剧后者,但感知压力和脂质并不直接相关。
{"title":"Healthy plasma lipidomic signatures depend on sex, age, body mass index, and contraceptives but not perceived stress.","authors":"Lisa Hahnefeld, Juliane Hackel, Sandra Trautmann, Carlo Angioni, Yannick Schreiber, Robert Gurke, Dominique Thomas, Sabine Wicker, Gerd Geisslinger, Irmgard Tegeder","doi":"10.1152/ajpcell.00630.2024","DOIUrl":"10.1152/ajpcell.00630.2024","url":null,"abstract":"<p><p>Perceived stress is thought to contribute to the pathogenesis of metabolic, vascular, mental, and immune diseases, with different susceptibilities in women and men. The present study investigated if and how perceived stress and/or demographic variables, including sex, age, body mass index, regular prescription drugs, occasional analgesics, or dietary supplements, manifested in plasma lipidomic profiles obtained by targeted and untargeted mass spectrometry analyses. The study included 217 healthy women and 108 healthy men, aged 18-68 yr, who were recruited in a 2:1 female:male ratio to account for women with/without contraceptives. As expected, dehydroepiandrosterone sulfate (DHEAS) and ceramides were higher in men than women, and DHEAS decreased with age, whereas ceramides increased. Contrary to expectations, neither DHEAS nor ceramides were associated with perceived stress [Perceived Stress Questionnaire with 30 questions (PSQ30 questionnaire)], which was, however, associated with BMI in men but not in women. None of the lipid species or classes showed a similar \"age × sex × BMI\" interaction, but the endocannabinoid palmitoylethanolamide (PEA) correlated with body mass index (BMI) and hypertension. Independent of perceived stress, lysophosphatidylcholines (LPCs) were lower in women than men, whereas LPC metabolites, lysophosphatidic acids (LPAs), were higher in women. The LPA:LPC ratio was particularly high in women using oral contraceptives, suggesting a strong hormone-induced extracellular conversion of LPCs to LPAs, which is catalyzed by the phospholipase D, autotaxin. The results reveal complex sex differences in perceived stress and lipidomic profiles, the latter being exacerbated by contraceptive use, but perceived stress and lipids were not directly correlated.<b>NEW & NOTEWORTHY</b> Perceived stress (PSQ questionnaire) depends on the interaction of \"sex × age × BMI.\" Plasma lipid profiles depend on sex and age. Natural sex differences are exacerbated by the use of contraceptives. Perceived stress is not correlated with specific plasma lipids or lipidomic profiles. Women have high LPA:LPC ratios in association with high levels of autotaxin.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1462-C1480"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-28DOI: 10.1152/ajpcell.00499.2024
Daniel Sastre, Magalí Colomer-Molera, Sara R Roig, Angela de Benito-Bueno, Paula G Socuéllamos, Gregorio Fernández-Ballester, Carmen Valenzuela, Antonio Felipe
The voltage-gated potassium channel Kv1.3 plays a crucial role in the immune system response. In leukocytes, the channel is co-expressed with the dominant negative regulatory subunit KCNE4, which associates with Kv1.3 to trigger intracellular retention and accelerate C-type inactivation of the channel. Previous research has demonstrated that the main association between these proteins occurs through both COOH-termini. However, these data fail to fully elucidate the KCNE4-dependent modulation of channel kinetics. In the present study, we analyzed the contribution of each KCNE4 domain to the modulation of Kv1.3. Our results further confirmed that the COOH-terminus of KCNE4 is the main determinant involved in the association-triggered intracellular retention of the channel. In addition, interactions throughout the transmembrane region were also observed. Both the COOH-terminus and, especially, the transmembrane domain of KCNE4 accentuated the C-type inactivation of Kv1.3. Our data provide, for the first time, the molecular effects that a KCNE peptide, such as KCNE4, exerts on a Shaker channel, such as Kv1.3. Our results pave the way for understanding the molecular mechanisms underlying potassium channel modulation and suggest that KCNE4 participates in the conformational rearrangement of the Kv1.3 architecture, altering the C-type inactivation of the channel.NEW & NOTEWORTHY This work defines, for the first time, the interactions between a Kv1 (Shaker) channel and a KCNE regulatory subunit. While the COOH-terminus of KCNE4 physically interacts with the channel, its transmembrane domain shapes the inactivation properties of the functional complex, fine-tuning the Kv1.3-dependent physiological response in leukocytes.
电压门控钾通道 Kv1.3 在免疫系统反应中发挥着至关重要的作用。在白细胞中,该通道与显性负调控亚基 KCNE4 共同表达,后者与 Kv1.3 结合,触发细胞内潴留,加速通道的 C 型失活。以前的研究表明,这些蛋白之间的主要联系是通过两个 C 端发生的。然而,这些数据未能完全阐明 KCNE4 对通道动力学的依赖性调节。在本研究中,我们分析了每个 KCNE4 结构域对调控 Kv1.3 的贡献。我们的研究结果进一步证实,KCNE4 的 C 端是参与关联触发的通道胞内滞留的主要决定因素。此外,我们还观察到了整个跨膜区域的相互作用。KCNE4 的 C 端,尤其是跨膜结构域,都加剧了 Kv1.3 的 C 型失活。我们的数据首次提供了 KCNE 肽(如 KCNE4)对振动器通道(如 Kv1.3)的分子影响。我们的研究结果为了解钾通道调节的分子机制铺平了道路,并表明 KCNE4 参与了 Kv1.3 结构的构象重排,改变了通道的 C 型失活。
{"title":"Molecular mapping of KCNE4-dependent regulation of Kv1.3.","authors":"Daniel Sastre, Magalí Colomer-Molera, Sara R Roig, Angela de Benito-Bueno, Paula G Socuéllamos, Gregorio Fernández-Ballester, Carmen Valenzuela, Antonio Felipe","doi":"10.1152/ajpcell.00499.2024","DOIUrl":"10.1152/ajpcell.00499.2024","url":null,"abstract":"<p><p>The voltage-gated potassium channel Kv1.3 plays a crucial role in the immune system response. In leukocytes, the channel is co-expressed with the dominant negative regulatory subunit KCNE4, which associates with Kv1.3 to trigger intracellular retention and accelerate C-type inactivation of the channel. Previous research has demonstrated that the main association between these proteins occurs through both COOH-termini. However, these data fail to fully elucidate the KCNE4-dependent modulation of channel kinetics. In the present study, we analyzed the contribution of each KCNE4 domain to the modulation of Kv1.3. Our results further confirmed that the COOH-terminus of KCNE4 is the main determinant involved in the association-triggered intracellular retention of the channel. In addition, interactions throughout the transmembrane region were also observed. Both the COOH-terminus and, especially, the transmembrane domain of KCNE4 accentuated the C-type inactivation of Kv1.3. Our data provide, for the first time, the molecular effects that a KCNE peptide, such as KCNE4, exerts on a <i>Shaker</i> channel, such as Kv1.3. Our results pave the way for understanding the molecular mechanisms underlying potassium channel modulation and suggest that KCNE4 participates in the conformational rearrangement of the Kv1.3 architecture, altering the C-type inactivation of the channel.<b>NEW & NOTEWORTHY</b> This work defines, for the first time, the interactions between a Kv1 (<i>Shaker</i>) channel and a KCNE regulatory subunit. While the COOH-terminus of KCNE4 physically interacts with the channel, its transmembrane domain shapes the inactivation properties of the functional complex, fine-tuning the Kv1.3-dependent physiological response in leukocytes.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1497-C1513"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diabetic encephalopathy (DE), a neurological complication of diabetes mellitus, has an unclear etiology. Shreds of evidence show that the nucleotide-binding oligomerization domain-like receptor family protein 3 (NLRP3) inflammasome-induced neuroinflammation and transcription factor EB (TFEB)-mediated autophagy impairment may take part in DE development. The cross talk between these two pathways and their contribution to DE remains to be explored. A mouse model of type 2 diabetes mellitus (T2DM) exhibiting cognitive dysfunction was created, along with high-glucose (HG) cultured BV2 cells. Following, 3-methyladenine (3-MA) and rapamycin were used to modulate autophagy. To evaluate the potential therapeutic benefits of TFEB in DE, we overexpressed and knocked down TFEB in both mice and cells. Autophagy impairment and NLRP3 inflammasome activation were noticed in T2DM mice and HG-cultured BV2 cells. The inflammatory response caused by NLRP3 inflammasome activation was decreased by rapamycin-induced autophagy enhancement, while 3-MA treatment further deteriorated it. Nuclear translocation and expression of TFEB were hampered in HG-cultured BV2 cells and T2DM mice. Exogenous TFEB overexpression boosted NLRP3 degradation via autophagy, which in turn alleviated microglial activation as well as ameliorated cognitive deficits and neuronal damage. In addition, TFEB knockdown exacerbated neuroinflammation by decreasing autophagy-mediated NLRP3 degradation. Our findings have unraveled the pathogenesis of a previously underappreciated disease, implying that the activation of NLRP3 inflammasome and impairment of autophagy in microglia are significant etiological factors in the DE. The TFEB-mediated autophagy pathway can reduce neuroinflammation by enhancing NLRP3 degradation. This could potentially serve as a viable and innovative treatment approach for DE.NEW & NOTEWORTHY This article delves into the intricate connections between inflammation, autophagy, diabetes, and neurodegeneration, with a particular focus on a disease that is not yet fully understood-diabetic encephalopathy (DE). TFEB emerges as a pivotal regulator in balancing autophagy and inflammation in DE. Our findings highlight the crucial function of the TFEB-mediated autophagy pathway in mitigating inflammatory damage in DE, suggesting a new treatment strategy.
{"title":"TFEB signaling promotes autophagic degradation of NLRP3 to attenuate neuroinflammation in diabetic encephalopathy.","authors":"Yijia Lin, Lizhen Cheng, Yixin Chen, Wei Li, Qihao Guo, Ya Miao","doi":"10.1152/ajpcell.00322.2024","DOIUrl":"10.1152/ajpcell.00322.2024","url":null,"abstract":"<p><p>Diabetic encephalopathy (DE), a neurological complication of diabetes mellitus, has an unclear etiology. Shreds of evidence show that the nucleotide-binding oligomerization domain-like receptor family protein 3 (NLRP3) inflammasome-induced neuroinflammation and transcription factor EB (TFEB)-mediated autophagy impairment may take part in DE development. The cross talk between these two pathways and their contribution to DE remains to be explored. A mouse model of type 2 diabetes mellitus (T2DM) exhibiting cognitive dysfunction was created, along with high-glucose (HG) cultured BV2 cells. Following, 3-methyladenine (3-MA) and rapamycin were used to modulate autophagy. To evaluate the potential therapeutic benefits of TFEB in DE, we overexpressed and knocked down TFEB in both mice and cells. Autophagy impairment and NLRP3 inflammasome activation were noticed in T2DM mice and HG-cultured BV2 cells. The inflammatory response caused by NLRP3 inflammasome activation was decreased by rapamycin-induced autophagy enhancement, while 3-MA treatment further deteriorated it. Nuclear translocation and expression of TFEB were hampered in HG-cultured BV2 cells and T2DM mice. Exogenous TFEB overexpression boosted NLRP3 degradation via autophagy, which in turn alleviated microglial activation as well as ameliorated cognitive deficits and neuronal damage. In addition, TFEB knockdown exacerbated neuroinflammation by decreasing autophagy-mediated NLRP3 degradation. Our findings have unraveled the pathogenesis of a previously underappreciated disease, implying that the activation of NLRP3 inflammasome and impairment of autophagy in microglia are significant etiological factors in the DE. The TFEB-mediated autophagy pathway can reduce neuroinflammation by enhancing NLRP3 degradation. This could potentially serve as a viable and innovative treatment approach for DE.<b>NEW & NOTEWORTHY</b> This article delves into the intricate connections between inflammation, autophagy, diabetes, and neurodegeneration, with a particular focus on a disease that is not yet fully understood-diabetic encephalopathy (DE). TFEB emerges as a pivotal regulator in balancing autophagy and inflammation in DE. Our findings highlight the crucial function of the TFEB-mediated autophagy pathway in mitigating inflammatory damage in DE, suggesting a new treatment strategy.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1481-C1496"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-11-04DOI: 10.1152/ajpcell.00274.2024
Jason Williams, Franklyn N Iheagwam, Sean P Maroney, Lauren R Schmitt, R Dale Brown, Greta M Krafsur, Maria G Frid, Maxwell C McCabe, Aneta Gandjeva, Kurt J Williams, James P Luyendyk, Anthony J Saviola, Rubin M Tuder, Kurt Stenmark, Kirk C Hansen
Pulmonary hypertension (PH) is a progressive vascular disease characterized by vascular remodeling, stiffening, and luminal obstruction, driven by dysregulated cell proliferation, inflammation, and extracellular matrix (ECM) alterations. Despite the recognized contribution of ECM dysregulation to PH pathogenesis, the precise molecular alterations in the matrisome remain poorly understood. In this study, we employed a matrisome-focused proteomics approach to map the protein composition in a young bovine calf model of acute hypoxia-induced PH. Our findings reveal distinct alterations in the matrisome along the pulmonary vascular axis, with the most prominent changes observed in the main pulmonary artery. Key alterations included a strong immune response and wound repair signature, characterized by increased levels of complement components, coagulation cascade proteins, and provisional matrix markers. In addition, we observed upregulation of ECM-modifying enzymes, growth factors, and core ECM proteins implicated in vascular stiffening, such as collagens, periostin, tenascin-C, and fibrin(ogen). Notably, these alterations correlated with increased mean pulmonary arterial pressure and vascular remodeling. In the plasma, we identified increased levels of complement components, indicating a systemic inflammatory response accompanying the vascular remodeling. Our findings shed light on the dynamic matrisome remodeling in early-stage PH, implicating a wound-healing trajectory with distinct patterns from the main pulmonary artery to the distal vasculature. This study provides novel insights into the immune cell infiltration and matrisome alterations associated with PH pathogenesis and highlights potential biomarkers and therapeutic targets within the matrisome landscape.NEW & NOTEWORTHY Extensive immune cell infiltration and matrisome alterations associated with hypoxia-induced pulmonary hypertension in a large mammal model. Matrisome components correlate with increased resistance to identify candidate alterations that drive biomechanical manifestations of the disease.
{"title":"A bovine model of hypoxia-induced pulmonary hypertension reveals a gradient of immune and matrisome response with a complement signature found in circulation.","authors":"Jason Williams, Franklyn N Iheagwam, Sean P Maroney, Lauren R Schmitt, R Dale Brown, Greta M Krafsur, Maria G Frid, Maxwell C McCabe, Aneta Gandjeva, Kurt J Williams, James P Luyendyk, Anthony J Saviola, Rubin M Tuder, Kurt Stenmark, Kirk C Hansen","doi":"10.1152/ajpcell.00274.2024","DOIUrl":"10.1152/ajpcell.00274.2024","url":null,"abstract":"<p><p>Pulmonary hypertension (PH) is a progressive vascular disease characterized by vascular remodeling, stiffening, and luminal obstruction, driven by dysregulated cell proliferation, inflammation, and extracellular matrix (ECM) alterations. Despite the recognized contribution of ECM dysregulation to PH pathogenesis, the precise molecular alterations in the matrisome remain poorly understood. In this study, we employed a matrisome-focused proteomics approach to map the protein composition in a young bovine calf model of acute hypoxia-induced PH. Our findings reveal distinct alterations in the matrisome along the pulmonary vascular axis, with the most prominent changes observed in the main pulmonary artery. Key alterations included a strong immune response and wound repair signature, characterized by increased levels of complement components, coagulation cascade proteins, and provisional matrix markers. In addition, we observed upregulation of ECM-modifying enzymes, growth factors, and core ECM proteins implicated in vascular stiffening, such as collagens, periostin, tenascin-C, and fibrin(ogen). Notably, these alterations correlated with increased mean pulmonary arterial pressure and vascular remodeling. In the plasma, we identified increased levels of complement components, indicating a systemic inflammatory response accompanying the vascular remodeling. Our findings shed light on the dynamic matrisome remodeling in early-stage PH, implicating a wound-healing trajectory with distinct patterns from the main pulmonary artery to the distal vasculature. This study provides novel insights into the immune cell infiltration and matrisome alterations associated with PH pathogenesis and highlights potential biomarkers and therapeutic targets within the matrisome landscape.<b>NEW & NOTEWORTHY</b> Extensive immune cell infiltration and matrisome alterations associated with hypoxia-induced pulmonary hypertension in a large mammal model. Matrisome components correlate with increased resistance to identify candidate alterations that drive biomechanical manifestations of the disease.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1666-C1680"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684870/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During the reproductive life, most primordial follicles remain dormant for years or decades, while some are progressively activated for development. Misactivation of primordial follicles can cause ovarian diseases,for example,premature ovarian insufficiency (POI). Our results show that p300 expression increased with primordial follicle activation. Using a p300 inhibitor resulted in premature activation of primordial follicles in cultured mouse ovaries. Conversely, the ratio of primordial follicle activation was markedly decreased upon culturing with the p300 agonist. Furthermore, p300 regulated primordial follicle activation by inhibiting Vegfa transcription in granulosa cells. Additionally, this study was extended to potential clinical applications, showing that short-term treatment with a p300 inhibitor in vitro significantly increased primordial follicle activation in newborn mouse ovaries after dorsal kidney membrane transplantation in female NSG mice. Our results revealed that p300 controls the activation of primordial follicles in mammalian ovaries.
{"title":"p300 Maintains Primordial Follicle Activation by Repressing <i>VEGFA</i> Transcription.","authors":"Meina He, Yaoyun Liang, Xiaoran Nie, Tuo Zhang, Danqing Zhao, Jixian Zhang, Huan Lin, Zhirui Zeng, Xingyu Song, Yitong Wang, Shiling Ran, Shuyun Zhao, Tengxiang Chen, Chunlin Zhang, Zhanhui Feng","doi":"10.1152/ajpcell.00198.2024","DOIUrl":"https://doi.org/10.1152/ajpcell.00198.2024","url":null,"abstract":"<p><p>During the reproductive life, most primordial follicles remain dormant for years or decades, while some are progressively activated for development. <u>Misactivation of primordial follicles can cause ovarian diseases,</u> <u>for example,</u> <u>premature ovarian insufficiency (POI).</u> Our results show that p300 expression increased with primordial follicle activation. Using a p300 inhibitor resulted in premature activation of primordial follicles in cultured mouse ovaries. Conversely, the ratio of primordial follicle activation was markedly decreased upon culturing with the p300 agonist. Furthermore, p300 regulated primordial follicle activation by inhibiting <i>Vegfa</i> transcription in granulosa cells. Additionally, this study was extended to potential clinical applications, showing that short-term treatment with a p300 inhibitor <i>in vitro</i> significantly increased primordial follicle activation in newborn mouse ovaries after dorsal kidney membrane transplantation in female NSG mice. Our results revealed that p300 controls the activation of primordial follicles in mammalian ovaries.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-07DOI: 10.1152/ajpcell.00273.2024
Gerardo Romanelli, Lihuén Villarreal, Camila Espasandín, Juan Claudio Benech
Several studies have demonstrated that diabetes mellitus can increase the risk of cardiovascular disease and remains the principal cause of death in these patients. Costameres connect the sarcolemma with the cytoskeleton and extracellular matrix, facilitating the transmission of mechanical forces and cell signaling. They are related to cardiac physiology because individual cardiac cells are connected by intercalated discs that synchronize muscle contraction. Diabetes impacts the nanomechanical properties of cardiomyocytes, resulting in increased cellular and left ventricular stiffness, as evidenced in clinical studies of these patients. The question of whether costameric proteins are affected by diabetes in the heart has not been studied. This work analyzes whether type 1 diabetes mellitus (T1DM) modifies the costameric proteins and coincidentally changes the cellular mechanics in the same cardiomyocytes. The samples were analyzed by immunotechniques using laser confocal microscopy. Significant statistical differences were found in the spatial arrangement of the costameric proteins. However, these differences are not due to their expression. Atomic force microscopy was used to compare intrinsic cellular stiffness between diabetic and normal cardiomyocytes and obtain the first elasticity map sections of diabetic living cardiomyocytes. Data obtained demonstrated that diabetic cardiomyocytes had higher stiffness than control. The present work shows experimental evidence that intracellular changes related to cell-cell and cell-extracellular matrix communication occur, which could be related to cardiac pathogenic mechanisms. These changes could contribute to alterations in the mechanical and electrical properties of cardiomyocytes and, consequently, to diabetic cardiomyopathy.NEW & NOTEWORTHY The structural organization of cardiomyocyte proteins is critical for their efficient functioning as a contractile unit in the heart. This work shows that diabetes mellitus induces significant changes in the spatial organization of costamere proteins, t tubules, and intercalated discs. We obtained the first elasticity map sections of living diabetic cardiomyocytes. The results show statistical differences in the map sections of diabetic and control cardiomyocytes, with diabetic cardiomyocytes being stiffer than normal ones.
{"title":"Diabetes induces modifications in costameric proteins and increases cardiomyocyte stiffness.","authors":"Gerardo Romanelli, Lihuén Villarreal, Camila Espasandín, Juan Claudio Benech","doi":"10.1152/ajpcell.00273.2024","DOIUrl":"10.1152/ajpcell.00273.2024","url":null,"abstract":"<p><p>Several studies have demonstrated that diabetes mellitus can increase the risk of cardiovascular disease and remains the principal cause of death in these patients. Costameres connect the sarcolemma with the cytoskeleton and extracellular matrix, facilitating the transmission of mechanical forces and cell signaling. They are related to cardiac physiology because individual cardiac cells are connected by intercalated discs that synchronize muscle contraction. Diabetes impacts the nanomechanical properties of cardiomyocytes, resulting in increased cellular and left ventricular stiffness, as evidenced in clinical studies of these patients. The question of whether costameric proteins are affected by diabetes in the heart has not been studied. This work analyzes whether type 1 diabetes mellitus (T1DM) modifies the costameric proteins and coincidentally changes the cellular mechanics in the same cardiomyocytes. The samples were analyzed by immunotechniques using laser confocal microscopy. Significant statistical differences were found in the spatial arrangement of the costameric proteins. However, these differences are not due to their expression. Atomic force microscopy was used to compare intrinsic cellular stiffness between diabetic and normal cardiomyocytes and obtain the first elasticity map sections of diabetic living cardiomyocytes. Data obtained demonstrated that diabetic cardiomyocytes had higher stiffness than control. The present work shows experimental evidence that intracellular changes related to cell-cell and cell-extracellular matrix communication occur, which could be related to cardiac pathogenic mechanisms. These changes could contribute to alterations in the mechanical and electrical properties of cardiomyocytes and, consequently, to diabetic cardiomyopathy.<b>NEW & NOTEWORTHY</b> The structural organization of cardiomyocyte proteins is critical for their efficient functioning as a contractile unit in the heart. This work shows that diabetes mellitus induces significant changes in the spatial organization of costamere proteins, <i>t</i> tubules, and intercalated discs. We obtained the first elasticity map sections of living diabetic cardiomyocytes. The results show statistical differences in the map sections of diabetic and control cardiomyocytes, with diabetic cardiomyocytes being stiffer than normal ones.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1263-C1273"},"PeriodicalIF":5.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}