首页 > 最新文献

American journal of physiology. Cell physiology最新文献

英文 中文
Emerging Roles of Ketone Bodies in Cardiac Fibrosis. 酮体在心脏纤维化中的新作用
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-14 DOI: 10.1152/ajpcell.00241.2024
Kellina Maduray, Jingquan Zhong

Cardiac fibrosis, characterized by excessive extracellular matrix (ECM) deposition within the myocardium, poses a significant challenge in cardiovascular health, contributing to various cardiac pathologies. Ketone bodies (KBs), particularly β-hydroxybutyrate (β-OHB), have emerged as subjects of interest due to their potential cardioprotective effects. However, their specific influence on cardiac fibrosis remains underexplored. This literature review comprehensively examines the relationship between KBs and cardiac fibrosis, elucidating potential mechanisms through which KBs modulate fibrotic pathways. A multifaceted interplay exists between KBs and key mediators of cardiac fibrosis. While some studies indicate a pro-fibrotic role for KBs, others highlight their potential to attenuate fibrosis and cardiac remodeling. Mechanistically, KBs may regulate fibrotic pathways through modulation of cellular components such as cardiac fibroblasts, macrophages, and lymphocytes, as well as extracellular matrix proteins. Furthermore, the impact of KBs on cellular processes implicated in fibrosis, including oxidative stress, chemokine and cytokine expression, caspase activation, and inflammasome signaling are explored. While conflicting findings exist regarding the effects of KBs on these processes, emerging evidence suggests a predominantly beneficial role in mitigating inflammation and oxidative stress associated with fibrotic remodeling. Overall, this review underscores the importance of elucidating the complex interplay between KB metabolism and cardiac fibrosis. Insights gained have the potential to inform novel therapeutic strategies for managing cardiac fibrosis and associated cardiovascular disorders, highlighting the need for further research in this area.

心肌纤维化的特点是细胞外基质(ECM)在心肌内过度沉积,它对心血管健康构成了重大挑战,并导致各种心脏病变。酮体(KBs),尤其是β-羟基丁酸(β-OHB),因其潜在的心脏保护作用而成为人们关注的对象。然而,它们对心脏纤维化的具体影响仍未得到充分探讨。这篇文献综述全面研究了KBs与心脏纤维化之间的关系,阐明了KBs调节纤维化途径的潜在机制。KBs与心脏纤维化的关键介质之间存在着多方面的相互作用。一些研究表明,KBs 具有促进纤维化的作用,而另一些研究则强调了其减轻纤维化和心脏重塑的潜力。从机理上讲,KBs 可通过调节心脏成纤维细胞、巨噬细胞和淋巴细胞等细胞成分以及细胞外基质蛋白来调节纤维化途径。此外,还探讨了 KBs 对与纤维化有关的细胞过程的影响,包括氧化应激、趋化因子和细胞因子表达、Caspase 激活和炎性体信号转导。虽然关于 KBs 对这些过程的影响存在相互矛盾的研究结果,但新出现的证据表明,KBs 在减轻与纤维化重塑相关的炎症和氧化应激方面起着主要的有益作用。总之,本综述强调了阐明 KB 代谢与心脏纤维化之间复杂的相互作用的重要性。所获得的见解有可能为管理心肌纤维化和相关心血管疾病的新型治疗策略提供依据,并强调了在这一领域开展进一步研究的必要性。
{"title":"Emerging Roles of Ketone Bodies in Cardiac Fibrosis.","authors":"Kellina Maduray, Jingquan Zhong","doi":"10.1152/ajpcell.00241.2024","DOIUrl":"https://doi.org/10.1152/ajpcell.00241.2024","url":null,"abstract":"<p><p>Cardiac fibrosis, characterized by excessive extracellular matrix (ECM) deposition within the myocardium, poses a significant challenge in cardiovascular health, contributing to various cardiac pathologies. Ketone bodies (KBs), particularly β-hydroxybutyrate (β-OHB), have emerged as subjects of interest due to their potential cardioprotective effects. However, their specific influence on cardiac fibrosis remains underexplored. This literature review comprehensively examines the relationship between KBs and cardiac fibrosis, elucidating potential mechanisms through which KBs modulate fibrotic pathways. A multifaceted interplay exists between KBs and key mediators of cardiac fibrosis. While some studies indicate a pro-fibrotic role for KBs, others highlight their potential to attenuate fibrosis and cardiac remodeling. Mechanistically, KBs may regulate fibrotic pathways through modulation of cellular components such as cardiac fibroblasts, macrophages, and lymphocytes, as well as extracellular matrix proteins. Furthermore, the impact of KBs on cellular processes implicated in fibrosis, including oxidative stress, chemokine and cytokine expression, caspase activation, and inflammasome signaling are explored. While conflicting findings exist regarding the effects of KBs on these processes, emerging evidence suggests a predominantly beneficial role in mitigating inflammation and oxidative stress associated with fibrotic remodeling. Overall, this review underscores the importance of elucidating the complex interplay between KB metabolism and cardiac fibrosis. Insights gained have the potential to inform novel therapeutic strategies for managing cardiac fibrosis and associated cardiovascular disorders, highlighting the need for further research in this area.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of age on human skeletal muscle: A systematic review and meta-analysis of myosin heavy chain isoform protein expression, fiber size and distribution. 年龄对人体骨骼肌的影响:肌球蛋白重链同工酶蛋白表达、纤维大小和分布的系统回顾和荟萃分析。
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-07 DOI: 10.1152/ajpcell.00347.2024
Christopher Lee, Philip C Woods, Amanda E Paluch, Mark S Miller

Human studies examining the cellular mechanisms behind sarcopenia, or age-related loss of skeletal muscle mass and function, have produced inconsistent results. A systematic review and meta-analysis were performed to determine the aging effects on protein expression, size and distribution of fibers with various myosin heavy chain (MyHC) isoforms. Study eligibility included MyHC comparisons between young (18-49 years) and older (≥ 60 years) adults, with 27 studies identified. Relative protein expression was higher with age for the slow-contracting MyHC I fibers, with correspondingly lower fast-contracting MyHC II and IIA values. Fiber sizes were similar with age for MyHC I, while smaller for MyHC II and IIA. Fiber distributions were similar with age. When separated by sex, the few studies that examined females showed atrophy of MyHC II and IIA fibers with age, but no change in MyHC protein expression. Additional analyses by measurement technique, physical activity, and muscle biopsied provided important insights. In summary, age-related atrophy in fast-contracting fibers lead to more of the slow-contracting, lower force-producing isoform in older male muscles, which helps explain their age-related loss in whole muscle force, velocity, and power. Exercise or pharmacological interventions that shift MyHC expression towards faster isoforms and/or increase fast-contracting fiber size should decrease the prevalence of sarcopenia. Our findings also indicate that future studies need to include or focus solely on females, measure MyHC IIA and IIX isoforms separately, examine fiber type distribution, sample additional muscles to the vastus lateralis, and incorporate an objective measurement of physical activity.

人类对肌肉疏松症(与年龄有关的骨骼肌质量和功能丧失)背后的细胞机制进行了研究,但结果并不一致。为了确定衰老对各种肌球蛋白重链(MyHC)异构体的蛋白质表达、大小和纤维分布的影响,我们进行了系统回顾和荟萃分析。研究资格包括对年轻人(18-49 岁)和老年人(≥ 60 岁)的 MyHC 进行比较,共确定了 27 项研究。随着年龄的增长,慢收缩 MyHC I 纤维的相对蛋白表达量较高,相应地,快收缩 MyHC II 和 IIA 值较低。随着年龄的增长,MyHC I 纤维的大小相似,而 MyHC II 和 IIA 纤维的大小较小。纤维分布与年龄相似。如果按性别区分,少数研究显示女性的肌强直素 II 和 IIA 纤维随着年龄的增长而萎缩,但肌强直素蛋白的表达没有变化。按测量技术、体力活动和肌肉活检进行的其他分析提供了重要的见解。总之,在老年男性肌肉中,与年龄相关的快速收缩纤维萎缩导致了更多的慢速收缩、低力异构体,这有助于解释与年龄相关的整块肌肉力、速度和力量的损失。通过运动或药物干预,将 MyHC 的表达转向较快的同工酶和/或增加快速收缩纤维的大小,应能降低肌肉疏松症的发病率。我们的研究结果还表明,未来的研究需要包括女性或仅关注女性,分别测量 MyHC IIA 和 IIX 同工酶,检查纤维类型分布,对阔筋膜外的其他肌肉进行抽样调查,并纳入体育锻炼的客观测量方法。
{"title":"Effects of age on human skeletal muscle: A systematic review and meta-analysis of myosin heavy chain isoform protein expression, fiber size and distribution.","authors":"Christopher Lee, Philip C Woods, Amanda E Paluch, Mark S Miller","doi":"10.1152/ajpcell.00347.2024","DOIUrl":"https://doi.org/10.1152/ajpcell.00347.2024","url":null,"abstract":"<p><p>Human studies examining the cellular mechanisms behind sarcopenia, or age-related loss of skeletal muscle mass and function, have produced inconsistent results. A systematic review and meta-analysis were performed to determine the aging effects on protein expression, size and distribution of fibers with various myosin heavy chain (MyHC) isoforms. Study eligibility included MyHC comparisons between young (18-49 years) and older (≥ 60 years) adults, with 27 studies identified. Relative protein expression was higher with age for the slow-contracting MyHC I fibers, with correspondingly lower fast-contracting MyHC II and IIA values. Fiber sizes were similar with age for MyHC I, while smaller for MyHC II and IIA. Fiber distributions were similar with age. When separated by sex, the few studies that examined females showed atrophy of MyHC II and IIA fibers with age, but no change in MyHC protein expression. Additional analyses by measurement technique, physical activity, and muscle biopsied provided important insights. In summary, age-related atrophy in fast-contracting fibers lead to more of the slow-contracting, lower force-producing isoform in older male muscles, which helps explain their age-related loss in whole muscle force, velocity, and power. Exercise or pharmacological interventions that shift MyHC expression towards faster isoforms and/or increase fast-contracting fiber size should decrease the prevalence of sarcopenia. Our findings also indicate that future studies need to include or focus solely on females, measure MyHC IIA and IIX isoforms separately, examine fiber type distribution, sample additional muscles to the vastus lateralis, and incorporate an objective measurement of physical activity.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
5-Aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase promotes pulmonary arterial smooth muscle cell proliferation via the Ras signaling pathway. --------ATIC 通过 Ras 信号通路促进肺动脉平滑肌细胞增殖。
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-12 DOI: 10.1152/ajpcell.00262.2024
Xiaofan Shi, Qian Ma, Yuqing Huo, Yunchao Su

Pulmonary arterial hypertension (PAH) is a debilitating vascular disorder characterized by abnormal pulmonary artery smooth muscle cell (PASMC) proliferation and collagen synthesis, contributing to vascular remodeling and elevated pulmonary vascular resistance. This study investigated the critical role of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) in cell proliferation and collagen synthesis in PASMCs in PAH. Here we show that ATIC levels are significantly increased in the lungs of monocrotaline (MCT)-induced PAH rat model, hypoxia-induced PAH mouse model, and platelet-derived growth factor (PDGF)-stimulated PASMCs. Inhibition of ATIC attenuated PDGF-induced cell proliferation and collagen I synthesis in PASMCs. Conversely, overexpression or knockdown of ATIC causes a significant promotion or inhibition of Ras and ERK activation, cell proliferation, and collagen synthesis in PASMCs. Moreover, ATIC deficiency attenuated Ras activation in the lungs of hypoxia-induced PAH mice. Furthermore, Ras inhibition attenuates ATIC overexpression- and PDGF-induced collagen synthesis and PASMC proliferation. Notably, we identified that transcription factors MYC, early growth response protein 1 (EGR1), and specificity protein 1 (SP1) directly binds to promoters of Atic gene and regulate ATIC expression. These results provide the first evidence that ATIC promotes PASMC proliferation in pulmonary vascular remodeling through the Ras signaling pathway.NEW & NOTEWORTHY Our findings highlight the important role of ATIC in the PASMC proliferation of pulmonary vascular remodeling through its modulation of the Ras signaling pathway and its regulation by transcription factors MYC, EGR1, and SP1. ATIC's modulation of Ras signal pathway represents a novel mechanism contributing to PAH development.

肺动脉高压(PAH)是一种使人衰弱的血管疾病,其特点是肺动脉平滑肌细胞(PASMC)增殖和胶原合成异常,导致血管重塑和肺血管阻力升高。本研究调查了 5-氨基咪唑-4-甲酰胺核糖核苷酸甲酰转移酶/肌苷酸单磷酸环醇酶(ATIC)在 PAH 患者 PASMC 细胞增殖和胶原合成中的关键作用。我们在这里发现,在 MCT 诱导的 PAH 大鼠模型和缺氧诱导的 PAH 小鼠模型肺中,以及 PDGF 刺激的 PASMCs 中,ATIC 水平明显升高。抑制 ATIC 可减少血小板衍生生长因子(PDGF)诱导的 PASMCs 细胞增殖和胶原 I 合成。相反,过表达或敲除 ATIC 会显著促进或抑制 PASMCs 中 Ras 和 ERK 的活化、细胞增殖和胶原合成。此外,ATIC 的缺失可减轻缺氧诱导的 PAH 小鼠肺部的 Ras 激活。此外,抑制 Ras 可减轻 ATIC 过表达和 PDGF 诱导的胶原合成和 PASMC 增殖。值得注意的是,我们发现转录因子 MYC、EGR1 和 SP1 直接与 ATIC 基因启动子结合并调控 ATIC 的表达。这些结果首次证明 ATIC 通过 Ras 信号通路促进肺血管重塑过程中 PASMC 的增殖。
{"title":"5-Aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase promotes pulmonary arterial smooth muscle cell proliferation via the Ras signaling pathway.","authors":"Xiaofan Shi, Qian Ma, Yuqing Huo, Yunchao Su","doi":"10.1152/ajpcell.00262.2024","DOIUrl":"10.1152/ajpcell.00262.2024","url":null,"abstract":"<p><p>Pulmonary arterial hypertension (PAH) is a debilitating vascular disorder characterized by abnormal pulmonary artery smooth muscle cell (PASMC) proliferation and collagen synthesis, contributing to vascular remodeling and elevated pulmonary vascular resistance. This study investigated the critical role of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) in cell proliferation and collagen synthesis in PASMCs in PAH. Here we show that ATIC levels are significantly increased in the lungs of monocrotaline (MCT)-induced PAH rat model, hypoxia-induced PAH mouse model, and platelet-derived growth factor (PDGF)-stimulated PASMCs. Inhibition of ATIC attenuated PDGF-induced cell proliferation and collagen I synthesis in PASMCs. Conversely, overexpression or knockdown of ATIC causes a significant promotion or inhibition of Ras and ERK activation, cell proliferation, and collagen synthesis in PASMCs. Moreover, ATIC deficiency attenuated Ras activation in the lungs of hypoxia-induced PAH mice. Furthermore, Ras inhibition attenuates ATIC overexpression- and PDGF-induced collagen synthesis and PASMC proliferation. Notably, we identified that transcription factors MYC, early growth response protein 1 (EGR1), and specificity protein 1 (SP1) directly binds to promoters of <i>Atic</i> gene and regulate ATIC expression. These results provide the first evidence that ATIC promotes PASMC proliferation in pulmonary vascular remodeling through the Ras signaling pathway.<b>NEW & NOTEWORTHY</b> Our findings highlight the important role of ATIC in the PASMC proliferation of pulmonary vascular remodeling through its modulation of the Ras signaling pathway and its regulation by transcription factors MYC, EGR1, and SP1. ATIC's modulation of Ras signal pathway represents a novel mechanism contributing to PAH development.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C901-C912"},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time of day affects MrgD-dependent modulation of cardiomyocyte contractility. 时间对心肌细胞收缩力的调节具有依赖性。
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-19 DOI: 10.1152/ajpcell.00049.2024
André L L Monteiro, Marcos Eliezeck, Sérgio R A Scalzo, Mário Morais Silva, Bruno Sanches, Katyana K S Ferreira, Maristela O Poletini, Rodrigo A Peliciari-Garcia, Stêfany B A Cau, Robson A Souza Santos, Silvia Guatimosim

The renin-angiotensin system (RAS) is composed of a series of peptides, receptors, and enzymes that play a pivotal role in maintaining cardiovascular homeostasis. Among the most important players in this system are the angiotensin-II and angiotensin-(1-7) peptides. Our group has recently demonstrated that alamandine (ALA), a peptide with structural and functional similarities to angiotensin-(1-7), interacts with cardiomyocytes, enhancing contractility via the Mas-related G protein-coupled receptor member D (MrgD). It is currently unknown whether this modulation varies along the distinct phases of the day. To address this issue, we assessed the ALA-induced contractility response of cardiomyocytes from mice at four Zeitgeber times (ZTs). At ZT2 (light phase), ALA enhanced cardiomyocyte shortening in an MrgD receptor-dependent manner, which was associated with nitric oxide (NO) production. At ZT14 (dark phase), ALA induced a negative modulation on the cardiomyocyte contraction. β-Alanine, an MrgD agonist, reproduced the time-of-day effects of ALA on myocyte shortening. NG-nitro-l-arginine methyl ester, an NO synthase inhibitor, blocked the increase in fractional shortening induced by ALA at ZT2. No effect of ALA on myocyte shortening was observed at ZT8 and ZT20. Our results show that ALA/MrgD signaling in cardiomyocytes is subject to temporal modulation. This finding has significant implications for pharmacological approaches that combine chronotherapy for cardiac conditions triggered by disruption of circadian rhythms and hormonal signaling.NEW & NOTEWORTHY Alamandine, a member of the renin-angiotensin system, serves critical roles in cardioprotection, including the modulation of cardiomyocyte contractility. Whether this effect varies along the day is unknown. Our results provide evidence that alamandine via receptor MrgD exerts opposing actions on cardiomyocyte shortening, enhancing, or reducing contraction depending on the time of day. These findings may have significant implications for the development and effectiveness of future cardiac therapies.

肾素-血管紧张素系统(RAS)由一系列肽、受体和酶组成,在维持心血管平衡方面发挥着关键作用。该系统中最重要的角色是血管紧张素-II 和血管紧张素-(1-7)肽。我们的研究小组最近证明,阿拉曼丁(ALA)是一种在结构和功能上与血管紧张素-(1-7)相似的多肽,它能与心肌细胞相互作用,通过与 Mas 相关的 G 蛋白偶联受体成员 D(MrgD)增强收缩力。目前还不清楚这种调节作用是否会随着一天中不同阶段的变化而变化。为了解决这个问题,我们评估了 ALA 诱导的小鼠心肌细胞在四个 Zeitgeber 时间(ZTs)的收缩力反应。在 ZT2(光照阶段),ALA 以依赖于 MrgD 受体的方式增强了心肌细胞的缩短,这与 NO 的产生有关。在 ZT14(暗期),ALA 对心肌细胞收缩产生负向调节。MrgD激动剂β-丙氨酸再现了ALA对心肌细胞缩短的时间效应。氮氧化物合成酶抑制剂 L-NG-硝基精氨酸甲酯(L-NAME)阻断了 ALA 在 ZT2 诱导的缩短率增加。在 ZT 8 和 20 时,未观察到 ALA 对肌细胞缩短的影响。我们的研究结果表明,心肌细胞中的 ALA/MrgD 信号传导受时间调节。这一发现对结合时间疗法的药理方法具有重要意义,可治疗昼夜节律紊乱和激素信号转导引发的心脏疾病。
{"title":"Time of day affects MrgD-dependent modulation of cardiomyocyte contractility.","authors":"André L L Monteiro, Marcos Eliezeck, Sérgio R A Scalzo, Mário Morais Silva, Bruno Sanches, Katyana K S Ferreira, Maristela O Poletini, Rodrigo A Peliciari-Garcia, Stêfany B A Cau, Robson A Souza Santos, Silvia Guatimosim","doi":"10.1152/ajpcell.00049.2024","DOIUrl":"10.1152/ajpcell.00049.2024","url":null,"abstract":"<p><p>The renin-angiotensin system (RAS) is composed of a series of peptides, receptors, and enzymes that play a pivotal role in maintaining cardiovascular homeostasis. Among the most important players in this system are the angiotensin-II and angiotensin-(1-7) peptides. Our group has recently demonstrated that alamandine (ALA), a peptide with structural and functional similarities to angiotensin-(1-7), interacts with cardiomyocytes, enhancing contractility via the Mas-related G protein-coupled receptor member D (MrgD). It is currently unknown whether this modulation varies along the distinct phases of the day. To address this issue, we assessed the ALA-induced contractility response of cardiomyocytes from mice at four Zeitgeber times (ZTs). At ZT2 (light phase), ALA enhanced cardiomyocyte shortening in an MrgD receptor-dependent manner, which was associated with nitric oxide (NO) production. At ZT14 (dark phase), ALA induced a negative modulation on the cardiomyocyte contraction. β-Alanine, an MrgD agonist, reproduced the time-of-day effects of ALA on myocyte shortening. <i>N</i><sup>G</sup>-nitro-l-arginine methyl ester, an NO synthase inhibitor, blocked the increase in fractional shortening induced by ALA at ZT2. No effect of ALA on myocyte shortening was observed at ZT8 and ZT20. Our results show that ALA/MrgD signaling in cardiomyocytes is subject to temporal modulation. This finding has significant implications for pharmacological approaches that combine chronotherapy for cardiac conditions triggered by disruption of circadian rhythms and hormonal signaling.<b>NEW & NOTEWORTHY</b> Alamandine, a member of the renin-angiotensin system, serves critical roles in cardioprotection, including the modulation of cardiomyocyte contractility. Whether this effect varies along the day is unknown. Our results provide evidence that alamandine via receptor MrgD exerts opposing actions on cardiomyocyte shortening, enhancing, or reducing contraction depending on the time of day. These findings may have significant implications for the development and effectiveness of future cardiac therapies.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1143-C1149"},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Renoprotective effects of empagliflozin in high-fat diet-induced obesity-related glomerulopathy by regulation of gut-kidney axis. Empagliflozin 通过调节肠道-肾脏轴对高脂饮食诱发肥胖相关性肾小球病变的雷诺保护作用
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-26 DOI: 10.1152/ajpcell.00367.2024
Lei Lei, Ting Zhu, Tian-Jiao Cui, Yvonne Liu, Johann-Georg Hocher, Xin Chen, Xue-Mei Zhang, Kai-Wen Cai, Zi-Yan Deng, Xiao-Hua Wang, Chun Tang, Lian Lin, Christoph Reichetzeder, Zhi-Hua Zheng, Berthold Hocher, Yong-Ping Lu

The increasing prevalence of obesity-related glomerulopathy (ORG) poses a significant threat to public health. Sodium-glucose cotransporter-2 (SGLT2) inhibitors effectively reduce body weight and total fat mass in individuals with obesity and halt the progression of ORG. However, the underlying mechanisms of their reno-protective effects in ORG remain unclear. We established a high-fat diet-induced ORG model using C57BL/6J mice, which were divided into three groups: normal chow diet (NCD group), high-fat diet (HFD) mice treated with placebo (ORG group), and HFD mice treated with empagliflozin (EMPA group). We conducted 16S ribosomal RNA gene sequencing of feces and analyzed metabolites from kidney, feces, liver, and serum samples. ORG mice showed increased urinary albumin creatinine ratio, cholesterol, triglyceride levels, and glomerular diameter compared with NCD mice (all P < 0.05). EMPA treatment significantly alleviated these parameters (all P < 0.05). Multitissue metabolomics analysis revealed lipid metabolic reprogramming in ORG mice, which was significantly altered by EMPA treatment. MetOrigin analysis showed a close association between EMPA-related lipid metabolic pathways and gut microbiota alterations, characterized by reduced abundances of Firmicutes and Desulfovibrio and increased abundance of Akkermansia (all P < 0.05). The metabolic homeostasis of ORG mice, especially in lipid metabolism, was disrupted and closely associated with gut microbiota alterations, contributing to the progression of ORG. EMPA treatment improved kidney function and morphology by regulating lipid metabolism through the gut-kidney axis, highlighting a novel therapeutic approach for ORG. NEW & NOTEWORTHY Our study uncovered that empagliflozin (EMPA) potentially protects renal function and morphology in obesity-related glomerulopathy (ORG) mice by regulating the gut-kidney axis. EMPA's reno-protective effects in ORG mice are associated with the lipid metabolism, especially in glycerophospholipid metabolism and the pantothenate/CoA synthesis pathways. EMPA's modulation of gut microbiota appears to be pivotal in suppressing glycerol 3-phosphate and CoA synthesis. The insights into gut microbiota-host metabolic interactions offer a novel therapeutic approach for ORG.

背景:肥胖相关肾小球病(ORG)的发病率不断上升,对公众健康构成了严重威胁。钠-葡萄糖共转运体-2(SGLT2)抑制剂能有效降低肥胖者的体重和总脂肪量,并阻止肥胖相关性肾小球肾病的发展。然而,它们对 ORG 起保护作用的内在机制仍不清楚:我们利用 C57BL/6J 小鼠建立了高脂饮食诱导的 ORG 模型,并将其分为三组:正常饲料组(NCD 组)、使用安慰剂治疗的高脂饮食组(ORG 组)和使用恩格列净治疗的高脂饮食组(EMPA 组)。我们对粪便进行了 16S 核糖体 RNA 基因测序,并分析了肾脏、粪便、肝脏和血清样本中的代谢物:结果:与 NCD 小鼠相比,ORG 小鼠的尿白蛋白肌酐比值、胆固醇、甘油三酯水平和肾小球直径均有所增加(所有 P < 0.05)。EMPA治疗可明显缓解这些参数(所有P < 0.05)。多组织代谢组学分析显示,ORG小鼠的脂质代谢重编程在EMPA治疗后发生了明显改变。MetOrigin分析表明,EMPA相关的脂质代谢途径与肠道微生物群的改变密切相关,其特征是固氮菌和脱硫弧菌的丰度降低,而Akkermansia的丰度增加(所有P < 0.05):结论:ORG小鼠的代谢平衡,尤其是脂质代谢平衡受到破坏,并与肠道微生物群的改变密切相关,从而导致了ORG的进展。EMPA治疗通过肠道-肾脏轴调节脂质代谢,改善了肾脏功能和形态,是治疗ORG的一种新方法。
{"title":"Renoprotective effects of empagliflozin in high-fat diet-induced obesity-related glomerulopathy by regulation of gut-kidney axis.","authors":"Lei Lei, Ting Zhu, Tian-Jiao Cui, Yvonne Liu, Johann-Georg Hocher, Xin Chen, Xue-Mei Zhang, Kai-Wen Cai, Zi-Yan Deng, Xiao-Hua Wang, Chun Tang, Lian Lin, Christoph Reichetzeder, Zhi-Hua Zheng, Berthold Hocher, Yong-Ping Lu","doi":"10.1152/ajpcell.00367.2024","DOIUrl":"10.1152/ajpcell.00367.2024","url":null,"abstract":"<p><p>The increasing prevalence of obesity-related glomerulopathy (ORG) poses a significant threat to public health. Sodium-glucose cotransporter-2 (SGLT2) inhibitors effectively reduce body weight and total fat mass in individuals with obesity and halt the progression of ORG. However, the underlying mechanisms of their reno-protective effects in ORG remain unclear. We established a high-fat diet-induced ORG model using C57BL/6J mice, which were divided into three groups: normal chow diet (NCD group), high-fat diet (HFD) mice treated with placebo (ORG group), and HFD mice treated with empagliflozin (EMPA group). We conducted 16S ribosomal RNA gene sequencing of feces and analyzed metabolites from kidney, feces, liver, and serum samples. ORG mice showed increased urinary albumin creatinine ratio, cholesterol, triglyceride levels, and glomerular diameter compared with NCD mice (all <i>P</i> < 0.05). EMPA treatment significantly alleviated these parameters (all <i>P</i> < 0.05). Multitissue metabolomics analysis revealed lipid metabolic reprogramming in ORG mice, which was significantly altered by EMPA treatment. MetOrigin analysis showed a close association between EMPA-related lipid metabolic pathways and gut microbiota alterations, characterized by reduced abundances of <i>Firmicutes</i> and <i>Desulfovibrio</i> and increased abundance of <i>Akkermansia</i> (all <i>P</i> < 0.05). The metabolic homeostasis of ORG mice, especially in lipid metabolism, was disrupted and closely associated with gut microbiota alterations, contributing to the progression of ORG. EMPA treatment improved kidney function and morphology by regulating lipid metabolism through the gut-kidney axis, highlighting a novel therapeutic approach for ORG. <b>NEW & NOTEWORTHY</b> Our study uncovered that empagliflozin (EMPA) potentially protects renal function and morphology in obesity-related glomerulopathy (ORG) mice by regulating the gut-kidney axis. EMPA's reno-protective effects in ORG mice are associated with the lipid metabolism, especially in glycerophospholipid metabolism and the pantothenate/CoA synthesis pathways. EMPA's modulation of gut microbiota appears to be pivotal in suppressing glycerol 3-phosphate and CoA synthesis. The insights into gut microbiota-host metabolic interactions offer a novel therapeutic approach for ORG.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C994-C1011"},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481992/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142054662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tumor microenvironment-like conditions alter pancreatic cancer cell metabolism and behavior. 类似肿瘤微环境的条件会改变胰腺癌细胞的新陈代谢和行为
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-26 DOI: 10.1152/ajpcell.00452.2024
Georgina Louise Gardner, Jeffrey Alan Stuart

The tumor microenvironment is complex and dynamic, characterized by poor vascularization, limited nutrient availability, hypoxia, and an acidic pH. This environment plays a critical role in driving cancer progression. However, standard cell culture conditions used to study cancer cell biology in vitro fail to replicate the in vivo environment of tumors. Recently, "physiological" cell culture media that closely resemble human plasma have been developed (e.g., Plasmax, HPLM), along with more frequent adoption of physiological oxygen conditions (1%-8% O2). Nonetheless, further refinement of tumor-specific culture conditions may be needed. In this study, we describe the development of a tumor microenvironment medium (TMEM) based on murine pancreatic ductal adenocarcinoma (PDAC) tumor interstitial fluid. Using RNA-sequencing, we show that murine PDAC cells (KPCY) cultured in tumor-like conditions (TMEM, pH 7.0, 1.5% O2) exhibit profound differences in gene expression compared with plasma-like conditions (mouse plasma medium, pH 7.4, 5% O2). Specifically, the expression of genes and pathways associated with cell migration, biosynthesis, angiogenesis, and epithelial-to-mesenchymal transition were altered, suggesting tumor-like conditions promote metastatic phenotypes and metabolic remodeling. Using functional assays to validate RNA-seq data, we confirmed increased motility at 1.5% O2/TMEM, despite reduced cell proliferation. Moreover, a hallmark shift to glycolytic metabolism was identified via measurement of glucose uptake/lactate production and mitochondrial respiration. Taken together, these findings demonstrate that growth in 1.5% O2/TMEM alters several biological responses in ways relevant to cancer biology, and more closely models hallmark cancerous phenotypes in culture. This highlights the importance of establishing tumor microenvironment-like conditions in standard cancer research. NEW & NOTEWORTHY Standard cell culture conditions do not replicate the complex tumor microenvironment experienced by cells in vivo. Although currently available plasma-like media are superior to traditional supraphysiological media, they fail to model tumor-like conditions. Using RNA-seq analysis and functional metabolic and migratory assays, we show that tumor microenvironment medium (TMEM), used with representative tumor hypoxia, better models cancerous phenotypes in culture. This emphasizes the critical importance of accurately modeling the tumor microenvironment in cancer research.

肿瘤微环境复杂多变,其特点是血管不畅、营养供应有限、缺氧和酸性 pH 值。这种环境在推动癌症进展方面起着至关重要的作用。然而,用于体外研究癌细胞生物学的标准细胞培养条件无法复制肿瘤的体内环境。最近,与人体血浆非常相似的 "生理性 "细胞培养基(如 Plasmax、HPLM)被开发出来,同时更频繁地采用生理性氧气条件(1-8% O2)。尽管如此,肿瘤特异性培养条件仍需进一步完善。在本研究中,我们介绍了基于小鼠胰腺导管腺癌(PDAC)肿瘤间质开发的肿瘤微环境培养基(TMEM)。我们利用 RNA 序列分析表明,与血浆样条件(小鼠血浆培养基,pH 7.4,5% O2)相比,在肿瘤样条件(TMEM,pH 7.0,1.5% O2)下培养的小鼠 PDAC 细胞(KPCY)在基因表达方面表现出很大差异。具体来说,与细胞迁移、生物合成、血管生成和上皮到间质转化相关的基因和通路的表达发生了改变,这表明类肿瘤条件促进了转移表型和代谢重塑。利用功能测试来验证 RNA-seq 数据,我们证实了在 1.5%O2/TMEM 条件下,尽管细胞增殖减少,但细胞的运动性却增加了。此外,通过测量葡萄糖摄取/乳酸生成和线粒体呼吸,我们还发现了向糖酵解代谢转变的特征。总之,这些研究结果表明,在 1.5%O2/TMEM 中生长会以与癌症生物学相关的方式改变几种生物反应,并更接近于在培养物中模拟标志性癌症表型。这凸显了在标准癌症研究中建立类似肿瘤微环境条件的重要性。
{"title":"Tumor microenvironment-like conditions alter pancreatic cancer cell metabolism and behavior.","authors":"Georgina Louise Gardner, Jeffrey Alan Stuart","doi":"10.1152/ajpcell.00452.2024","DOIUrl":"10.1152/ajpcell.00452.2024","url":null,"abstract":"<p><p>The tumor microenvironment is complex and dynamic, characterized by poor vascularization, limited nutrient availability, hypoxia, and an acidic pH. This environment plays a critical role in driving cancer progression. However, standard cell culture conditions used to study cancer cell biology in vitro fail to replicate the in vivo environment of tumors. Recently, \"physiological\" cell culture media that closely resemble human plasma have been developed (e.g., Plasmax, HPLM), along with more frequent adoption of physiological oxygen conditions (1%-8% O<sub>2</sub>). Nonetheless, further refinement of tumor-specific culture conditions may be needed. In this study, we describe the development of a tumor microenvironment medium (TMEM) based on murine pancreatic ductal adenocarcinoma (PDAC) tumor interstitial fluid. Using RNA-sequencing, we show that murine PDAC cells (KPCY) cultured in tumor-like conditions (TMEM, pH 7.0, 1.5% O<sub>2</sub>) exhibit profound differences in gene expression compared with plasma-like conditions (mouse plasma medium, pH 7.4, 5% O<sub>2</sub>). Specifically, the expression of genes and pathways associated with cell migration, biosynthesis, angiogenesis, and epithelial-to-mesenchymal transition were altered, suggesting tumor-like conditions promote metastatic phenotypes and metabolic remodeling. Using functional assays to validate RNA-seq data, we confirmed increased motility at 1.5% O<sub>2</sub>/TMEM, despite reduced cell proliferation. Moreover, a hallmark shift to glycolytic metabolism was identified via measurement of glucose uptake/lactate production and mitochondrial respiration. Taken together, these findings demonstrate that growth in 1.5% O<sub>2</sub>/TMEM alters several biological responses in ways relevant to cancer biology, and more closely models hallmark cancerous phenotypes in culture. This highlights the importance of establishing tumor microenvironment-like conditions in standard cancer research. <b>NEW & NOTEWORTHY</b> Standard cell culture conditions do not replicate the complex tumor microenvironment experienced by cells in vivo. Although currently available plasma-like media are superior to traditional supraphysiological media, they fail to model tumor-like conditions. Using RNA-seq analysis and functional metabolic and migratory assays, we show that tumor microenvironment medium (TMEM), used with representative tumor hypoxia, better models cancerous phenotypes in culture. This emphasizes the critical importance of accurately modeling the tumor microenvironment in cancer research.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C959-C978"},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142054663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Junctions at the crossroads: the impact of mechanical cues on endothelial cell-cell junction conformations and vascular permeability. 十字路口的连接:机械线索对内皮细胞-细胞连接构型和血管通透性的影响》(The Impact of Mechanical Cues on Endothelial Cell-Cell Junction Conformations and Vascular Permeability.
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-12 DOI: 10.1152/ajpcell.00605.2023
Ken D Brandon, William E Frank, Kimberly M Stroka

Cells depend on precisely regulating barrier function within the vasculature to maintain physiological stability and facilitate essential substance transport. Endothelial cells achieve this through specialized adherens and tight junction protein complexes, which govern paracellular permeability across vascular beds. Adherens junctions, anchored by vascular endothelial (VE)-cadherin and associated catenins to the actin cytoskeleton, mediate homophilic adhesion crucial for barrier integrity. In contrast, tight junctions composed of occludin, claudin, and junctional adhesion molecule A interact with Zonula Occludens proteins, reinforcing intercellular connections essential for barrier selectivity. Endothelial cell-cell junctions exhibit dynamic conformations during development, maturation, and remodeling, regulated by local biochemical and mechanical cues. These structural adaptations play pivotal roles in disease contexts such as chronic inflammation, where junctional remodeling contributes to increased vascular permeability observed in conditions from cancer to cardiovascular diseases. Conversely, the brain microvasculature's specialized junctional arrangements pose challenges for therapeutic drug delivery due to their unique molecular compositions and tight organization. This commentary explores the molecular mechanisms underlying endothelial cell-cell junction conformations and their implications for vascular permeability. By highlighting recent advances in quantifying junctional changes and understanding mechanotransduction pathways, we elucidate how physical forces from cellular contacts and hemodynamic flow influence junctional dynamics.

细胞依靠精确调节血管内的屏障功能来维持生理稳定和促进重要物质的运输。内皮细胞通过特化的粘连蛋白和紧密连接蛋白复合物实现这一功能,这些复合物控制着血管床的细胞旁通透性。粘连接头由 VE-粘连蛋白和相关的 catenins 固定在肌动蛋白细胞骨架上,介导对屏障完整性至关重要的同亲粘附。与此相反,由闭塞素、凝集素和连接粘附分子 A 组成的紧密连接与闭塞斑块蛋白相互作用,加强了对屏障选择性至关重要的细胞间连接。内皮细胞-细胞连接在发育、成熟和重塑过程中表现出动态构象,并受局部生化和机械线索的调节。这些结构调整在慢性炎症等疾病中起着关键作用,从癌症到心血管疾病,连接重塑都会导致血管通透性增加。相反,脑微血管的特殊交界排列由于其独特的分子组成和严密的组织结构,给治疗药物的输送带来了挑战。这篇评论探讨了内皮细胞-细胞连接构象的分子机制及其对血管通透性的影响。通过重点介绍在量化连接变化和了解机械传导途径方面的最新进展,我们阐明了细胞接触和血液动力学流动所产生的物理力是如何影响连接动态的。
{"title":"Junctions at the crossroads: the impact of mechanical cues on endothelial cell-cell junction conformations and vascular permeability.","authors":"Ken D Brandon, William E Frank, Kimberly M Stroka","doi":"10.1152/ajpcell.00605.2023","DOIUrl":"10.1152/ajpcell.00605.2023","url":null,"abstract":"<p><p>Cells depend on precisely regulating barrier function within the vasculature to maintain physiological stability and facilitate essential substance transport. Endothelial cells achieve this through specialized adherens and tight junction protein complexes, which govern paracellular permeability across vascular beds. Adherens junctions, anchored by vascular endothelial (VE)-cadherin and associated catenins to the actin cytoskeleton, mediate homophilic adhesion crucial for barrier integrity. In contrast, tight junctions composed of occludin, claudin, and junctional adhesion molecule A interact with Zonula Occludens proteins, reinforcing intercellular connections essential for barrier selectivity. Endothelial cell-cell junctions exhibit dynamic conformations during development, maturation, and remodeling, regulated by local biochemical and mechanical cues. These structural adaptations play pivotal roles in disease contexts such as chronic inflammation, where junctional remodeling contributes to increased vascular permeability observed in conditions from cancer to cardiovascular diseases. Conversely, the brain microvasculature's specialized junctional arrangements pose challenges for therapeutic drug delivery due to their unique molecular compositions and tight organization. This commentary explores the molecular mechanisms underlying endothelial cell-cell junction conformations and their implications for vascular permeability. By highlighting recent advances in quantifying junctional changes and understanding mechanotransduction pathways, we elucidate how physical forces from cellular contacts and hemodynamic flow influence junctional dynamics.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1073-C1086"},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481987/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiologic hypoxia in the intestinal mucosa: a central role for short-chain fatty acids. 肠黏膜的生理性缺氧:短链脂肪酸的核心作用
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-19 DOI: 10.1152/ajpcell.00472.2024
Timothy Wang, Ruth X Wang, Sean P Colgan

The intestinal mucosa is a dynamic surface that facilitates interactions between the host and an outside world that includes trillions of microbes, collectively termed the microbiota. This fine balance is regulated by an energetically demanding physical and biochemical barrier that is formed by the intestinal epithelial cells. In addition, this homeostasis exists at an interface between the anaerobic colonic lumen and a highly oxygenated, vascularized lamina propria. The resultant oxygen gradient within the intestine establishes "physiologic hypoxia" as a central metabolic feature of the mucosa. Although oxygen is vital for energy production to meet cellular metabolism needs, the availability of oxygen has far-reaching influences beyond just energy provision. Recent studies have shown that the intestinal mucosa has purposefully adapted to use differential oxygen levels largely through the presence of short-chain fatty acids (SCFAs), particularly butyrate (BA). Intestinal epithelial cells use butyrate for a multitude of functions that promote mucosal homeostasis. In this review, we explore how the physiologic hypoxia profile interfaces with SCFAs to benefit host mucosal tissues.

肠道粘膜是一个动态的表面,它能促进宿主与包括数万亿微生物(统称为微生物群)在内的外部世界之间的相互作用。这种微妙的平衡由肠上皮细胞形成的高能耗物理和生化屏障调节。此外,这种平衡存在于厌氧的结肠腔和高氧、血管化的固有层之间的界面上。肠道内由此产生的氧气梯度使 "生理性缺氧 "成为肠道粘膜的一个核心代谢特征。虽然氧气对产生能量以满足细胞新陈代谢的需要至关重要,但氧气的可用性影响深远,不仅仅是提供能量。最近的研究表明,肠粘膜有目的地适应利用不同的氧气水平,主要是通过短链脂肪酸(SCFA),特别是丁酸的存在。肠道上皮细胞利用丁酸盐发挥多种功能,促进粘膜稳态。在这篇综述中,我们将探讨生理缺氧状况如何与 SCFA 相结合,从而使宿主粘膜组织受益。
{"title":"Physiologic hypoxia in the intestinal mucosa: a central role for short-chain fatty acids.","authors":"Timothy Wang, Ruth X Wang, Sean P Colgan","doi":"10.1152/ajpcell.00472.2024","DOIUrl":"10.1152/ajpcell.00472.2024","url":null,"abstract":"<p><p>The intestinal mucosa is a dynamic surface that facilitates interactions between the host and an outside world that includes trillions of microbes, collectively termed the microbiota. This fine balance is regulated by an energetically demanding physical and biochemical barrier that is formed by the intestinal epithelial cells. In addition, this homeostasis exists at an interface between the anaerobic colonic lumen and a highly oxygenated, vascularized lamina propria. The resultant oxygen gradient within the intestine establishes \"physiologic hypoxia\" as a central metabolic feature of the mucosa. Although oxygen is vital for energy production to meet cellular metabolism needs, the availability of oxygen has far-reaching influences beyond just energy provision. Recent studies have shown that the intestinal mucosa has purposefully adapted to use differential oxygen levels largely through the presence of short-chain fatty acids (SCFAs), particularly butyrate (BA). Intestinal epithelial cells use butyrate for a multitude of functions that promote mucosal homeostasis. In this review, we explore how the physiologic hypoxia profile interfaces with SCFAs to benefit host mucosal tissues.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1087-C1093"},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In dystrophic mdx hindlimb muscles where fibrosis is limited, versican haploinsufficiency transiently improves contractile function without reducing inflammation. 在纤维化受限的肌营养不良型 mdx 后肢肌肉中,versican 单倍体缺失可短暂改善收缩功能,但不会减轻炎症反应。
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-19 DOI: 10.1152/ajpcell.00320.2024
Danielle Debruin, Natasha L McRae, Alex B Addinsall, Daniel R McCulloch, Robert G Barker, Didier Debrincat, Alan Hayes, Robyn M Murphy, Nicole Stupka

Versican is increased with inflammation and fibrosis, and is upregulated in Duchenne muscular dystrophy. In fibrotic diaphragm muscles from dystrophic mdx mice, genetic reduction of versican attenuated macrophage infiltration and improved contractile function. Versican is also implicated in myogenesis. Here, we investigated whether versican modulated mdx hindlimb muscle pathology, where inflammation and regeneration are increased but fibrosis is minimal. Immunohistochemistry and qRT-PCR were used to assess how fiber type and glucocorticoids (α-methylprednisolone) modify versican expression. To genetically reduce versican, female mdx and male versican haploinsufficient (hdf) mice were bred resulting in male mdx-hdf and mdx (control) pups. Versican expression, contractile function, and pathology were evaluated in hindlimb muscles. Versican immunoreactivity was greater in slow versus fast hindlimb muscles. Versican mRNA transcripts were reduced by α-methylprednisolone in soleus, but not in fast extensor digitorum longus, muscles. In juvenile (6-wk-old) mdx-hdf mice, versican expression was most robustly decreased in soleus muscles leading to improved force output and a modest reduction in fatiguability. These functional benefits were not accompanied by decreased inflammation. Muscle architecture, regeneration markers, and fiber type also did not differ between mdx-hdf mice and mdx littermates. Improvements in soleus contractile function were not retained in adult (20-wk-old) mdx-hdf mice. In conclusion, soleus muscles from juvenile mdx mice were most responsive to pharmacological or genetic approaches targeting versican; however, the benefits of versican reduction were limited due to low fibrosis. Preclinical matrix research in dystrophy should account for muscle phenotype (including age) and the interdependence between inflammation and fibrosis. NEW & NOTEWORTHY The proteoglycan versican is upregulated in muscular dystrophy. In fibrotic diaphragm muscles from mdx mice, versican reduction attenuated macrophage infiltration and improved performance. Here, in hindlimb muscles from 6- and 20-wk-old mdx mice, where pathology is mild, versican reduction did not decrease inflammation and contractile function improvements were limited to juvenile mice. In dystrophic mdx muscles, the association between versican and inflammation is mediated by fibrosis, demonstrating interdependence between the immune system and extracellular matrix.

Versican随炎症和纤维化而增加,并在杜氏肌营养不良症中上调。在患有肌营养不良症的 mdx 小鼠的纤维化膈肌中,通过基因减少 Versican 可减轻巨噬细胞浸润并改善收缩功能。Versican还与肌生成有关。在此,我们研究了 versican 是否能调节 mdx 后肢肌肉病理学,在后肢肌肉病理学中,炎症和再生增加,但纤维化却很少。免疫组化和 qRT-PCR 被用来评估纤维类型和糖皮质激素(α-甲基强的松龙)如何改变 versican 的表达。为了从遗传学上减少 versican 的表达,雌性 mdx 小鼠和雄性 versican 单倍体不足(hdf)小鼠进行了繁殖,结果产生了雄性 mdx-hdf 和 mdx(对照组)幼鼠。对后肢肌肉中 Versican 的表达、收缩功能和病理学进行了评估。后肢慢肌和快肌的 Versican 免疫反应性更高。α-甲基强的松龙会降低比目鱼肌的 Versican mRNA 转录本,但不会降低快速伸肌的 Versican mRNA 转录本。在幼年(6 周大)mdx-hdf 小鼠中,比目鱼肌中 versican 的表达减少得最厉害,从而提高了输出力并适度降低了疲劳度。这些功能上的益处并没有伴随炎症的减少。肌肉结构、再生标记物和纤维类型在 mdx-hdf 小鼠和 mdx 小鼠之间也没有差异。比目鱼肌收缩功能的改善在成年(20 周大)mdx-hdf 小鼠中没有得到保留。总之,幼年mdx小鼠的比目鱼肌对靶向versican的药物或遗传方法反应最为敏感;然而,由于纤维化程度低,减少versican的益处有限。肌营养不良的临床前基质研究应考虑肌肉表型(包括年龄)以及炎症和纤维化之间的相互依存关系。
{"title":"In dystrophic <i>mdx</i> hindlimb muscles where fibrosis is limited, versican haploinsufficiency transiently improves contractile function without reducing inflammation.","authors":"Danielle Debruin, Natasha L McRae, Alex B Addinsall, Daniel R McCulloch, Robert G Barker, Didier Debrincat, Alan Hayes, Robyn M Murphy, Nicole Stupka","doi":"10.1152/ajpcell.00320.2024","DOIUrl":"10.1152/ajpcell.00320.2024","url":null,"abstract":"<p><p>Versican is increased with inflammation and fibrosis, and is upregulated in Duchenne muscular dystrophy. In fibrotic diaphragm muscles from dystrophic <i>mdx</i> mice, genetic reduction of versican attenuated macrophage infiltration and improved contractile function. Versican is also implicated in myogenesis. Here, we investigated whether versican modulated <i>mdx</i> hindlimb muscle pathology, where inflammation and regeneration are increased but fibrosis is minimal. Immunohistochemistry and qRT-PCR were used to assess how fiber type and glucocorticoids (α-methylprednisolone) modify versican expression. To genetically reduce versican, female <i>mdx</i> and male versican haploinsufficient (hdf) mice were bred resulting in male <i>mdx</i>-hdf and <i>mdx</i> (control) pups. Versican expression, contractile function, and pathology were evaluated in hindlimb muscles. Versican immunoreactivity was greater in slow versus fast hindlimb muscles. <i>Versican</i> mRNA transcripts were reduced by α-methylprednisolone in soleus, but not in fast extensor digitorum longus, muscles. In juvenile (6-wk-old) <i>mdx</i>-hdf mice, versican expression was most robustly decreased in soleus muscles leading to improved force output and a modest reduction in fatiguability. These functional benefits were not accompanied by decreased inflammation. Muscle architecture, regeneration markers, and fiber type also did not differ between <i>mdx</i>-hdf mice and <i>mdx</i> littermates. Improvements in soleus contractile function were not retained in adult (20-wk-old) <i>mdx</i>-hdf mice. In conclusion, soleus muscles from juvenile <i>mdx</i> mice were most responsive to pharmacological or genetic approaches targeting versican; however, the benefits of versican reduction were limited due to low fibrosis. Preclinical matrix research in dystrophy should account for muscle phenotype (including age) and the interdependence between inflammation and fibrosis. <b>NEW & NOTEWORTHY</b> The proteoglycan versican is upregulated in muscular dystrophy. In fibrotic diaphragm muscles from <i>mdx</i> mice, versican reduction attenuated macrophage infiltration and improved performance. Here, in hindlimb muscles from 6- and 20-wk-old <i>mdx</i> mice, where pathology is mild, versican reduction did not decrease inflammation and contractile function improvements were limited to juvenile mice. In dystrophic <i>mdx</i> muscles, the association between versican and inflammation is mediated by fibrosis, demonstrating interdependence between the immune system and extracellular matrix.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1035-C1050"},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Melatonin inhibits voltage-gated potassium KV4.2 channels and negatively regulates melatonin secretion in rat pineal glands. 褪黑激素抑制电压门控钾 KV4.2 通道并负向调节大鼠松果体分泌褪黑激素。
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-19 DOI: 10.1152/ajpcell.00664.2023
Hiroki Mishima, Shunsuke Ando, Hibiki Kuzuhara, Aya Yamamura, Rubii Kondo, Yoshiaki Suzuki, Yuji Imaizumi, Hisao Yamamura

Melatonin is synthesized in and secreted from the pineal glands and regulates circadian rhythms. Although melatonin has been reported to modulate the activity of ion channels in several tissues, its effects on pineal ion channels remain unclear. In the present study, the effects of melatonin on voltage-gated K+ (KV) channels, which play a role in regulating the resting membrane potential, were examined in rat pinealocytes. The application of melatonin reduced pineal KV currents in a concentration-dependent manner (IC50 = 309 µM). An expression analysis revealed that KV4.2 channels were highly expressed in rat pineal glands. Melatonin-sensitive currents were abolished by the small interfering RNA knockdown of KV4.2 channels in rat pinealocytes. In human embryonic kidney 293 (HEK293) cells expressing KV4.2 channels, melatonin decreased outward currents (IC50 = 479 µM). Inhibitory effects were mediated by a shift in the voltage dependence of steady-state inactivation in a hyperpolarizing direction. This inhibition was observed even in the presence of 100 nM luzindole, an antagonist of melatonin receptors. Melatonin also blocked the activity of KV4.3, KV1.1, and KV1.5 channels in reconstituted HEK293 cells. The application of 1 mM melatonin caused membrane depolarization in rat pinealocytes. Furthermore, KV4.2 channel inhibition by 5 mM 4-aminopyridine attenuated melatonin secretion induced by 1 µM noradrenaline in rat pineal glands. These results strongly suggest that melatonin directly inhibited KV4.2 channels and caused membrane depolarization in pinealocytes, resulting in a decrease in melatonin secretion through parasympathetic signaling pathway. This mechanism may function as a negative-feedback mechanism of melatonin secretion in pineal glands. NEW & NOTEWORTHY Melatonin is a hormone that is synthesized in and secreted from the pineal glands, which regulates circadian rhythms. However, the effects of melatonin on pineal ion channels remain unclear. The present study demonstrated that melatonin directly inhibited voltage-gated potassium KV4.2 channels, which are highly expressed in rat pinealocytes, and induced membrane depolarization, resulting in a decrease in melatonin secretion. This mechanism may function as a negative-feedback mechanism of melatonin secretion in pineal glands.

褪黑激素由松果体合成和分泌,并调节昼夜节律。尽管有报道称褪黑素可调节多种组织中离子通道的活性,但其对松果体离子通道的影响仍不清楚。本研究考察了褪黑激素对大鼠松果体细胞中电压门控 K+(KV)通道的影响,KV 通道在调节静息膜电位中发挥作用。褪黑激素的应用以浓度依赖性的方式降低了松果体 KV 电流(IC50=309 mM)。表达分析表明,KV4.2 通道在大鼠松果体中高度表达。用小干扰 RNA 敲除大鼠松果体细胞中的 KV4.2 通道后,褪黑激素敏感电流消失。在表达 KV4.2 通道的人胚肾 293(HEK293)细胞中,褪黑激素可降低外向电流(IC50=479 mM)。抑制作用是通过电压依赖性从稳态失活向超极化方向转变而产生的。即使在褪黑激素受体拮抗剂 100 nM 的吕吲哚存在的情况下,也能观察到这种抑制作用。褪黑激素还阻断了重组 HEK293 细胞中 KV4.3、KV1.1 和 KV1.5 通道的活性。施加 1 mM 褪黑激素会导致大鼠松果体细胞膜去极化。此外,用 5 mM 4-aminopyridine 抑制 KV4.2 通道可减轻 1 mM 去甲肾上腺素在大鼠松果体中诱导的褪黑激素分泌。这些结果有力地表明,褪黑激素直接抑制 KV4.2 通道,引起松果体细胞膜去极化,从而通过副交感神经信号通路导致褪黑激素分泌减少。这一机制可能是松果体分泌褪黑激素的负反馈机制。
{"title":"Melatonin inhibits voltage-gated potassium K<sub>V</sub>4.2 channels and negatively regulates melatonin secretion in rat pineal glands.","authors":"Hiroki Mishima, Shunsuke Ando, Hibiki Kuzuhara, Aya Yamamura, Rubii Kondo, Yoshiaki Suzuki, Yuji Imaizumi, Hisao Yamamura","doi":"10.1152/ajpcell.00664.2023","DOIUrl":"10.1152/ajpcell.00664.2023","url":null,"abstract":"<p><p>Melatonin is synthesized in and secreted from the pineal glands and regulates circadian rhythms. Although melatonin has been reported to modulate the activity of ion channels in several tissues, its effects on pineal ion channels remain unclear. In the present study, the effects of melatonin on voltage-gated K<sup>+</sup> (K<sub>V</sub>) channels, which play a role in regulating the resting membrane potential, were examined in rat pinealocytes. The application of melatonin reduced pineal K<sub>V</sub> currents in a concentration-dependent manner (IC<sub>50</sub> = 309 µM). An expression analysis revealed that K<sub>V</sub>4.2 channels were highly expressed in rat pineal glands. Melatonin-sensitive currents were abolished by the small interfering RNA knockdown of K<sub>V</sub>4.2 channels in rat pinealocytes. In human embryonic kidney 293 (HEK293) cells expressing K<sub>V</sub>4.2 channels, melatonin decreased outward currents (IC<sub>50</sub> = 479 µM). Inhibitory effects were mediated by a shift in the voltage dependence of steady-state inactivation in a hyperpolarizing direction. This inhibition was observed even in the presence of 100 nM luzindole, an antagonist of melatonin receptors. Melatonin also blocked the activity of K<sub>V</sub>4.3, K<sub>V</sub>1.1, and K<sub>V</sub>1.5 channels in reconstituted HEK293 cells. The application of 1 mM melatonin caused membrane depolarization in rat pinealocytes. Furthermore, K<sub>V</sub>4.2 channel inhibition by 5 mM 4-aminopyridine attenuated melatonin secretion induced by 1 µM noradrenaline in rat pineal glands. These results strongly suggest that melatonin directly inhibited K<sub>V</sub>4.2 channels and caused membrane depolarization in pinealocytes, resulting in a decrease in melatonin secretion through parasympathetic signaling pathway. This mechanism may function as a negative-feedback mechanism of melatonin secretion in pineal glands. <b>NEW & NOTEWORTHY</b> Melatonin is a hormone that is synthesized in and secreted from the pineal glands, which regulates circadian rhythms. However, the effects of melatonin on pineal ion channels remain unclear. The present study demonstrated that melatonin directly inhibited voltage-gated potassium K<sub>V</sub>4.2 channels, which are highly expressed in rat pinealocytes, and induced membrane depolarization, resulting in a decrease in melatonin secretion. This mechanism may function as a negative-feedback mechanism of melatonin secretion in pineal glands.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1023-C1034"},"PeriodicalIF":5.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American journal of physiology. Cell physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1