首页 > 最新文献

American journal of physiology. Cell physiology最新文献

英文 中文
The Contribution of the Novel CLTC-VMP1 Fusion Gene to Autophagy Regulation and Energy Metabolism in Cisplatin-Resistant Osteosarcoma. 新型 CLTC-VMP1 融合基因对顺铂耐药骨肉瘤自噬调控和能量代谢的贡献
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-28 DOI: 10.1152/ajpcell.00302.2024
Zhiwei Tao, Pingan Zou, Zhengxu Yang, Tao Xiong, Zhi Deng, Qinchan Chen

Osteosarcoma (OS) is a highly malignant tumor, and chemotherapy resistance is a major challenge in the treatment of this disease. This study aims to explore the role of the CLTC-VMP1 gene fusion in the mechanism of chemotherapy resistance in OS and investigate its molecular mechanisms in mediating energy metabolism reprogramming by regulating autophagy and apoptosis balance. Using single-cell transcriptome analysis, the heterogeneity of OS cells and their correlation with resistance to platinum drugs were revealed. Cisplatin-resistant cell lines were established in human OS cell lines for subsequent experiments. Based on transcriptomic analysis, the importance of VMP1 in chemotherapy resistance was confirmed. Lentiviral vectors overexpressing or interfering with VMP1 were used, and it was observed that inhibiting VMP1 could reverse cisplatin resistance, promote cell apoptosis, and inhibit autophagy, as well as mitochondrial respiration and glycolysis. Furthermore, the presence of CLTC-VMP1 gene fusion was validated, and its ability to regulate autophagy and apoptosis balance, promote mitochondrial respiration, and glycolysis was demonstrated. Mouse model experiments further confirmed the promoting effect of CLTC-VMP1 on tumor growth and chemotherapy resistance. In summary, the CLTC-VMP1 gene fusion mediates energy metabolism reprogramming by regulating autophagy and apoptosis balance, which promotes chemotherapy resistance in OS.

骨肉瘤(Osteosarcoma,OS)是一种高度恶性肿瘤,化疗耐药是治疗该病的一大挑战。本研究旨在探讨CLTC-VMP1基因融合在OS化疗耐药机制中的作用,并研究其通过调节自噬和凋亡平衡介导能量代谢重编程的分子机制。通过单细胞转录组分析,揭示了OS细胞的异质性及其与铂类药物耐药性的相关性。在人类 OS 细胞系中建立了顺铂耐药细胞系,用于后续实验。根据转录组分析,证实了 VMP1 在化疗耐药性中的重要性。使用过表达或干扰 VMP1 的慢病毒载体,观察到抑制 VMP1 可逆转顺铂耐药性、促进细胞凋亡、抑制自噬以及线粒体呼吸和糖酵解。此外,还验证了 CLTC-VMP1 基因融合的存在,并证明了其调节自噬和凋亡平衡、促进线粒体呼吸和糖酵解的能力。小鼠模型实验进一步证实了 CLTC-VMP1 对肿瘤生长和化疗耐药的促进作用。综上所述,CLTC-VMP1基因融合通过调节自噬和凋亡平衡介导能量代谢重编程,从而促进OS的化疗耐药性。
{"title":"The Contribution of the Novel CLTC-VMP1 Fusion Gene to Autophagy Regulation and Energy Metabolism in Cisplatin-Resistant Osteosarcoma.","authors":"Zhiwei Tao, Pingan Zou, Zhengxu Yang, Tao Xiong, Zhi Deng, Qinchan Chen","doi":"10.1152/ajpcell.00302.2024","DOIUrl":"https://doi.org/10.1152/ajpcell.00302.2024","url":null,"abstract":"<p><p>Osteosarcoma (OS) is a highly malignant tumor, and chemotherapy resistance is a major challenge in the treatment of this disease. This study aims to explore the role of the CLTC-VMP1 gene fusion in the mechanism of chemotherapy resistance in OS and investigate its molecular mechanisms in mediating energy metabolism reprogramming by regulating autophagy and apoptosis balance. Using single-cell transcriptome analysis, the heterogeneity of OS cells and their correlation with resistance to platinum drugs were revealed. Cisplatin-resistant cell lines were established in human OS cell lines for subsequent experiments. Based on transcriptomic analysis, the importance of VMP1 in chemotherapy resistance was confirmed. Lentiviral vectors overexpressing or interfering with VMP1 were used, and it was observed that inhibiting VMP1 could reverse cisplatin resistance, promote cell apoptosis, and inhibit autophagy, as well as mitochondrial respiration and glycolysis. Furthermore, the presence of CLTC-VMP1 gene fusion was validated, and its ability to regulate autophagy and apoptosis balance, promote mitochondrial respiration, and glycolysis was demonstrated. Mouse model experiments further confirmed the promoting effect of CLTC-VMP1 on tumor growth and chemotherapy resistance. In summary, the CLTC-VMP1 gene fusion mediates energy metabolism reprogramming by regulating autophagy and apoptosis balance, which promotes chemotherapy resistance in OS.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptional Analysis of Cancer Cachexia: Conserved and Unique Features Across Pre-Clinical Models and Biological Sex. 癌症痛症的转录分析:跨临床前模型和生物性别的保守和独特特征
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-28 DOI: 10.1152/ajpcell.00647.2024
Francielly Morena, Ana Regina Cabrera, Ronald G Jones Iii, Eleanor R Schrems, Ruqaiza Muhyudin, Tyrone A Washington, Kevin A Murach, Nicholas P Greene

Studies suggest heterogeneity in cancer cachexia (CC) among models and biological sexes, yet examinations comparing models and sexes are scarce. We compared the transcriptional landscape of skeletal muscle across murine CC models and biological sexes during early and late CC. Global gene expression analyses were performed on gastrocnemius (LLC-Lewis Lung Carcinoma), quadriceps (KPC-pancreatic), and tibialis anterior (C26-colorectal and ApcMin/+) muscles across biological sexes. Differentially expressed genes (DEGs) were identified using an adj-p-value of <0.05, followed by pathway and computational cistrome analyses. Integrating all controls, early, and late-stage of all models and sexes revealed up to 68% of DEGs and pathways were enriched at early and late CC, indicating a conserved transcriptional profile during CC development. Comparing DEGs and pathways within sexes and across models, in early-CC, the transcriptional response was highly heterogeneous. At late-stage, 11.5% of upregulated and 10% of downregulated genes were shared between models in males, while 18.9% of upregulated and 7% of downregulated DEGs were shared in females. Shared DEGs were enriched in proteasome and mitophagy/autophagy pathways (upregulated), and downregulation of energy metabolism pathways in males only. Between sexes, though proportion of shared DEGs was low (<16%), similar pathway enrichment was observed, including proteasome and mitophagy at late-stage CC. In early-CC, Osmr upregulation was the only commonality across all models and sexes, while CLOCK and ARNTL/BMAL1 were predicted transcriptional factors associated with dysregulations in all three male models. This study highlights sex and model differences in CC progression and suggests conserved transcriptional changes as potential therapeutic targets.

研究表明,癌症恶病质(CC)在不同模型和生物性别之间存在异质性,但对模型和性别进行比较的研究却很少。我们比较了小鼠癌症恶病质模型和生物性别在癌症恶病质早期和晚期的骨骼肌转录情况。我们对不同性别的腓肠肌(LLC-刘易斯肺癌)、股四头肌(KPC-胰腺癌)和胫骨前肌(C26-直肠癌和 ApcMin/+)进行了全基因表达分析。在所有模型和性别中,Osmr上调是唯一的共同点,而CLOCK和ARNTL/BMAL1是与所有三个男性模型中的失调相关的预测转录因子。这项研究强调了CC进展过程中的性别和模型差异,并建议将保守的转录变化作为潜在的治疗靶点。
{"title":"Transcriptional Analysis of Cancer Cachexia: Conserved and Unique Features Across Pre-Clinical Models and Biological Sex.","authors":"Francielly Morena, Ana Regina Cabrera, Ronald G Jones Iii, Eleanor R Schrems, Ruqaiza Muhyudin, Tyrone A Washington, Kevin A Murach, Nicholas P Greene","doi":"10.1152/ajpcell.00647.2024","DOIUrl":"10.1152/ajpcell.00647.2024","url":null,"abstract":"<p><p>Studies suggest heterogeneity in cancer cachexia (CC) among models and biological sexes, yet examinations comparing models and sexes are scarce. We compared the transcriptional landscape of skeletal muscle across murine CC models and biological sexes during early and late CC. Global gene expression analyses were performed on gastrocnemius (LLC-Lewis Lung Carcinoma), quadriceps (KPC-pancreatic), and tibialis anterior (C26-colorectal and <i>Apc<sup>Min/+</sup></i>) muscles across biological sexes. Differentially expressed genes (DEGs) were identified using an adj-p-value of <0.05, followed by pathway and computational cistrome analyses. Integrating all controls, early, and late-stage of all models and sexes revealed up to 68% of DEGs and pathways were enriched at early and late CC, indicating a conserved transcriptional profile during CC development. Comparing DEGs and pathways within sexes and across models, in early-CC, the transcriptional response was highly heterogeneous. At late-stage, 11.5% of upregulated and 10% of downregulated genes were shared between models in males, while 18.9% of upregulated and 7% of downregulated DEGs were shared in females. Shared DEGs were enriched in proteasome and mitophagy/autophagy pathways (upregulated), and downregulation of energy metabolism pathways in males only. Between sexes, though proportion of shared DEGs was low (<16%), similar pathway enrichment was observed, including proteasome and mitophagy at late-stage CC. In early-CC, <i>Osmr</i> upregulation was the only commonality across all models and sexes, while CLOCK and ARNTL/BMAL1 were predicted transcriptional factors associated with dysregulations in all three male models. This study highlights sex and model differences in CC progression and suggests conserved transcriptional changes as potential therapeutic targets.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion Channel Piezo1 Induces Ferroptosis of Trabecular Meshwork Cells: A Novel Observation in the Pathogenesis in Primary Open Angle Glaucoma. 离子通道 Piezo1 可诱导小梁网状结构细胞铁突变:原发性开角型青光眼发病机制的新发现
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-28 DOI: 10.1152/ajpcell.00173.2024
Kexin Liu, Jing Xu, Rufei Yang, Feng Wang, Ying Su

Purpose: This study aims to elucidate the role of Piezo1, a mechanosensitive molecule, in trabecular meshwork cells (TMCs) in the context of Primary Open Angle Glaucoma (POAG), a leading cause of irreversible visual impairment. Dysfunction of the trabecular meshwork (TM) is a key factor in the elevated intraocular pressure (IOP) observed in POAG, yet the specific mechanisms leading to TM dysfunction are not fully understood.

Methods: We performed cell stretching on human trabecular meshwork cells (HTMCs) and pharmacologically activated HTMCs with Yoda1 to study the role of Piezo1 in HTMCs. We focused on assessing cell viability, mitochondrial changes, lipid peroxidation, and the expression of ferroptosis-related targets such as acyl-CoA synthetase long-chain family member 4 (ACSL4) and glutathione peroxidase 4 (GPX4).

Results: Cell stretching induces ferroptosis in HTMCs, and this phenomenon is reversed by Piezo1 knockdown. Additionally, pharmacological activation of Piezo1 also leads to ferroptosis in HTMCs. Furthermore, inhibiting the JNK/p38 signaling pathway was found to mitigate the ferroptotic response induced by Yoda1, thereby confirming that Piezo1 induces ferroptosis in TMCs through this pathway. Notably, our experiments suggest that Yoda1 may trigger ferroptosis in the TM of mouse eyes.

Conclusions: Our findings demonstrate that the Piezo1 pathway is a crucial mediator of ferroptosis in TMCs, providing new insights into the pathogenic mechanisms of glaucoma, particularly POAG. This study highlights the potential of targeting the Piezo1 pathway as a therapeutic approach for mitigating TM dysfunction and managing POAG.

目的:本研究旨在阐明机械敏感分子 Piezo1 在原发性开角型青光眼(POAG)(造成不可逆视力损伤的主要原因)小梁网细胞(TMCs)中的作用。小梁网(TM)功能障碍是导致原发性开角型青光眼(POAG)眼压升高的关键因素,但导致小梁网功能障碍的具体机制尚未完全明了:我们对人小梁网状细胞(HTMC)进行了细胞拉伸,并用 Yoda1 对 HTMC 进行了药理激活,以研究 Piezo1 在 HTMC 中的作用。我们重点评估了细胞存活率、线粒体变化、脂质过氧化以及与铁变态反应相关的靶标(如酰基-CoA合成酶长链家族成员4(ACSL4)和谷胱甘肽过氧化物酶4(GPX4))的表达:结果:细胞拉伸可诱导 HTMCs 发生铁变态反应,而 Piezo1 基因敲除可逆转这一现象。此外,药理激活 Piezo1 也会导致 HTMC 中的铁蛋白沉积。此外,我们还发现抑制 JNK/p38 信号通路可减轻 Yoda1 诱导的铁变态反应,从而证实 Piezo1 可通过该通路诱导 TMCs 中的铁变态反应。值得注意的是,我们的实验表明 Yoda1 可能会引发小鼠眼球 TM 中的铁梭形细胞增多症:我们的研究结果表明,Piezo1 通路是 TMC 中铁细胞凋亡的关键介质,为青光眼,尤其是 POAG 的致病机制提供了新的见解。这项研究强调了靶向 Piezo1 通路作为减轻 TM 功能障碍和控制 POAG 的治疗方法的潜力。
{"title":"Ion Channel Piezo1 Induces Ferroptosis of Trabecular Meshwork Cells: A Novel Observation in the Pathogenesis in Primary Open Angle Glaucoma.","authors":"Kexin Liu, Jing Xu, Rufei Yang, Feng Wang, Ying Su","doi":"10.1152/ajpcell.00173.2024","DOIUrl":"https://doi.org/10.1152/ajpcell.00173.2024","url":null,"abstract":"<p><strong>Purpose: </strong>This study aims to elucidate the role of Piezo1, a mechanosensitive molecule, in trabecular meshwork cells (TMCs) in the context of Primary Open Angle Glaucoma (POAG), a leading cause of irreversible visual impairment. Dysfunction of the trabecular meshwork (TM) is a key factor in the elevated intraocular pressure (IOP) observed in POAG, yet the specific mechanisms leading to TM dysfunction are not fully understood.</p><p><strong>Methods: </strong>We performed cell stretching on human trabecular meshwork cells (HTMCs) and pharmacologically activated HTMCs with Yoda1 to study the role of Piezo1 in HTMCs. We focused on assessing cell viability, mitochondrial changes, lipid peroxidation, and the expression of ferroptosis-related targets such as acyl-CoA synthetase long-chain family member 4 (ACSL4) and glutathione peroxidase 4 (GPX4).</p><p><strong>Results: </strong>Cell stretching induces ferroptosis in HTMCs, and this phenomenon is reversed by Piezo1 knockdown. Additionally, pharmacological activation of Piezo1 also leads to ferroptosis in HTMCs. Furthermore, inhibiting the JNK/p38 signaling pathway was found to mitigate the ferroptotic response induced by Yoda1, thereby confirming that Piezo1 induces ferroptosis in TMCs through this pathway. Notably, our experiments suggest that Yoda1 may trigger ferroptosis in the TM of mouse eyes.</p><p><strong>Conclusions: </strong>Our findings demonstrate that the Piezo1 pathway is a crucial mediator of ferroptosis in TMCs, providing new insights into the pathogenic mechanisms of glaucoma, particularly POAG. This study highlights the potential of targeting the Piezo1 pathway as a therapeutic approach for mitigating TM dysfunction and managing POAG.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mechanical journey of primordial germ cells. 原始生殖细胞的机械之旅
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-28 DOI: 10.1152/ajpcell.00404.2024
Malhar Chitnis, Xu Gao, Jennifer Marlena, Andrew Holle

Primordial germ cells (PGCs) are the earliest progenitors of germline cells of the gonads in animals. The tissues that arise from primordial germ cells give rise to the male as well as female gametes and are thus responsible for transmitting genetic information to subsequent generations. Their development from single cells to fully formed tissues has thus been of great importance. In most higher animals, PGCs are initially specified at a site away from the gonads. They then migrate across multiple tissue contexts to reach a mesodermal mass of cells called the genital ridge, where they associate with somatic cells to form the sex-specific reproductive organs. This migratory behavior has been studied extensively to identify the various tissues PGCs interact with and how this might affect their development. A crucial point overlooked by classical studies has been the physical environment experienced by PGCs as they migrate and the mechanical challenges they might encounter. It has long been understood that migrating cells can sense and adapt to physical forces around them via a variety of mechanisms. Studies have also shown that these mechanical signals can guide stem cell fate. In this review, we summarize the mechanical microenvironment of migrating PGCs in different organisms. We describe how cells can adapt to this environment and how this adaptation can influence cell fate. We propose that mechanical signals play a crucial role in normal development of the germline and shed light on this unexplored area of developmental biology.

原始生殖细胞(PGC)是动物性腺生殖细胞的最早祖细胞。原始生殖细胞产生的组织可产生雄性配子和雌性配子,因此负责向后代传递遗传信息。因此,原始生殖细胞从单细胞发展为完全形成的组织具有重要意义。在大多数高等动物中,PGC 最初是在远离性腺的部位形成的。然后,它们穿过多个组织环境迁移到称为生殖脊的中胚层细胞群,在那里与体细胞结合形成性别特异的生殖器官。人们对这种迁移行为进行了广泛的研究,以确定 PGCs 与哪些组织发生相互作用,以及这种相互作用会如何影响它们的发育。经典研究忽略的一个关键点是 PGCs 迁徙时所经历的物理环境以及它们可能遇到的机械挑战。人们早就知道,迁移细胞可以通过各种机制感知并适应周围的物理力。研究还表明,这些机械信号可引导干细胞的命运。在这篇综述中,我们总结了不同生物体内迁移PGC的机械微环境。我们描述了细胞如何适应这种环境,以及这种适应如何影响细胞命运。我们提出,机械信号在生殖细胞的正常发育中起着至关重要的作用,并阐明了发育生物学中这一尚未探索的领域。
{"title":"The mechanical journey of primordial germ cells.","authors":"Malhar Chitnis, Xu Gao, Jennifer Marlena, Andrew Holle","doi":"10.1152/ajpcell.00404.2024","DOIUrl":"https://doi.org/10.1152/ajpcell.00404.2024","url":null,"abstract":"<p><p>Primordial germ cells (PGCs) are the earliest progenitors of germline cells of the gonads in animals. The tissues that arise from primordial germ cells give rise to the male as well as female gametes and are thus responsible for transmitting genetic information to subsequent generations. Their development from single cells to fully formed tissues has thus been of great importance. In most higher animals, PGCs are initially specified at a site away from the gonads. They then migrate across multiple tissue contexts to reach a mesodermal mass of cells called the genital ridge, where they associate with somatic cells to form the sex-specific reproductive organs. This migratory behavior has been studied extensively to identify the various tissues PGCs interact with and how this might affect their development. A crucial point overlooked by classical studies has been the physical environment experienced by PGCs as they migrate and the mechanical challenges they might encounter. It has long been understood that migrating cells can sense and adapt to physical forces around them via a variety of mechanisms. Studies have also shown that these mechanical signals can guide stem cell fate. In this review, we summarize the mechanical microenvironment of migrating PGCs in different organisms. We describe how cells can adapt to this environment and how this adaptation can influence cell fate. We propose that mechanical signals play a crucial role in normal development of the germline and shed light on this unexplored area of developmental biology.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular mapping of KCNE4-dependent regulation of Kv1.3. KCNE4 依赖性调控 Kv1.3 的分子图谱。
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-28 DOI: 10.1152/ajpcell.00499.2024
Daniel Sastre, Magali Colomer-Molera, Sara R Roig, Angela de Benito-Bueno, Paula G Socuellamos, Gregorio Fernandez-Ballester, Carmen Valenzuela, Antonio Felipe

The voltage-gated potassium channel Kv1.3 plays a crucial role in the immune system response. In leukocytes, the channel is coexpressed with the dominant negative regulatory subunit KCNE4, which associates with Kv1.3 to trigger intracellular retention and accelerating C-type inactivation of the channel. Previous research has demonstrated that the main association between these proteins occurs through both C-termini. However, these data fail to fully elucidate the KCNE4-dependent modulation of channel kinetics. In the present study, we analyzed the contribution of each KCNE4 domain to the modulation of Kv1.3. Our results further confirmed that the C-terminus of KCNE4 is the main determinant involved in the association-triggered intracellular retention of the channel. Moreover, interactions throughout the transmembrane region were also observed. Both the C-terminus and, especially, the transmembrane domain of KCNE4 accentuated the C-type inactivation of Kv1.3. Our data provide, for the first time, the molecular effects that a KCNE peptide, such as KCNE4, exerts on a Shaker channel, such as Kv1.3. Our results pave the way for understanding the molecular mechanisms underlying potassium channel modulation and suggest that KCNE4 participates in the conformational rearrangement of the Kv1.3 architecture, altering the C-type inactivation of the channel.

电压门控钾通道 Kv1.3 在免疫系统反应中发挥着至关重要的作用。在白细胞中,该通道与显性负调控亚基 KCNE4 共同表达,后者与 Kv1.3 结合,触发细胞内潴留,加速通道的 C 型失活。以前的研究表明,这些蛋白之间的主要联系是通过两个 C 端发生的。然而,这些数据未能完全阐明 KCNE4 对通道动力学的依赖性调节。在本研究中,我们分析了每个 KCNE4 结构域对调控 Kv1.3 的贡献。我们的研究结果进一步证实,KCNE4 的 C 端是参与关联触发的通道胞内滞留的主要决定因素。此外,我们还观察到了整个跨膜区域的相互作用。KCNE4 的 C 端,尤其是跨膜结构域,都加剧了 Kv1.3 的 C 型失活。我们的数据首次提供了 KCNE 肽(如 KCNE4)对振动器通道(如 Kv1.3)的分子影响。我们的研究结果为了解钾通道调节的分子机制铺平了道路,并表明 KCNE4 参与了 Kv1.3 结构的构象重排,改变了通道的 C 型失活。
{"title":"Molecular mapping of KCNE4-dependent regulation of Kv1.3.","authors":"Daniel Sastre, Magali Colomer-Molera, Sara R Roig, Angela de Benito-Bueno, Paula G Socuellamos, Gregorio Fernandez-Ballester, Carmen Valenzuela, Antonio Felipe","doi":"10.1152/ajpcell.00499.2024","DOIUrl":"https://doi.org/10.1152/ajpcell.00499.2024","url":null,"abstract":"<p><p>The voltage-gated potassium channel Kv1.3 plays a crucial role in the immune system response. In leukocytes, the channel is coexpressed with the dominant negative regulatory subunit KCNE4, which associates with Kv1.3 to trigger intracellular retention and accelerating C-type inactivation of the channel. Previous research has demonstrated that the main association between these proteins occurs through both C-termini. However, these data fail to fully elucidate the KCNE4-dependent modulation of channel kinetics. In the present study, we analyzed the contribution of each KCNE4 domain to the modulation of Kv1.3. Our results further confirmed that the C-terminus of KCNE4 is the main determinant involved in the association-triggered intracellular retention of the channel. Moreover, interactions throughout the transmembrane region were also observed. Both the C-terminus and, especially, the transmembrane domain of KCNE4 accentuated the C-type inactivation of Kv1.3. Our data provide, for the first time, the molecular effects that a KCNE peptide, such as KCNE4, exerts on a <i>Shaker</i> channel, such as Kv1.3. Our results pave the way for understanding the molecular mechanisms underlying potassium channel modulation and suggest that KCNE4 participates in the conformational rearrangement of the Kv1.3 architecture, altering the C-type inactivation of the channel.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ITGA3 participates in the pathogenesis of recurrent spontaneous abortion by downregulating ULK1-mediated autophagy to inhibiting trophoblast function. ITGA3通过下调ULK1介导的自噬抑制滋养细胞功能,参与复发性自然流产的发病机制。
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-22 DOI: 10.1152/ajpcell.00563.2024
Rui Qi Wang, Fangfang Dai, Zhimin Deng, Lujia Tang, Hua Liu, Liangbin Xia, Yanxiang Cheng

Recurrent spontaneous abortion (RSA) is a significant challenge encountered by couples of reproductive ages, with inadequate trophoblast invasion identified as a primary factor in RSA pathogenesis. However, the precise molecular mechanisms through which trophoblast cells dysfunction leads to RSA remain incompletely understood. Research has highlighted the critical role of integrins in embryo implantation and development. While integrin α-3 (ITGA3) is recognized for its promotion of invasion in cancer cells, its involvement in miscarriage remains poorly characterized. This investigation initially assessed ITGA3 expression in villous tissues obtained from RSA patients and induced abortion patients. The findings demonstrated a notable reduction in ITGA3 levels in the villous tissues of RSA patients compared control group. Subsequent in vitro analyses indicated that ITGA3 knockdown inhibited the migration, invasion, and proliferation of trophoblast cells. Through RNA sequencing and subsequent experimentation, it was revealed that ITGA3 regulated ULK1-mediated autophagy to influence trophoblast cells invasion, migration, and proliferation. Furthermore, utilizing a miscarriage animal model, the diminished expression of ITGA3 and ULK1 in the placentas of RSA mice was confirmed. In conclusion, the study findings suggest that the downregulation of ITGA3 suppresses ULK1 expression, consequently impeding autophagy to initiation and impeding trophoblast cells invasion and migration, thereby contributing to the pathological progression of RSA.

复发性自然流产(RSA)是育龄夫妇面临的一项重大挑战,滋养层细胞侵袭不足被认为是 RSA 发病的主要因素。然而,滋养层细胞功能障碍导致 RSA 的确切分子机制仍不完全清楚。研究强调了整合素在胚胎植入和发育中的关键作用。尽管整合素α-3(ITGA3)被认为能促进癌细胞的侵袭,但其在流产中的参与情况仍鲜为人知。这项调查初步评估了从 RSA 患者和人工流产患者身上获得的绒毛组织中 ITGA3 的表达情况。结果显示,与对照组相比,RSA 患者绒毛组织中 ITGA3 的水平明显下降。随后的体外分析表明,ITGA3 的敲除抑制了滋养层细胞的迁移、侵袭和增殖。通过 RNA 测序和后续实验发现,ITGA3 可调控 ULK1 介导的自噬,从而影响滋养层细胞的侵袭、迁移和增殖。此外,利用流产动物模型,证实了 ITGA3 和 ULK1 在 RSA 小鼠胎盘中的表达减少。总之,研究结果表明,ITGA3的下调会抑制ULK1的表达,从而阻碍自噬的启动,阻碍滋养层细胞的侵袭和迁移,从而导致RSA的病理进展。
{"title":"ITGA3 participates in the pathogenesis of recurrent spontaneous abortion by downregulating ULK1-mediated autophagy to inhibiting trophoblast function.","authors":"Rui Qi Wang, Fangfang Dai, Zhimin Deng, Lujia Tang, Hua Liu, Liangbin Xia, Yanxiang Cheng","doi":"10.1152/ajpcell.00563.2024","DOIUrl":"https://doi.org/10.1152/ajpcell.00563.2024","url":null,"abstract":"<p><p>Recurrent spontaneous abortion (RSA) is a significant challenge encountered by couples of reproductive ages, with inadequate trophoblast invasion identified as a primary factor in RSA pathogenesis. However, the precise molecular mechanisms through which trophoblast cells dysfunction leads to RSA remain incompletely understood. Research has highlighted the critical role of integrins in embryo implantation and development. While integrin α-3 (ITGA3) is recognized for its promotion of invasion in cancer cells, its involvement in miscarriage remains poorly characterized. This investigation initially assessed ITGA3 expression in villous tissues obtained from RSA patients and induced abortion patients. The findings demonstrated a notable reduction in ITGA3 levels in the villous tissues of RSA patients compared control group. Subsequent in vitro analyses indicated that ITGA3 knockdown inhibited the migration, invasion, and proliferation of trophoblast cells. Through RNA sequencing and subsequent experimentation, it was revealed that ITGA3 regulated ULK1-mediated autophagy to influence trophoblast cells invasion, migration, and proliferation. Furthermore, utilizing a miscarriage animal model, the diminished expression of ITGA3 and ULK1 in the placentas of RSA mice was confirmed. In conclusion, the study findings suggest that the downregulation of ITGA3 suppresses ULK1 expression, consequently impeding autophagy to initiation and impeding trophoblast cells invasion and migration, thereby contributing to the pathological progression of RSA.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting the gut and tumor microbiome in cancer resistance. 在抗癌过程中瞄准肠道和肿瘤微生物组。
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-22 DOI: 10.1152/ajpcell.00201.2024
Sona Ciernikova, Aneta Sevcikova, Michal Mego

Therapy resistance represents a significant challenge in oncology, occurring in various therapeutic approaches. Recently, animal models and an increasing set of clinical trials highlight the crucial impact of the gut and tumor microbiome on treatment response. The intestinal microbiome contributes to cancer initiation, progression, and formation of distant metastasis. In addition, tumor-associated microbiota is considered a critical player in influencing tumor microenvironment and regulating local immune processes. Intriguingly, numerous studies have successfully identified pathogens within the gut and tumor microbiome that might be linked to a poor response to different therapeutic modalities. The unfavorable microbial composition with the presence of specific microbes participates in cancer resistance and progression via several mechanisms, including upregulation of oncogenic pathways, macrophage polarization reprogramming, metabolism of chemotherapeutic compounds, autophagy pathway modulation, enhanced DNA damage repair, inactivation of a pro-apoptotic cascade, and bacterial secretion of extracellular vesicles, promoting the processes in the metastatic cascade. Targeted elimination of specific intratumoral bacteria appears to enhance treatment response. However, broad-spectrum antibiotic pre-treatment is mostly connected to reduced efficacy due to gut dysbiosis and lower diversity. Mounting evidence supports the potential of microbiota modulation by probiotics and fecal microbiota transplantation to improve intestinal dysbiosis and increase microbial diversity, leading to enhanced treatment efficacy while mitigating adverse effects. In this context, further research concerning the identification of clinically relevant microbiome signatures followed by microbiota-targeted strategies presents a promising approach to overcoming immunotherapy and chemotherapy resistance in refractory patients, improving their outcomes.

抗药性是肿瘤学面临的一项重大挑战,在各种治疗方法中都会出现。最近,动物模型和越来越多的临床试验凸显了肠道和肿瘤微生物组对治疗反应的重要影响。肠道微生物组有助于癌症的发生、发展和远处转移。此外,肿瘤相关微生物群被认为是影响肿瘤微环境和调节局部免疫过程的关键因素。耐人寻味的是,许多研究已成功鉴定出肠道和肿瘤微生物群中的病原体,这些病原体可能与对不同治疗方式的不良反应有关。存在特定微生物的不利微生物组成通过几种机制参与癌症的抗药性和进展,包括致癌途径的上调、巨噬细胞极化重编程、化疗化合物的代谢、自噬途径调节、DNA 损伤修复增强、促凋亡级联失活,以及细菌分泌细胞外囊泡,促进转移级联过程。有针对性地消除特定的瘤内细菌似乎能增强治疗反应。然而,广谱抗生素预处理大多与肠道菌群失调和多样性降低导致的疗效降低有关。越来越多的证据支持通过益生菌和粪便微生物群移植来调节微生物群,以改善肠道菌群失调和增加微生物多样性,从而提高疗效,同时减轻不良反应。在这种情况下,进一步研究确定临床相关的微生物组特征,然后采取微生物组靶向策略,是克服难治性患者免疫疗法和化疗耐药性、改善其预后的一种有希望的方法。
{"title":"Targeting the gut and tumor microbiome in cancer resistance.","authors":"Sona Ciernikova, Aneta Sevcikova, Michal Mego","doi":"10.1152/ajpcell.00201.2024","DOIUrl":"https://doi.org/10.1152/ajpcell.00201.2024","url":null,"abstract":"<p><p>Therapy resistance represents a significant challenge in oncology, occurring in various therapeutic approaches. Recently, animal models and an increasing set of clinical trials highlight the crucial impact of the gut and tumor microbiome on treatment response. The intestinal microbiome contributes to cancer initiation, progression, and formation of distant metastasis. In addition, tumor-associated microbiota is considered a critical player in influencing tumor microenvironment and regulating local immune processes. Intriguingly, numerous studies have successfully identified pathogens within the gut and tumor microbiome that might be linked to a poor response to different therapeutic modalities. The unfavorable microbial composition with the presence of specific microbes participates in cancer resistance and progression via several mechanisms, including upregulation of oncogenic pathways, macrophage polarization reprogramming, metabolism of chemotherapeutic compounds, autophagy pathway modulation, enhanced DNA damage repair, inactivation of a pro-apoptotic cascade, and bacterial secretion of extracellular vesicles, promoting the processes in the metastatic cascade. Targeted elimination of specific intratumoral bacteria appears to enhance treatment response. However, broad-spectrum antibiotic pre-treatment is mostly connected to reduced efficacy due to gut dysbiosis and lower diversity. Mounting evidence supports the potential of microbiota modulation by probiotics and fecal microbiota transplantation to improve intestinal dysbiosis and increase microbial diversity, leading to enhanced treatment efficacy while mitigating adverse effects. In this context, further research concerning the identification of clinically relevant microbiome signatures followed by microbiota-targeted strategies presents a promising approach to overcoming immunotherapy and chemotherapy resistance in refractory patients, improving their outcomes.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Healthy plasma lipidomic signatures depend on sex, age, body mass index, and contraceptives but not perceived stress. 健康血浆脂质体特征取决于性别、年龄、体重指数和避孕药具,但与感知到的压力无关。
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-22 DOI: 10.1152/ajpcell.00630.2024
Lisa Hahnefeld, Juliane Hackel, Sandra Trautmann, Carlo Angioni, Yannick Schreiber, Robert Gurke, Dominique Thomas, Sabine Wicker, Gerd Geisslinger, Irmgard Tegeder

Perceived stress is thought to contribute to the pathogenesis of metabolic, vascular, mental, and immune diseases, with different susceptibilities in women and men. The present study investigated if and how perceived stress and/or demographic variables including sex, age, body mass index, regular prescription drugs, occasional analgesics, or dietary supplements manifested in plasma lipidomic profiles, obtained by targeted and untargeted mass spectrometry analyses. The study included 217 healthy women and 108 healthy men, aged 18-68 years, who were recruited in a 2:1 female:male ratio to account for women with/without contraceptives. As expected, dehydroepiandrosterone sulfate (DHEAS) and ceramides were higher in men than women, and DHEAS decreased with age, while ceramides increased. Contrary to expectations, neither DHEAS nor ceramides were associated with perceived stress (PSQ30 questionnaire), which was however, associated with BMI in men, but not in women. None of the lipid species or classes showed a similar "age X sex X BMI" interaction, but the endocannabinoid palmitoylethanolamide (PEA) correlated with BMI and hypertension. Independent of perceived stress, lysophosphatidylcholines (LPCs) were lower in women than men, whereas LPC metabolites, lysophosphatidic acids (LPAs), were higher in women. The LPA:LPC ratio was particularly high in women using oral contraceptives suggesting a strong hormone-induced extracellular conversion of LPCs to LPAs, which is catalyzed by the phospholipase D, autotaxin. The results reveal complex sex differences in perceived stress and lipidomic profiles, the latter being exacerbated by contraceptive use, but perceived stress and lipids were not directly correlated.

感知压力被认为是代谢、血管、精神和免疫疾病的发病机制之一,而女性和男性的易感性有所不同。本研究调查了感知到的压力和/或人口统计学变量(包括性别、年龄、体重指数、经常服用的处方药、偶尔服用的镇痛药或膳食补充剂)是否以及如何体现在通过靶向和非靶向质谱分析获得的血浆脂质体图谱中。研究对象包括 217 名健康女性和 108 名健康男性,年龄在 18-68 岁之间,男女比例为 2:1,以考虑到使用/未使用避孕药具的女性。不出所料,男性的硫酸脱氢表雄酮(DHEAS)和神经酰胺含量均高于女性,而且随着年龄的增长,DHEAS有所下降,而神经酰胺则有所增加。与预期相反,DHEAS 和神经酰胺均与压力感知(PSQ30 问卷)无关,但男性的压力感知与体重指数有关,而女性则与之无关。没有一种脂质或脂质类别显示出类似的 "年龄 X 性别 X BMI "相互作用,但内源性大麻素棕榈酰乙醇酰胺(PEA)与 BMI 和高血压相关。与感知压力无关,女性的溶血磷脂酰胆碱(LPCs)低于男性,而女性的 LPC 代谢物溶血磷脂酸(LPAs)高于男性。使用口服避孕药的女性体内 LPA 与 LPC 的比率特别高,这表明 LPCs 在细胞外转化为 LPAs 的过程中受到了激素的强烈诱导,而这种转化是由磷脂酶 D 和自体脂酶催化的。研究结果表明,在感知压力和脂质组学特征方面存在复杂的性别差异,使用避孕药会加剧后者,但感知压力和脂质并不直接相关。
{"title":"Healthy plasma lipidomic signatures depend on sex, age, body mass index, and contraceptives but not perceived stress.","authors":"Lisa Hahnefeld, Juliane Hackel, Sandra Trautmann, Carlo Angioni, Yannick Schreiber, Robert Gurke, Dominique Thomas, Sabine Wicker, Gerd Geisslinger, Irmgard Tegeder","doi":"10.1152/ajpcell.00630.2024","DOIUrl":"https://doi.org/10.1152/ajpcell.00630.2024","url":null,"abstract":"<p><p>Perceived stress is thought to contribute to the pathogenesis of metabolic, vascular, mental, and immune diseases, with different susceptibilities in women and men. The present study investigated if and how perceived stress and/or demographic variables including sex, age, body mass index, regular prescription drugs, occasional analgesics, or dietary supplements manifested in plasma lipidomic profiles, obtained by targeted and untargeted mass spectrometry analyses. The study included 217 healthy women and 108 healthy men, aged 18-68 years, who were recruited in a 2:1 female:male ratio to account for women with/without contraceptives. As expected, dehydroepiandrosterone sulfate (DHEAS) and ceramides were higher in men than women, and DHEAS decreased with age, while ceramides increased. Contrary to expectations, neither DHEAS nor ceramides were associated with perceived stress (PSQ30 questionnaire), which was however, associated with BMI in men, but not in women. None of the lipid species or classes showed a similar \"age X sex X BMI\" interaction, but the endocannabinoid palmitoylethanolamide (PEA) correlated with BMI and hypertension. Independent of perceived stress, lysophosphatidylcholines (LPCs) were lower in women than men, whereas LPC metabolites, lysophosphatidic acids (LPAs), were higher in women. The LPA:LPC ratio was particularly high in women using oral contraceptives suggesting a strong hormone-induced extracellular conversion of LPCs to LPAs, which is catalyzed by the phospholipase D, autotaxin. The results reveal complex sex differences in perceived stress and lipidomic profiles, the latter being exacerbated by contraceptive use, but perceived stress and lipids were not directly correlated.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TFEB signaling promotes autophagic degradation of NLRP3 to attenuate neuroinflammation in diabetic encephalopathy. TFEB 信号促进 NLRP3 的自噬降解,从而减轻糖尿病脑病的神经炎症。
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-22 DOI: 10.1152/ajpcell.00322.2024
Yijia Lin, Lizhen Cheng, Yixin Chen, Wei Li, Qihao Guo, Ya Miao

Diabetic encephalopathy (DE), a neurological complication of diabetes mellitus, has an unclear etiology. Shreds of evidence show that the Nucleotide-binding oligomerization domain-like receptor family protein 3 (NLRP3) inflammasome-induced neuroinflammation and transcription factor EB (TFEB)-mediated autophagy impairment may take part in DE development. The crosstalk between these two pathways and their contribution to DE remains to be explored. A mouse model of type 2 diabetes mellitus (T2DM) exhibiting cognitive dysfunction was created, along with high glucose (HG) cultured BV2 cells. Following, 3-methyladenine (3-MA) and rapamycin were utilized to modulate autophagy. To evaluate the potential therapeutic benefits of TFEB in DE, we overexpressed and knocked down TFEB in both mice and cells. Autophagy impairment and NLRP3 inflammasome activation were noticed in T2DM mice and HG-cultured BV2 cells. The inflammatory response caused by NLRP3 inflammasome activation was decreased by rapamycin-induced autophagy enhancement, while 3-MA treatment further deteriorated it. Nuclear translocation and expression of TFEB were hampered in HG-cultured BV2 cells and T2DM mice. Exogenous TFEB overexpression boosted NLRP3 degradation via autophagy, which in turn alleviated microglial activation as well as ameliorated cognitive deficits and neuronal damage. Additionally, TFEB knockdown exacerbated neuroinflammation by decreasing autophagy-mediated NLRP3 degradation. Our findings have unraveled the pathogenesis of a previously underappreciated disease, implying that the activation of NLRP3 inflammasome and impairment of autophagy in microglia are significant etiological factors in the DE. The TFEB-mediated autophagy pathway can reduce neuroinflammation by enhancing NLRP3 degradation. This could potentially serve as a viable and innovative treatment approach for DE.

糖尿病脑病(DE)是糖尿病的一种神经系统并发症,其病因尚不清楚。一些证据表明,核苷酸结合寡聚化结构域样受体家族蛋白 3(NLRP3)炎性体诱导的神经炎症和转录因子 EB(TFEB)介导的自噬损伤可能参与了糖尿病脑病的发病。这两种途径之间的相互影响及其对 DE 的贡献仍有待探索。研究人员创建了一个表现出认知功能障碍的2型糖尿病(T2DM)小鼠模型,同时还创建了高糖(HG)培养的BV2细胞。随后,3-甲基腺嘌呤(3-MA)和雷帕霉素被用来调节自噬。为了评估 TFEB 在 DE 中的潜在治疗效果,我们在小鼠和细胞中过表达和敲除了 TFEB。在T2DM小鼠和HG培养的BV2细胞中,自噬功能受损,NLRP3炎性体活化。雷帕霉素诱导的自噬增强可降低 NLRP3 炎症小体激活引起的炎症反应,而 3-MA 处理则进一步恶化了这种反应。在 HG 培养的 BV2 细胞和 T2DM 小鼠中,TFEB 的核转位和表达受到阻碍。外源性 TFEB 的过表达通过自噬促进了 NLRP3 的降解,从而缓解了小胶质细胞的激活,并改善了认知障碍和神经元损伤。此外,敲除 TFEB 会减少自噬介导的 NLRP3 降解,从而加剧神经炎症。我们的研究结果揭示了一种以前未被重视的疾病的发病机制,暗示小胶质细胞中NLRP3炎性体的激活和自噬功能的受损是导致神经元损伤的重要病因。TFEB 介导的自噬途径可以通过增强 NLRP3 降解来减轻神经炎症。这有可能成为治疗 DE 的一种可行的创新方法。
{"title":"TFEB signaling promotes autophagic degradation of NLRP3 to attenuate neuroinflammation in diabetic encephalopathy.","authors":"Yijia Lin, Lizhen Cheng, Yixin Chen, Wei Li, Qihao Guo, Ya Miao","doi":"10.1152/ajpcell.00322.2024","DOIUrl":"https://doi.org/10.1152/ajpcell.00322.2024","url":null,"abstract":"<p><p>Diabetic encephalopathy (DE), a neurological complication of diabetes mellitus, has an unclear etiology. Shreds of evidence show that the Nucleotide-binding oligomerization domain-like receptor family protein 3 (NLRP3) inflammasome-induced neuroinflammation and transcription factor EB (TFEB)-mediated autophagy impairment may take part in DE development. The crosstalk between these two pathways and their contribution to DE remains to be explored. A mouse model of type 2 diabetes mellitus (T2DM) exhibiting cognitive dysfunction was created, along with high glucose (HG) cultured BV2 cells. Following, 3-methyladenine (3-MA) and rapamycin were utilized to modulate autophagy. To evaluate the potential therapeutic benefits of TFEB in DE, we overexpressed and knocked down TFEB in both mice and cells. Autophagy impairment and NLRP3 inflammasome activation were noticed in T2DM mice and HG-cultured BV2 cells. The inflammatory response caused by NLRP3 inflammasome activation was decreased by rapamycin-induced autophagy enhancement, while 3-MA treatment further deteriorated it. Nuclear translocation and expression of TFEB were hampered in HG-cultured BV2 cells and T2DM mice. Exogenous TFEB overexpression boosted NLRP3 degradation via autophagy, which in turn alleviated microglial activation as well as ameliorated cognitive deficits and neuronal damage. Additionally, TFEB knockdown exacerbated neuroinflammation by decreasing autophagy-mediated NLRP3 degradation. Our findings have unraveled the pathogenesis of a previously underappreciated disease, implying that the activation of NLRP3 inflammasome and impairment of autophagy in microglia are significant etiological factors in the DE. The TFEB-mediated autophagy pathway can reduce neuroinflammation by enhancing NLRP3 degradation. This could potentially serve as a viable and innovative treatment approach for DE.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IQGAP-2: A novel interacting partner for the Human Colonic Thiamin Pyrophosphate Transporter (hcTPPT). IQGAP-2:人类结肠硫胺素焦磷酸转运体(hcTPPT)的新型相互作用伙伴。
IF 5 2区 生物学 Q2 CELL BIOLOGY Pub Date : 2024-10-14 DOI: 10.1152/ajpcell.00484.2024
Kalidas Ramamoorthy, Subrata Sabui, George Kim, James M Fleckenstein, Alaullah Sheikh, Hamid M Said

The human colonic thiamin pyrophosphate transporter (hcTPPT) mediates the uptake of the microbiota-generated and phosphorylated form of vitamin B1 (i. e., thiamin pyrophosphate) in the large intestine. Expression of hcTPPT along the absorptive tract is restricted to the large intestine and the transporter is exclusively localized at the apical membrane domain of the polarized epithelial cells/colonocytes. Previous studies have characterized different physiological/pathophysiological aspects of the hcTPPT system, but nothing is currently known on whether the transporter has interacting partner(s) that affects its physiology/biology. We addressed this issue using a Y2H to screen a human colonic cDNA library, and have identified 3 putative interactors, namely IQGAP-2, SNX-6 and DMXL-1. Focusing on IQGAP-2 (whose expression in human colonocytes is the highest), we found (using fluorescent microscopy imaging and co-immunoprecipitation approaches) the putative interactor to co-localize with hcTPPT, and to directly interact with the transporter. Also, over-expressing IQGAP-2 in NCM460 cells and in human primary differentiated colonoid monolayers was found to lead to significant (P < 0.01) induction in TPP uptake, while it's knocking down (using gene-specific siRNAs) caused significant (P < 0.01 & < 0.05) decrease in uptake. Furthermore, over-expressing IQGAP-2 in NCM460 cells was found to lead to a significant enhancement in hcTPPT protein stability. Finally, we found the expression of IQGAP-2 to be markedly suppressed in conditions/factors that negatively impact colonic TPP uptake. These results identify the IQGAP-2 as an interacting partner with the hcTPPT in human colonocytes and show that this interaction has physiological and biological consequences.

人类结肠硫胺素焦磷酸转运体(hcTPPT)在大肠中介导微生物群生成的磷酸化形式的维生素 B1(即硫胺素焦磷酸)的吸收。hcTPPT 沿着吸收道的表达仅限于大肠,而且该转运体只定位在极化上皮细胞/结肠细胞的顶端膜域。以前的研究已经描述了 hcTPPT 系统的不同生理/病理生理学特征,但目前还不知道该转运体是否有影响其生理/生物学的相互作用伙伴。我们利用 Y2H 筛选人类结肠 cDNA 文库来解决这个问题,并确定了 3 个推定的相互作用者,即 IQGAP-2、SNX-6 和 DMXL-1。以 IQGAP-2(其在人类结肠细胞中的表达量最高)为重点,我们发现(使用荧光显微镜成像和共沉淀免疫方法)该推定相互作用因子与 hcTPPT 共定位,并与该转运体直接相互作用。研究还发现,在 NCM460 细胞和人类原代分化结肠单层中过度表达 IQGAP-2 会显著(P 0.01)诱导 TPP 的吸收,而敲除 IQGAP-2(使用基因特异性 siRNAs)则会显著(P < 0.01 和 0.05)降低 TPP 的吸收。此外,我们还发现在 NCM460 细胞中过度表达 IQGAP-2 会显著增强 hcTPPT 蛋白的稳定性。最后,我们发现在对结肠 TPP 吸收有负面影响的条件/因素下,IQGAP-2 的表达受到明显抑制。这些结果确定了 IQGAP-2 是人结肠细胞中 hcTPPT 的相互作用伙伴,并表明这种相互作用具有生理和生物学后果。
{"title":"IQGAP-2: A novel interacting partner for the Human Colonic Thiamin Pyrophosphate Transporter (hcTPPT).","authors":"Kalidas Ramamoorthy, Subrata Sabui, George Kim, James M Fleckenstein, Alaullah Sheikh, Hamid M Said","doi":"10.1152/ajpcell.00484.2024","DOIUrl":"https://doi.org/10.1152/ajpcell.00484.2024","url":null,"abstract":"<p><p>The human colonic thiamin pyrophosphate transporter (hcTPPT) mediates the uptake of the microbiota-generated and phosphorylated form of vitamin B1 (i. e., thiamin pyrophosphate) in the large intestine. Expression of hcTPPT along the absorptive tract is restricted to the large intestine and the transporter is exclusively localized at the apical membrane domain of the polarized epithelial cells/colonocytes. Previous studies have characterized different physiological/pathophysiological aspects of the hcTPPT system, but nothing is currently known on whether the transporter has interacting partner(s) that affects its physiology/biology. We addressed this issue using a Y2H to screen a human colonic cDNA library, and have identified 3 putative interactors, namely IQGAP-2, SNX-6 and DMXL-1. Focusing on IQGAP-2 (whose expression in human colonocytes is the highest), we found (using fluorescent microscopy imaging and co-immunoprecipitation approaches) the putative interactor to co-localize with hcTPPT, and to directly interact with the transporter. Also, over-expressing IQGAP-2 in NCM460 cells and in human primary differentiated colonoid monolayers was found to lead to significant (<i>P <</i> 0.01) induction in TPP uptake, while it's knocking down (using gene-specific siRNAs) caused significant (<i>P</i> < 0.01 & <i><</i> 0.05) decrease in uptake. Furthermore, over-expressing IQGAP-2 in NCM460 cells was found to lead to a significant enhancement in hcTPPT protein stability. Finally, we found the expression of IQGAP-2 to be markedly suppressed in conditions/factors that negatively impact colonic TPP uptake. These results identify the IQGAP-2 as an interacting partner with the hcTPPT in human colonocytes and show that this interaction has physiological and biological consequences.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American journal of physiology. Cell physiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1