首页 > 最新文献

American journal of physiology. Cell physiology最新文献

英文 中文
Carbohydrate ingestion eliminates hypoglycemia and improves endurance exercise performance in triathletes adapted to very low- and high-carbohydrate isocaloric diets. 摄入碳水化合物可以消除低血糖,提高铁人三项运动员适应极低和高碳水化合物等热量饮食的耐力运动表现。
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2025-01-09 DOI: 10.1152/ajpcell.00583.2024
Philip J Prins, Timothy D Noakes, Alex Buga, Hayden D Gerhart, Brandon M Cobb, Dominic P D'Agostino, Jeffrey S Volek, Jeffrey D Buxton, Kara Heckman, Emma Plank, Samuel DiStefano, Isaak Flaming, Lauren Kirsch, Britta Lagerquist, Emily Larson, Andrew P Koutnik

Very-low-carbohydrate diets (LCHF; <50 g/day) have been debated for their potential to lower pre-exercise muscle and liver glycogen stores and metabolic efficiency, risking premature fatigue. It is also hypothesized that carbohydrate ingestion during prolonged exercise delays fatigue by increasing carbohydrate oxidation, thereby sparing muscle glycogen. Leveraging a randomized crossover design, we evaluated performance during strenuous time-to-exhaustion (70% V̇o2max) tests in trained triathletes following 6-wk high-carbohydrate (HCLF, 380 g/day) or very-low-carbohydrate (LCHF, 40 g/day) diets to determine 1) if adoption of the LCHF diet impairs time-to-exhaustion performance, 2) whether carbohydrate ingestion (10 g/h) 6-12× lower than current CHO fueling recommendations during low glycogen availability (>15-h pre-exercise overnight fast and/or LCHF diet) improves time to exhaustion by preventing exercise-induced hypoglycemia (EIH; <3.9 mmol/L; <70 mg/dL), and 3) the "keto-adaptation" time course through continuous substrate monitoring while caloric intake, physical activity, and fat-free mass are maintained. Time-to-exhaustion performance was similar across both dietary interventions. Minimal carbohydrate supplementation prevented EIH and significantly increased time to exhaustion equivalently in LCHF and HCLF interventions (22%). The LCHF diet significantly lowered 24-h glucose concentrations, which normalized after 4 wk, at the same timepoint peak blood ketone (R-β-hydroxybutyrate) concentrations normalized. These findings 1) demonstrate that an LCHF diet sustains strenuous endurance performance, 2) establish that minimal carbohydrate supplementation was sufficient to enhance exercise performance on LCHF and HCLF diets by mitigating EIH, and 3) indicate that a minimum 4-wk adaptation period to an LCHF diet is required to ensure normalization of metabolic homeostasis, glycemic control, and exercise performance.NEW & NOTEWORTHY This study examines the belief that very-low-carbohydrate diets (LCHF) impair prolonged exercise performance during strenuous exercise by comparing it with high-carbohydrate diets in competitive triathletes. After 6-wk diet adaptation, time-to-exhaustion (TTE) performance was similar across both diets. Minimal carbohydrate supplementation (10 g/h) during exercise eliminated exercise-induced hypoglycemia and improved TTE by 22% on both diets. These findings suggest that LCHF diets do not impair exercise performance and require a 4-wk adaptation period for metabolic homeostasis.

极低碳水化合物饮食;在训练过的铁人三项运动员中进行为期6周的高碳水化合物(高碳水化合物,380克/天)或极低碳水化合物(低碳水化合物,40克/天)饮食测试,以确定(i)采用低碳水化合物饮食是否会损害到疲劳时间的表现,(ii)在低糖原可用性(运动前15小时夜间禁食和/或低碳水化合物饮食)期间,碳水化合物摄入量(10克/小时)是否比目前CHO补充推荐量低6-12倍,通过预防运动引起的低血糖(EIH;
{"title":"Carbohydrate ingestion eliminates hypoglycemia and improves endurance exercise performance in triathletes adapted to very low- and high-carbohydrate isocaloric diets.","authors":"Philip J Prins, Timothy D Noakes, Alex Buga, Hayden D Gerhart, Brandon M Cobb, Dominic P D'Agostino, Jeffrey S Volek, Jeffrey D Buxton, Kara Heckman, Emma Plank, Samuel DiStefano, Isaak Flaming, Lauren Kirsch, Britta Lagerquist, Emily Larson, Andrew P Koutnik","doi":"10.1152/ajpcell.00583.2024","DOIUrl":"10.1152/ajpcell.00583.2024","url":null,"abstract":"<p><p>Very-low-carbohydrate diets (LCHF; <50 g/day) have been debated for their potential to lower pre-exercise muscle and liver glycogen stores and metabolic efficiency, risking premature fatigue. It is also hypothesized that carbohydrate ingestion during prolonged exercise delays fatigue by increasing carbohydrate oxidation, thereby sparing muscle glycogen. Leveraging a randomized crossover design, we evaluated performance during strenuous time-to-exhaustion (70% V̇o<sub>2max</sub>) tests in trained triathletes following 6-wk high-carbohydrate (HCLF, 380 g/day) or very-low-carbohydrate (LCHF, 40 g/day) diets to determine <i>1</i>) if adoption of the LCHF diet impairs time-to-exhaustion performance, <i>2</i>) whether carbohydrate ingestion (10 g/h) 6-12× lower than current CHO fueling recommendations during low glycogen availability (>15-h pre-exercise overnight fast and/or LCHF diet) improves time to exhaustion by preventing exercise-induced hypoglycemia (EIH; <3.9 mmol/L; <70 mg/dL), and <i>3</i>) the \"keto-adaptation\" time course through continuous substrate monitoring while caloric intake, physical activity, and fat-free mass are maintained. Time-to-exhaustion performance was similar across both dietary interventions. Minimal carbohydrate supplementation prevented EIH and significantly increased time to exhaustion equivalently in LCHF and HCLF interventions (22%). The LCHF diet significantly lowered 24-h glucose concentrations, which normalized after 4 wk, at the same timepoint peak blood ketone (<i>R</i>-β-hydroxybutyrate) concentrations normalized. These findings <i>1</i>) demonstrate that an LCHF diet sustains strenuous endurance performance, <i>2</i>) establish that minimal carbohydrate supplementation was sufficient to enhance exercise performance on LCHF and HCLF diets by mitigating EIH, and <i>3</i>) indicate that a minimum 4-wk adaptation period to an LCHF diet is required to ensure normalization of metabolic homeostasis, glycemic control, and exercise performance.<b>NEW & NOTEWORTHY</b> This study examines the belief that very-low-carbohydrate diets (LCHF) impair prolonged exercise performance during strenuous exercise by comparing it with high-carbohydrate diets in competitive triathletes. After 6-wk diet adaptation, time-to-exhaustion (TTE) performance was similar across both diets. Minimal carbohydrate supplementation (10 g/h) during exercise eliminated exercise-induced hypoglycemia and improved TTE by 22% on both diets. These findings suggest that LCHF diets do not impair exercise performance and require a 4-wk adaptation period for metabolic homeostasis.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C710-C727"},"PeriodicalIF":5.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Primary cilia as antennas for oxygen. 初级纤毛作为氧气的天线。
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-12-23 DOI: 10.1152/ajpcell.00298.2024
Pascal Schneider, Joachim Fandrey, Tristan Leu

Over the past few decades, the primary cilium, an inconspicuous cell organelle, has increasingly become the focus of current research. The primary cilium is a microtubule-based, nonmotile, antenna-like structure that is present in almost all mammalian cells. The ciliary membrane incorporates a large number of receptor molecules, which further characterize this cellular organelle. These include receptors of the Sonic hedgehog (Shh)-, Wnt-, or platelet-derived growth factor (PDGF) signaling pathways. For this reason, as well as due to the fact that extracellular signaling molecules can bind to the ciliary membrane, primary cilia have been named "the antenna of the cell." In addition to their signaling function, the association of ciliary dysfunctions with a variety of diseases, so-called ciliopathies, underscores the importance of this functional cellular structure. Recent studies have also implicated primary cilia in the adaptation to low-oxygen conditions, which are characteristic of ischemia, such as in stroke or myocardial infarction, or tumor entities. The aim of this review is to provide an overview of these multiple facets and to take a closer look at the evolution of an inconspicuous cell organelle to a major player in hypoxia.

在过去的几十年里,初级纤毛这个不起眼的细胞器越来越成为当前研究的焦点。初级纤毛是一种基于微管的、不活动的、天线状的结构,几乎存在于所有哺乳动物细胞中。纤毛膜包含大量的受体分子,这进一步表征了这种细胞器。这些包括Sonic hedgehog (Shh)-, Wnt-或血小板衍生生长因子(PDGF)-信号通路的受体。由于这个原因,以及由于细胞外信号分子可以与纤毛膜结合,原纤毛被称为“细胞的天线”。除了它们的信号功能外,纤毛功能障碍与各种疾病(所谓的纤毛病)的关联强调了这种功能性细胞结构的重要性。最近的研究还表明,初级纤毛参与了对低氧条件的适应,这是缺血的特征,如中风、心肌梗死或肿瘤实体。这篇综述的目的是提供这些多方面的概述,并仔细研究一个不显眼的细胞器向缺氧的主要参与者的进化。
{"title":"Primary cilia as antennas for oxygen.","authors":"Pascal Schneider, Joachim Fandrey, Tristan Leu","doi":"10.1152/ajpcell.00298.2024","DOIUrl":"10.1152/ajpcell.00298.2024","url":null,"abstract":"<p><p>Over the past few decades, the primary cilium, an inconspicuous cell organelle, has increasingly become the focus of current research. The primary cilium is a microtubule-based, nonmotile, antenna-like structure that is present in almost all mammalian cells. The ciliary membrane incorporates a large number of receptor molecules, which further characterize this cellular organelle. These include receptors of the Sonic hedgehog (Shh)-, Wnt-, or platelet-derived growth factor (PDGF) signaling pathways. For this reason, as well as due to the fact that extracellular signaling molecules can bind to the ciliary membrane, primary cilia have been named \"the antenna of the cell.\" In addition to their signaling function, the association of ciliary dysfunctions with a variety of diseases, so-called ciliopathies, underscores the importance of this functional cellular structure. Recent studies have also implicated primary cilia in the adaptation to low-oxygen conditions, which are characteristic of ischemia, such as in stroke or myocardial infarction, or tumor entities. The aim of this review is to provide an overview of these multiple facets and to take a closer look at the evolution of an inconspicuous cell organelle to a major player in hypoxia.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C381-C386"},"PeriodicalIF":5.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ALKBH5 promotes autophagy and progression by mediating m6A methylation of lncRNA UBOX5-AS1 in endometriosis.
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2025-01-06 DOI: 10.1152/ajpcell.00790.2024
Hengwei Liu, Jiaxin Liang, Xiaoli Wang, Wenqian Xiong, Ling Zhang, Xin Dai, Xiuping Wang, Xiwen Wang, Ying Xu, Yi Liu

Long noncoding RNA (lncRNA) and N6-methyladenosine (m6A) methylation modification have recently been suggested as potential functional modulators in ovarian endometriosis, however, the function and mechanism of m6A-modified lncRNA in ovarian endometriosis remain poorly understood. In this study, we demonstrated that lncRNA UBOX5-AS1 expression was significantly elevated in ovarian endometriosis tissue and primary ectopic endometrial stromal cells. The expression of lncRNA UBOX5-AS1, which has m6A modifications, was highly positively correlated with demethylase Alk B homologous protein 5 (ALKBH5) expression and autophagy. Functional studies revealed that increased ALKBH5 and lncRNA UBOX5-AS1 expression promoted cell autophagy, proliferation, and invasion in endometriosis in vitro. LncRNA UBOX5-AS1 mediates ALKBH5-regulated autophagy, proliferation, and invasion. ALKBH5-mediated autophagy facilitates cell proliferation, migration, and invasion. In vivo, the knockdown of ALKBH5 inhibited endometriotic lesion growth. Mechanistically, we observed that ALKBH5 mediated the m6A demethylation of lncRNA UBOX5-AS1 and promoted its expression. Thus, our findings highlight that ALKBH5/lncRNA UBOX5-AS1 might serve as potential targets for ovarian endometriosis therapy in the future.NEW & NOTEWORTHY In the present study, we investigated the role and potential molecular mechanism of long noncoding RNA (lncRNA) UBOX5-AS1 in ovarian endometriosis progression. Combined with the aforementioned, we proposed the hypothesis that lncRNA UBOX5-AS1 regulated by Alk B homologous protein 5 (ALKBH5)-mediated N6-methyladenosine (m6A) modification contributes to the progression of ovarian endometriosis progression.

{"title":"ALKBH5 promotes autophagy and progression by mediating m6A methylation of lncRNA UBOX5-AS1 in endometriosis.","authors":"Hengwei Liu, Jiaxin Liang, Xiaoli Wang, Wenqian Xiong, Ling Zhang, Xin Dai, Xiuping Wang, Xiwen Wang, Ying Xu, Yi Liu","doi":"10.1152/ajpcell.00790.2024","DOIUrl":"10.1152/ajpcell.00790.2024","url":null,"abstract":"<p><p>Long noncoding RNA (lncRNA) and N6-methyladenosine (m6A) methylation modification have recently been suggested as potential functional modulators in ovarian endometriosis, however, the function and mechanism of m6A-modified lncRNA in ovarian endometriosis remain poorly understood. In this study, we demonstrated that lncRNA UBOX5-AS1 expression was significantly elevated in ovarian endometriosis tissue and primary ectopic endometrial stromal cells. The expression of lncRNA UBOX5-AS1, which has m6A modifications, was highly positively correlated with demethylase Alk B homologous protein 5 (ALKBH5) expression and autophagy. Functional studies revealed that increased ALKBH5 and lncRNA UBOX5-AS1 expression promoted cell autophagy, proliferation, and invasion in endometriosis in vitro. LncRNA UBOX5-AS1 mediates ALKBH5-regulated autophagy, proliferation, and invasion. ALKBH5-mediated autophagy facilitates cell proliferation, migration, and invasion. In vivo, the knockdown of ALKBH5 inhibited endometriotic lesion growth. Mechanistically, we observed that ALKBH5 mediated the m6A demethylation of lncRNA UBOX5-AS1 and promoted its expression. Thus, our findings highlight that ALKBH5/lncRNA UBOX5-AS1 might serve as potential targets for ovarian endometriosis therapy in the future.<b>NEW & NOTEWORTHY</b> In the present study, we investigated the role and potential molecular mechanism of long noncoding RNA (lncRNA) UBOX5-AS1 in ovarian endometriosis progression. Combined with the aforementioned, we proposed the hypothesis that lncRNA UBOX5-AS1 regulated by Alk B homologous protein 5 (ALKBH5)-mediated N6-methyladenosine (m6A) modification contributes to the progression of ovarian endometriosis progression.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":"328 2","pages":"C639-C656"},"PeriodicalIF":5.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143121724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does force depression resulting from shortening against series elasticity contribute to the activation dependence of optimum length? 由缩短对串联弹性产生的力下降是否有助于最佳长度的激活依赖?
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-12-26 DOI: 10.1152/ajpcell.00638.2024
Dean L Mayfield, Natalie C Holt

The optimum length for force generation (L0) increases as activation is reduced, challenging classic theories of muscle contraction. Although the activation dependence of L0 is seemingly consistent with length-dependent Ca2+ sensitivity, this mechanism cannot explain the apparent force dependence of L0 or the effect of series compliance on activation-related shifts in L0. We have tested a theory proposing that the activation dependence of L0 relates to force depression resulting from shortening against series elasticity. This theory predicts that significant series compliance would cause tetanic L0 to be shorter than the length corresponding to optimal filament overlap, thereby increasing the activation dependence of L0. We tested this prediction by determining L0 and maximum tetanic force (P0) with (L0_spring, P0_spring) and without added compliance in bullfrog semitendinosus muscles. The activation dependence of L0 was characterized with the addition of twitch and doublet contractions. Springs attached to muscles gave added fixed-end compliances of 11%-39% and induced force depression for tetanic fixed-end contractions (P0_spring < P0). We found strong, negative correlations between spring compliance and both P0_spring (r2 = 0.89-0.91) and L0_spring (r2 = 0.60-0.63; P < 0.001), whereas the activation dependence of L0 was positively correlated to added compliance (r2 = 0.45, P = 0.011). However, since the compliance-mediated reduction in L0 was modest relative to the activation-related shift reported for the bullfrog plantaris muscle, additional factors must be considered. Our demonstration of force depression under novel conditions adds support to the involvement of a stress-induced inhibition of cross-bridge binding.NEW & NOTEWORTHY Length-dependent Ca2+ sensitivity does not fully explain the activation dependence of optimum length (L0). We demonstrate using an isolated muscle preparation and added series compliance that substantial force depression can arise during an isometric contraction, causing tetanic L0 to shift to a shorter length. Our findings illustrate that series compliance, via the work and length dependencies of force depression, partially uncouples force generation from myofilament overlap, which ultimately increases the activation (or force) dependence of L0.

产生力的最佳长度(L0)随着激活的减少而增加,挑战肌肉收缩的经典理论。虽然L0的激活依赖性看似与长度依赖性Ca2+敏感性一致,但这一机制并不能解释L0明显的力依赖性,也不能解释串联顺应性对L0激活相关移位的影响。我们已经测试了一种理论,提出L0的激活依赖性与缩短对系列弹性造成的力抑制有关。该理论预测,显著的串联顺应性会导致强直L0短于最佳灯丝重叠所对应的长度,从而增加L0的激活依赖性。我们用(L0_spring, P0_spring)测定牛蛙半腱肌的L0和最大强直力(P0)来验证这一预测。L0的激活依赖性以抽搐和双重收缩为特征。肌肉附着弹簧使固定端顺应性增加11-39%,并引起强直性固定端收缩力下降(P0 < P0)。我们发现弹簧顺应性与P0_spring (r2 = 0.89-0.91)和L0_spring (r2 = 0.60-0.63;P < 0.001),而L0的激活依赖性与增加依从性呈正相关(r2 = 0.45, P = 0.011)。然而,由于顺从性介导的L0减少相对于牛蛙跖肌激活相关的转移是适度的,因此必须考虑其他因素。我们在新条件下的力抑制的证明为应力诱导的跨桥结合抑制的参与提供了支持。
{"title":"Does force depression resulting from shortening against series elasticity contribute to the activation dependence of optimum length?","authors":"Dean L Mayfield, Natalie C Holt","doi":"10.1152/ajpcell.00638.2024","DOIUrl":"10.1152/ajpcell.00638.2024","url":null,"abstract":"<p><p>The optimum length for force generation (<i>L</i><sub>0</sub>) increases as activation is reduced, challenging classic theories of muscle contraction. Although the activation dependence of <i>L</i><sub>0</sub> is seemingly consistent with length-dependent Ca<sup>2+</sup> sensitivity, this mechanism cannot explain the apparent force dependence of <i>L</i><sub>0</sub> or the effect of series compliance on activation-related shifts in <i>L</i><sub>0</sub>. We have tested a theory proposing that the activation dependence of <i>L</i><sub>0</sub> relates to force depression resulting from shortening against series elasticity. This theory predicts that significant series compliance would cause tetanic <i>L</i><sub>0</sub> to be shorter than the length corresponding to optimal filament overlap, thereby increasing the activation dependence of <i>L</i><sub>0</sub>. We tested this prediction by determining <i>L</i><sub>0</sub> and maximum tetanic force (<i>P</i><sub>0</sub>) with (<i>L</i><sub>0_spring</sub>, <i>P</i><sub>0_spring</sub>) and without added compliance in bullfrog semitendinosus muscles. The activation dependence of <i>L</i><sub>0</sub> was characterized with the addition of twitch and doublet contractions. Springs attached to muscles gave added fixed-end compliances of 11%-39% and induced force depression for tetanic fixed-end contractions (<i>P</i><sub>0_spring</sub> < <i>P</i><sub>0</sub>). We found strong, negative correlations between spring compliance and both <i>P</i><sub>0_spring</sub> (<i>r</i><sup>2</sup> = 0.89-0.91) and <i>L</i><sub>0_spring</sub> (<i>r</i><sup>2</sup> = 0.60-0.63; <i>P</i> < 0.001), whereas the activation dependence of <i>L</i><sub>0</sub> was positively correlated to added compliance (<i>r</i><sup>2</sup> = 0.45, <i>P</i> = 0.011). However, since the compliance-mediated reduction in <i>L</i><sub>0</sub> was modest relative to the activation-related shift reported for the bullfrog plantaris muscle, additional factors must be considered. Our demonstration of force depression under novel conditions adds support to the involvement of a stress-induced inhibition of cross-bridge binding.<b>NEW & NOTEWORTHY</b> Length-dependent Ca<sup>2+</sup> sensitivity does not fully explain the activation dependence of optimum length (<i>L</i><sub>0</sub>). We demonstrate using an isolated muscle preparation and added series compliance that substantial force depression can arise during an isometric contraction, causing tetanic <i>L</i><sub>0</sub> to shift to a shorter length. Our findings illustrate that series compliance, via the work and length dependencies of force depression, partially uncouples force generation from myofilament overlap, which ultimately increases the activation (or force) dependence of <i>L</i><sub>0</sub>.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C528-C540"},"PeriodicalIF":5.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rab7-regulated ferroptosis contributes to tubular epithelial cells injury by degradation of GPX4 via chaperone-mediated autophagy in AKI. 在 AKI 中,Rab7 调控的铁蛋白沉积通过伴侣介导的自噬作用降解 GPX4,导致肾小管上皮细胞损伤。
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-02-01 Epub Date: 2025-01-21 DOI: 10.1152/ajpcell.00636.2023
Lei Liu, Qishuang Wei, Renyu Wang, Hui Sun, Sijing He, Lijuan Tang, Shuang Zhang, Yifei Liu, Shali Yu

Evidence suggests that the progression of acute kidney injury (AKI) is driven by tubular epithelial cell (TEC) injury. However, the role of ferroptosis during the regulatory process remains unclear. Fifty-three patients with AKI were included to examine the expressions of Rab7, glutathione peroxidase 4 (GPX4), and Hif-1α by immunohistochemistry. The relationship between these expressions and serum creatinine (Scr) and blood urea nitrogen (BUN) levels was analyzed. After inducing AKI and ferroptosis through bilateral renal artery ischemia-reperfusion injury (I/R) in vivo and hypoxia in vitro, we examined the expression of Rab7. The injury and ferroptosis were observed following the administration of erastin or ferrostatin-1 (Fer-1), as well as the downregulation of Rab7. In addition, we investigated the degradation of GPX4 and chaperone-mediated autophagy (CMA). Finally, we assessed the injury and ferroptosis after the combination of RAS-selective lethal 3 (RSL3) and downregulation of Rab7. GPX4 exhibited an inverse correlation with Hif-1α, Scr, BUN, and Rab7. Conversely, Rab7 was positively correlated with Scr and BUN. Both in vivo and in vitro models resulted in elevated levels of ferroptosis and Rab7. Erastin exacerbated ferroptosis and injury, but this effect was mitigated by Fer-1. Downregulation of Rab7 reversed the increased ferroptosis and injury. Hypoxia enhanced lysosomal transport and degradation of GPX4 through activation of CMA. Furthermore, the reversal of these effects was observed upon the downregulation of Rab7. However, the results obtained from Rab7 downregulation were subsequently reversed by RSL3. Ferroptosis is important in TEC injury during AKI and Rab7 promotes tubular ferroptosis by facilitating CMA-mediated degradation of GPX4.NEW & NOTEWORTHY To explore the mechanism underlying ferroptosis in I/R-induced renal injury and to confirm the effect of Rab7, we first evaluated ferroptosis in renal biopsy samples, and then examined Rab7 expression and renal tubular injury during AKI in vivo and in vitro. Finally, we performed in vitro experiments to investigate the specific role of Rab7 in the regulation of ferroptosis and showed that the regulatory mechanism was related to CMA-mediated GPX4 degradation in renal TECs.

{"title":"Rab7-regulated ferroptosis contributes to tubular epithelial cells injury by degradation of GPX4 via chaperone-mediated autophagy in AKI.","authors":"Lei Liu, Qishuang Wei, Renyu Wang, Hui Sun, Sijing He, Lijuan Tang, Shuang Zhang, Yifei Liu, Shali Yu","doi":"10.1152/ajpcell.00636.2023","DOIUrl":"https://doi.org/10.1152/ajpcell.00636.2023","url":null,"abstract":"<p><p>Evidence suggests that the progression of acute kidney injury (AKI) is driven by tubular epithelial cell (TEC) injury. However, the role of ferroptosis during the regulatory process remains unclear. Fifty-three patients with AKI were included to examine the expressions of Rab7, glutathione peroxidase 4 (GPX4), and Hif-1α by immunohistochemistry. The relationship between these expressions and serum creatinine (Scr) and blood urea nitrogen (BUN) levels was analyzed. After inducing AKI and ferroptosis through bilateral renal artery ischemia-reperfusion injury (I/R) in vivo and hypoxia in vitro, we examined the expression of Rab7. The injury and ferroptosis were observed following the administration of erastin or ferrostatin-1 (Fer-1), as well as the downregulation of Rab7. In addition, we investigated the degradation of GPX4 and chaperone-mediated autophagy (CMA). Finally, we assessed the injury and ferroptosis after the combination of RAS-selective lethal 3 (RSL3) and downregulation of Rab7. GPX4 exhibited an inverse correlation with Hif-1α, Scr, BUN, and Rab7. Conversely, Rab7 was positively correlated with Scr and BUN. Both in vivo and in vitro models resulted in elevated levels of ferroptosis and Rab7. Erastin exacerbated ferroptosis and injury, but this effect was mitigated by Fer-1. Downregulation of Rab7 reversed the increased ferroptosis and injury. Hypoxia enhanced lysosomal transport and degradation of GPX4 through activation of CMA. Furthermore, the reversal of these effects was observed upon the downregulation of Rab7. However, the results obtained from Rab7 downregulation were subsequently reversed by RSL3. Ferroptosis is important in TEC injury during AKI and Rab7 promotes tubular ferroptosis by facilitating CMA-mediated degradation of GPX4.<b>NEW & NOTEWORTHY</b> To explore the mechanism underlying ferroptosis in I/R-induced renal injury and to confirm the effect of Rab7, we first evaluated ferroptosis in renal biopsy samples, and then examined Rab7 expression and renal tubular injury during AKI in vivo and in vitro. Finally, we performed in vitro experiments to investigate the specific role of Rab7 in the regulation of ferroptosis and showed that the regulatory mechanism was related to CMA-mediated GPX4 degradation in renal TECs.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":"328 2","pages":"C699-C709"},"PeriodicalIF":5.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Body composition alterations in patients with lung cancer.
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-01-31 DOI: 10.1152/ajpcell.01048.2024
Deena B Snoke, Gary S Atwood, Emma R Bellefleur, Alice M Stokes, Michael J Toth

Most patients with lung cancer experience cancer cachexia (CC), a syndrome of skeletal muscle and adipose tissue wasting. Knowledge of body composition changes in patients is limited, however, because most studies have been cross-sectional, comparing patients with non-cancer controls or patients with and without CC. Few studies, in contrast, have evaluated body composition in patients with lung cancer over time. This review examines our current understanding of longitudinal body composition changes in patients with lung cancer and identifies modifying factors contributing to variation in muscle and adipose tissue wasting, focusing on biological sex. We identified 32 studies conducting longitudinal measurements of body composition by computed tomography, bioelectrical impedance, dual x-ray absorptiometry or total body nitrogen, with a total of n=3,951 patients (35% female). All studies evaluated changes following diagnosis while patients were receiving treatment. Most studies reporting muscle-specific outcomes show decreased skeletal muscle mass, with more pronounced muscle wasting in males and male-enriched populations. In a small number of studies reporting muscle density, the majority show increased myosteatosis. Adiposity changes are less frequently reported, although wasting appears more prevalent in late-stage disease. Further studies are needed to define adipose changes along the lung cancer continuum. Our review emphasizes the need for balanced recruitment based on biological sex and sex-based analyses. Additionally, consensus reporting of relevant patient data and outcomes in future studies will allow for meta-analysis and assist in the development of effective treatments for lung CC.

{"title":"Body composition alterations in patients with lung cancer.","authors":"Deena B Snoke, Gary S Atwood, Emma R Bellefleur, Alice M Stokes, Michael J Toth","doi":"10.1152/ajpcell.01048.2024","DOIUrl":"https://doi.org/10.1152/ajpcell.01048.2024","url":null,"abstract":"<p><p>Most patients with lung cancer experience cancer cachexia (CC), a syndrome of skeletal muscle and adipose tissue wasting. Knowledge of body composition changes in patients is limited, however, because most studies have been cross-sectional, comparing patients with non-cancer controls or patients with and without CC. Few studies, in contrast, have evaluated body composition in patients with lung cancer over time. This review examines our current understanding of longitudinal body composition changes in patients with lung cancer and identifies modifying factors contributing to variation in muscle and adipose tissue wasting, focusing on biological sex. We identified 32 studies conducting longitudinal measurements of body composition by computed tomography, bioelectrical impedance, dual x-ray absorptiometry or total body nitrogen, with a total of n=3,951 patients (35% female). All studies evaluated changes following diagnosis while patients were receiving treatment. Most studies reporting muscle-specific outcomes show decreased skeletal muscle mass, with more pronounced muscle wasting in males and male-enriched populations. In a small number of studies reporting muscle density, the majority show increased myosteatosis. Adiposity changes are less frequently reported, although wasting appears more prevalent in late-stage disease. Further studies are needed to define adipose changes along the lung cancer continuum. Our review emphasizes the need for balanced recruitment based on biological sex and sex-based analyses. Additionally, consensus reporting of relevant patient data and outcomes in future studies will allow for meta-analysis and assist in the development of effective treatments for lung CC.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143062983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
O-GlcNAcylation regulates tyrosine hydroxylase serine 40 phosphorylation and L-DOPA levels.
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-01-27 DOI: 10.1152/ajpcell.00215.2024
Bruno da Costa Rodrigues, Miguel Clodomiro Dos Santos Lucena, Anna Carolina Rego Costa, Isadora de Araújo Oliveira, Mariana Thaumaturgo, Yolanda Paes-Colli, Danielle Beckman, Sergio T Ferreira, Fernando Garcia de Mello, Ricardo Augusto De Melo Reis, Adriane Regina Todeschini, Wagner Barbosa Dias

O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40). First, we showed that, during PC12 cells neuritogenesis, TH O-GlcNAcylation decreases concurrently with the increase of pSer40. In addition, an increase in O-GlcNAcylation induces a decrease in TH pSer40 only in undifferentiated PC12 cells, while the decrease in O-GlcNAcylation leads to an increase in TH pSer40 levels in both undifferentiated and differentiated PC12 cells. We further show that this feedback culminates on the regulation of L-DOPA intracellular levels. Interestingly, it is noteworthy that decreasing O-GlcNAcylation is much more effective on TH pSer40 regulation than increasing its levels. Finally, ex vivo analysis confirmed the upregulation of TH pSer40 when O-GlcNAcylation levels are reduced in dopaminergic neurons from C57Bl/6 mice. Taken together, these findings demonstrate a dynamic control of L-DOPA production by a molecular crosstalk between O-GlcNAcylation and phosphorylation at Ser40 in tyrosine hydroxylase.

{"title":"O-GlcNAcylation regulates tyrosine hydroxylase serine 40 phosphorylation and L-DOPA levels.","authors":"Bruno da Costa Rodrigues, Miguel Clodomiro Dos Santos Lucena, Anna Carolina Rego Costa, Isadora de Araújo Oliveira, Mariana Thaumaturgo, Yolanda Paes-Colli, Danielle Beckman, Sergio T Ferreira, Fernando Garcia de Mello, Ricardo Augusto De Melo Reis, Adriane Regina Todeschini, Wagner Barbosa Dias","doi":"10.1152/ajpcell.00215.2024","DOIUrl":"https://doi.org/10.1152/ajpcell.00215.2024","url":null,"abstract":"<p><p>O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40). First, we showed that, during PC12 cells neuritogenesis, TH O-GlcNAcylation decreases concurrently with the increase of pSer40. In addition, an increase in O-GlcNAcylation induces a decrease in TH pSer40 only in undifferentiated PC12 cells, while the decrease in O-GlcNAcylation leads to an increase in TH pSer40 levels in both undifferentiated and differentiated PC12 cells. We further show that this feedback culminates on the regulation of L-DOPA intracellular levels. Interestingly, it is noteworthy that decreasing O-GlcNAcylation is much more effective on TH pSer40 regulation than increasing its levels. Finally, <i>ex vivo</i> analysis confirmed the upregulation of TH pSer40 when O-GlcNAcylation levels are reduced in dopaminergic neurons from C57Bl/6 mice. Taken together, these findings demonstrate a dynamic control of L-DOPA production by a molecular crosstalk between O-GlcNAcylation and phosphorylation at Ser40 in tyrosine hydroxylase.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activated Cardiac Fibroblasts are a Primary Source High Molecular Weight Hyaluronan Production.
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-01-27 DOI: 10.1152/ajpcell.00786.2024
Danielle T Little, Caitlin M Howard, Emma Pendergraft, Kenneth R Brittian, Timothy N Audam, Exile W Lukudu, Juliette Smith, Daniel Nguyen, Yoshihiro Nishida, Yu Yamaguchi, Robert E Brainard, Richa A Singhal, Steven P Jones

During acute myocardial infarction, the composition of the extracellular matrix changes remarkably. One of the most notable changes in the extracellular matrix is in the accumulation of collagen; however, hyaluronan rivals collagen in its abundance. Yet, the extent to which specific cells and enzymes may contribute to such accumulation has been largely unexplored. Here, we hypothesized that activated cardiac fibroblasts produce hyaluronan via hyaluronan synthase 2 (HAS2). We show that hyaluronan accumulates following myocardial infarction and persists through at least four weeks. Our analyses of failing heart RNA sequencing data suggest fibroblasts are the cells most changed in the expression of HAS2. Given these insights, we used HAS2 gain- and loss-of-function approaches to examine the extent to which activated cardiac fibroblasts produce hyaluronan. TGFβ-induced activation of fibroblasts caused a significant increase in Has2 mRNA and concomitant accumulation of hyaluronan greater than 1 MDa in size. Deletion of Has2 abrogated TGFβ-induced production of hyaluronan. In addition, overexpression of Has2 was sufficient to cause an increase in hyaluronan accumulation in the absence of TGFβ-induced activation. Our data indicated negligible impacts of Has2 on proliferation, migration, and collagen production. Exposing fibroblasts to exogenous hyaluronan also had minimal impact on fibroblasts. We also assessed whether fibroblast-borne Hyal2 plays a role in the degradation of hyaluronan, and our data indicated little impact of Hyal2 on hyaluronan accumulation (or even any impacts on the transcriptional profile of fibroblasts). Activated fibroblasts produce high molecular weight hyaluronan via Has2, which occurs independent of other fibroblast functions.

{"title":"Activated Cardiac Fibroblasts are a Primary Source High Molecular Weight Hyaluronan Production.","authors":"Danielle T Little, Caitlin M Howard, Emma Pendergraft, Kenneth R Brittian, Timothy N Audam, Exile W Lukudu, Juliette Smith, Daniel Nguyen, Yoshihiro Nishida, Yu Yamaguchi, Robert E Brainard, Richa A Singhal, Steven P Jones","doi":"10.1152/ajpcell.00786.2024","DOIUrl":"https://doi.org/10.1152/ajpcell.00786.2024","url":null,"abstract":"<p><p>During acute myocardial infarction, the composition of the extracellular matrix changes remarkably. One of the most notable changes in the extracellular matrix is in the accumulation of collagen; however, hyaluronan rivals collagen in its abundance. Yet, the extent to which specific cells and enzymes may contribute to such accumulation has been largely unexplored. Here, we hypothesized that activated cardiac fibroblasts produce hyaluronan via hyaluronan synthase 2 (HAS2). We show that hyaluronan accumulates following myocardial infarction and persists through at least four weeks. Our analyses of failing heart RNA sequencing data suggest fibroblasts are the cells most changed in the expression of <i>HAS</i>2. Given these insights, we used HAS2 gain- and loss-of-function approaches to examine the extent to which activated cardiac fibroblasts produce hyaluronan. TGFβ-induced activation of fibroblasts caused a significant increase in <i>Has</i>2 mRNA and concomitant accumulation of hyaluronan greater than 1 MDa in size. Deletion of <i>Has</i>2 abrogated TGFβ-induced production of hyaluronan. In addition, overexpression of <i>Has</i>2 was sufficient to cause an increase in hyaluronan accumulation in the absence of TGFβ-induced activation. Our data indicated negligible impacts of <i>Has</i>2 on proliferation, migration, and collagen production. Exposing fibroblasts to exogenous hyaluronan also had minimal impact on fibroblasts. We also assessed whether fibroblast-borne <i>Hyal</i>2 plays a role in the degradation of hyaluronan, and our data indicated little impact of <i>Hyal</i>2 on hyaluronan accumulation (or even any impacts on the transcriptional profile of fibroblasts). Activated fibroblasts produce high molecular weight hyaluronan via <i>Has</i>2, which occurs independent of other fibroblast functions.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cdc42 is crucial for the early regulation of hepatic stellate cell activation.
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-01-27 DOI: 10.1152/ajpcell.00987.2024
Hideto Yuasa, Tsutomu Matsubara, Hayato Urushima, Atsuko Daikoku, Hiroko Ikenaga, Chiho Kadono, Masahiko Kinoshita, Kenjiro Kimura, Takeaki Ishizawa, Keisuke Ohta, Norifumi Kawada, Kazuo Ikeda

The activation of hepatic stellate cells (HSCs) from a quiescent state is a cause of liver fibrosis and a therapeutic target. HSCs are resident mesenchymal cells located in the space of Disse, exhibiting specialized morphological characteristics such as a stellate shape, large lipid droplets, and direct adhesions to hepatocytes via microprojections called HSC spines. Morphological alterations in HSCs play a crucial role in initiating their activation. However, the mechanisms regulating these changes remain unexplored. In this study, we analyzed the morphological alterations associated with HSC activation in vivo using carbon tetrachloride treatment and identified the key factors regulating these changes in vitro. Following carbon tetrachloride treatment, HSCs exhibited shortened cell processes and HSC spines, adopting an oval shape. Subsequently, the HSCs underwent further morphological changes into two activated forms: flattened and complex shapes. In vitro, activation of cell division cycle 42 (Cdc42) maintained the morphological characteristics of quiescent HSCs. Cdc42 activation in HSC cell lines inhibited the expression of markers associated with activated HSCs. Cdc42 inhibitor treatment in vivo prevented quiescent HSCs from maintaining their morphological characteristics and hindered activated HSCs from reverting to the quiescent state. Additionally, HSCs around fibrotic areas in the human liver exhibited morphological alterations indicative of early activation. These findings demonstrate that Cdc42 is a crucial regulator of morphological and molecular alterations associated with HSC activation, identifying it as a novel target for the development of therapeutic agents against liver fibrosis.

{"title":"Cdc42 is crucial for the early regulation of hepatic stellate cell activation.","authors":"Hideto Yuasa, Tsutomu Matsubara, Hayato Urushima, Atsuko Daikoku, Hiroko Ikenaga, Chiho Kadono, Masahiko Kinoshita, Kenjiro Kimura, Takeaki Ishizawa, Keisuke Ohta, Norifumi Kawada, Kazuo Ikeda","doi":"10.1152/ajpcell.00987.2024","DOIUrl":"https://doi.org/10.1152/ajpcell.00987.2024","url":null,"abstract":"<p><p>The activation of hepatic stellate cells (HSCs) from a quiescent state is a cause of liver fibrosis and a therapeutic target. HSCs are resident mesenchymal cells located in the space of Disse, exhibiting specialized morphological characteristics such as a stellate shape, large lipid droplets, and direct adhesions to hepatocytes via microprojections called HSC spines. Morphological alterations in HSCs play a crucial role in initiating their activation. However, the mechanisms regulating these changes remain unexplored. In this study, we analyzed the morphological alterations associated with HSC activation <i>in vivo</i> using carbon tetrachloride treatment and identified the key factors regulating these changes <i>in vitro</i>. Following carbon tetrachloride treatment, HSCs exhibited shortened cell processes and HSC spines, adopting an oval shape. Subsequently, the HSCs underwent further morphological changes into two activated forms: flattened and complex shapes. <i>In vitro</i>, activation of cell division cycle 42 (Cdc42) maintained the morphological characteristics of quiescent HSCs. Cdc42 activation in HSC cell lines inhibited the expression of markers associated with activated HSCs. Cdc42 inhibitor treatment in vivo prevented quiescent HSCs from maintaining their morphological characteristics and hindered activated HSCs from reverting to the quiescent state. Additionally, HSCs around fibrotic areas in the human liver exhibited morphological alterations indicative of early activation. These findings demonstrate that Cdc42 is a crucial regulator of morphological and molecular alterations associated with HSC activation, identifying it as a novel target for the development of therapeutic agents against liver fibrosis.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing cellular NAD+ protects hepatocytes against palmitate-induced lipotoxicity by preventing PARP-1 inhibition and the mTORC1-p300 pathway activation.
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2025-01-27 DOI: 10.1152/ajpcell.00946.2024
Rui Guo, Yanhui Li, Qing Song, Rong Huang, Xiaodong Ge, Natalia Nieto, Yuwei Jiang, Zhenyuan Song

Hepatic lipotoxicity, resulting from excessive lipid accumulation in hepatocytes, plays a central role in the pathogenesis of various metabolic liver diseases. Despite recent progress, the precise mechanisms remain incompletely understood. Employing excessive exposure to palmitate in hepatocytes as our primary experimental model and mice studies, we aimed to uncover the mechanisms behind hepatic lipotoxicity, thereby developing potential treatments. Our data reveal for the first time that exposure to palmitate leads to downregulated expression of poly(ADP-ribose) polymerase 1 (PARP-1) in hepatocytes, inhibiting its enzymatic activity. While inhibiting PARP-1 worsens palmitate-induced hepatotoxicity, preventing PARP-1 suppression, using NAD+ precursors, nicotinamide N-methyltransferase (NNMT) inhibitors, or a poly(ADP-ribose) glycohydrolase (PARG) inhibitor, prevents it. Moreover, we uncover that PARP-1 suppression contributes to palmitate-triggered mTORC1 activation, which has been previously reported by us to contribute to palmitate-induced hepatocyte cell death. Furthermore, our results identify p300 as a downstream target of mTORC1 activation upon palmitate exposure. Importantly, p300 inhibition via either pharmacological or genetic approaches protects against palmitate hepatotoxicity. Additionally, we provide evidence that the TLR4-NF-κB pathway activation in response to palmitate plays a mechanistic role in mediating palmitate-induced PARP-1 downregulation in that both TLR4 antagonist and NF-κB inhibitors prevent palmitate induced PARP-1 reduction and protect against hepatocyte cell death. In conclusion, our study presents new evidence that the PARP-1-mTORC1-p300 pathway serves as a novel molecular mechanism underlying palmitate-induced hepatic lipotoxicity. Targeting the PARP-1 pathway by increasing cellular NAD+ availability either through its precursor supplementation or by inhibiting its degradation represents a promising therapeutic approach for treating hepatic lipotoxicity.

{"title":"Increasing cellular NAD<sup>+</sup> protects hepatocytes against palmitate-induced lipotoxicity by preventing PARP-1 inhibition and the mTORC1-p300 pathway activation.","authors":"Rui Guo, Yanhui Li, Qing Song, Rong Huang, Xiaodong Ge, Natalia Nieto, Yuwei Jiang, Zhenyuan Song","doi":"10.1152/ajpcell.00946.2024","DOIUrl":"https://doi.org/10.1152/ajpcell.00946.2024","url":null,"abstract":"<p><p>Hepatic lipotoxicity, resulting from excessive lipid accumulation in hepatocytes, plays a central role in the pathogenesis of various metabolic liver diseases. Despite recent progress, the precise mechanisms remain incompletely understood. Employing excessive exposure to palmitate in hepatocytes as our primary experimental model and mice studies, we aimed to uncover the mechanisms behind hepatic lipotoxicity, thereby developing potential treatments. Our data reveal for the first time that exposure to palmitate leads to downregulated expression of poly(ADP-ribose) polymerase 1 (PARP-1) in hepatocytes, inhibiting its enzymatic activity. While inhibiting PARP-1 worsens palmitate-induced hepatotoxicity, preventing PARP-1 suppression, using NAD<sup>+</sup> precursors, nicotinamide N-methyltransferase (NNMT) inhibitors, or a poly(ADP-ribose) glycohydrolase (PARG) inhibitor, prevents it. Moreover, we uncover that PARP-1 suppression contributes to palmitate-triggered mTORC1 activation, which has been previously reported by us to contribute to palmitate-induced hepatocyte cell death. Furthermore, our results identify p300 as a downstream target of mTORC1 activation upon palmitate exposure. Importantly, p300 inhibition via either pharmacological or genetic approaches protects against palmitate hepatotoxicity. Additionally, we provide evidence that the TLR4-NF-κB pathway activation in response to palmitate plays a mechanistic role in mediating palmitate-induced PARP-1 downregulation in that both TLR4 antagonist and NF-κB inhibitors prevent palmitate induced PARP-1 reduction and protect against hepatocyte cell death. In conclusion, our study presents new evidence that the PARP-1-mTORC1-p300 pathway serves as a novel molecular mechanism underlying palmitate-induced hepatic lipotoxicity. Targeting the PARP-1 pathway by increasing cellular NAD<sup>+</sup> availability either through its precursor supplementation or by inhibiting its degradation represents a promising therapeutic approach for treating hepatic lipotoxicity.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American journal of physiology. Cell physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1