Developmental and structural affinities between modern human and Neanderthal dental remains continue to be a subject of debate as well as their utility for informing assessments of life history and taxonomy. Excavation of the Middle Paleolithic cave site Lakonis in southern Greece has yielded a lower third molar (LKH 1). Here, we detail the crown development and enamel thickness of the distal cusps of the LKH 1 specimen, which has been classified as a Neanderthal based on the presence of an anterior fovea and mid-trigonid crest. Crown formation was determined using standard histological techniques, and enamel thickness was measured from a virtual plane of section. Developmental differences include thinner cuspal enamel and a lower periodicity than modern humans. Crown formation in the LKH 1 hypoconid is estimated to be 2.6-2.7 years, which is shorter than modern human times. The LKH 1 hypoconid also shows a more rapid overall crown extension rate than modern humans. Relative enamel thickness was approximately half that of a modern human sample mean; enamel on the distal cusps of modern human third molars is extremely thick in absolute and relative terms. These findings are consistent with recent studies that demonstrate differences in crown development, tissue proportions, and enamel thickness between Neanderthals and modern humans. Although overlap in some developmental variables may be found, the results of this and other studies suggest that Neanderthal molars formed in shorter periods of time than modern humans, due in part to thinner enamel and faster crown extension rates.
Since its discovery in southeastern Uzbekistan in 1938, the Teshik-Tash child has been considered a Neandertal. Its affinity is important to studies of Late Pleistocene hominin growth and development as well as interpretations of the Central Asian Middle Paleolithic and the geographic distribution of Neandertals. A close examination of the original Russian monograph reveals the incompleteness of key morphologies associated with the cranial base and face and problems with the reconstruction of the Teshik-Tash cranium, making its Neandertal attribution less certain than previously assumed. This study reassesses the Neandertal status of Teshik-Tash 1 by comparing it to a sample of Neandertal, Middle and Upper Paleolithic modern humans, and recent human sub-adults. Separate examinations of the cranium and mandible are conducted using multinomial logistic regression and discriminant function analysis to assess group membership. Results of the cranial analysis group Teshik-Tash with Upper Paleolithic modern humans when variables are not size-standardized, while results of the mandibular analysis place the specimen with recent modern humans for both raw and size-standardized data. Although these results are influenced by limitations related to the incomplete nature of the comparative sample, they suggest that the morphology of Teshik-Tash 1 as expressed in craniometrics is equivocal. Although, further quantitative studies as well as additional sub-adult fossil finds from this region are needed to ascertain the morphological pattern of this specimen specifically, and Central Asian Middle Paleolithic hominins in general, these results challenge current characterizations of this territory as the eastern boundary of the Neandertal range during the Late Pleistocene.