首页 > 最新文献

Environmental Science: Water Research & Technology最新文献

英文 中文
Field evaluation of a biochar-amended stormwater filtration system for retention of nutrients, metals, and Escherichia coli† 实地评估生物炭添加剂雨水过滤系统对营养物质、金属和大肠埃希氏菌的截留作用
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-22 DOI: 10.1039/D4EW00390J
Bridget A. Ulrich, Karina Weelborg, Tadele M. Haile, Udai B. Singh and Joe Magner

The objective of this study was to assess the impacts of biochar and iron-enhanced sand (IES) on the comprehensive contaminant retention performance of a field-scale stormwater filtration system. The system distributed runoff from a parking lot into three filters containing sand, sand amended with biochar (custom-produced via pyrolysis of red pine wood chips at 550 °C), or IES. Over the first two field seasons of operation flow into the testbed and out of each filter were continuously monitored, and influent and effluent samples were collected during 21 precipitation events and analyzed for various contaminants and water quality parameters. To account for variations in flow distribution between the filters, long-term filter performance was assessed based on comparison of apparent cumulative input and output contaminant loads over the study duration (i.e., apparent cumulative contaminant retention). The IES filter showed the most effective phosphorous retention performance (>90% net retention of total phosphorus, TP), reflecting results from previous studies. The biochar-amended filter showed improved retention of zinc and total inorganic nitrogen (TIN) relative to the sand filter, which may be attributed to: (i) enhanced electrostatic interactions between zinc and oxygen-containing functional groups on the biochar surface, and (ii) improved attenuation of ammonia-N due to reduced nitrification and/or enhanced adsorption of ammonium. The biochar-amended filter did not show improved retention of total organic carbon or Escherichia coli, in contrast to some previous studies, potentially due to differences in biochar material properties (e.g., reduced hydrophobic interactions due to the custom biochar's relatively polar surface chemistry) or operational conditions (e.g., differences in flow rate or biofilm development between the filters). These findings demonstrate the complexities surrounding the application of biochar as a stormwater filter material for broad contaminant removal, and warrant the development of best practice recommendations for biochar selection and performance testing.

本研究的目的是评估生物炭和铁质强化砂(IES)对现场规模雨水过滤系统的综合污染物截留性能的影响。该系统将停车场的径流分流到三个过滤器中,过滤器中分别装有沙子、生物炭(通过在 550 °C 下热解红松木屑定制生产)或 IES。在运行的前两个季节,对进入试验台和流出每个过滤器的流量进行了连续监测,并在 21 次降水过程中收集了进水和出水样本,分析了各种污染物和水质参数。为了考虑过滤器之间流量分布的变化,根据研究期间的表观累积输入和输出污染物负荷(即表观累积污染物滞留量)的比较,对过滤器的长期性能进行了评估。IES 过滤器显示出最有效的磷截留性能(总磷净截留率达 90%),反映了之前研究的结果。与砂滤器相比,经生物炭改良的滤器对锌和无机氮总量(TIN)的截留效果更好,这可能归因于(i) 生物炭表面的锌和含氧官能团之间的静电相互作用增强,(ii) 由于硝化作用减弱和/或氨的吸附作用增强,氨氮的衰减得到改善。与之前的一些研究相比,经生物炭改良的过滤器对总有机碳或大肠埃希氏菌的截留率并没有提高,这可能是由于生物炭材料特性的不同(例如,定制生物炭相对极性的表面化学性质减少了疏水相互作用)或运行条件的不同(例如,过滤器之间流速或生物膜发展的不同)造成的。这些研究结果表明,将生物炭用作雨水过滤材料以广泛去除污染物的应用非常复杂,因此有必要为生物炭的选择和性能测试制定最佳实践建议。
{"title":"Field evaluation of a biochar-amended stormwater filtration system for retention of nutrients, metals, and Escherichia coli†","authors":"Bridget A. Ulrich, Karina Weelborg, Tadele M. Haile, Udai B. Singh and Joe Magner","doi":"10.1039/D4EW00390J","DOIUrl":"10.1039/D4EW00390J","url":null,"abstract":"<p >The objective of this study was to assess the impacts of biochar and iron-enhanced sand (IES) on the comprehensive contaminant retention performance of a field-scale stormwater filtration system. The system distributed runoff from a parking lot into three filters containing sand, sand amended with biochar (custom-produced <em>via</em> pyrolysis of red pine wood chips at 550 °C), or IES. Over the first two field seasons of operation flow into the testbed and out of each filter were continuously monitored, and influent and effluent samples were collected during 21 precipitation events and analyzed for various contaminants and water quality parameters. To account for variations in flow distribution between the filters, long-term filter performance was assessed based on comparison of apparent cumulative input and output contaminant loads over the study duration (<em>i.e.</em>, apparent cumulative contaminant retention). The IES filter showed the most effective phosphorous retention performance (&gt;90% net retention of total phosphorus, TP), reflecting results from previous studies. The biochar-amended filter showed improved retention of zinc and total inorganic nitrogen (TIN) relative to the sand filter, which may be attributed to: (i) enhanced electrostatic interactions between zinc and oxygen-containing functional groups on the biochar surface, and (ii) improved attenuation of ammonia-N due to reduced nitrification and/or enhanced adsorption of ammonium. The biochar-amended filter did not show improved retention of total organic carbon or <em>Escherichia coli</em>, in contrast to some previous studies, potentially due to differences in biochar material properties (<em>e.g.</em>, reduced hydrophobic interactions due to the custom biochar's relatively polar surface chemistry) or operational conditions (<em>e.g.</em>, differences in flow rate or biofilm development between the filters). These findings demonstrate the complexities surrounding the application of biochar as a stormwater filter material for broad contaminant removal, and warrant the development of best practice recommendations for biochar selection and performance testing.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection and infectivity of SARS-CoV-2 in Korean municipal wastewater facilities and characterization of environmental factors influencing wastewater-bound SARS-CoV-2 韩国城市污水设施中 SARS-CoV-2 的检测和感染性以及影响污水中 SARS-CoV-2 的环境因素的特征描述
IF 5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-22 DOI: 10.1039/d4ew00334a
Jayun Kim, Yoon-ji Kim, Sook-young Lee, Jae-Ku Oem, Subin Kim, Keugtae Kim, Woosik Jung, Sungpyo Kim, Dong-Hwan Jeong, Minjoo Lee, Soo-Hyung Lee, Hyunook Kim, Joonhong Park
Wastewater-based epidemiology can track infectious diseases and COVID-19 surges. There is variability in viral signals from wastewater owing to numerous sample processing and virus detection methods, and many factors including characteristics of wastewater treatment plants (WWTPs) should be considered to consistently associate the signals with COVID-19 prevalence. This study optimized the virus detection method, validated the use of a process-control virus, investigated 22 WWTPs across South Korea (covering approximately 20% of the population) during two periods (24.8 versus 2027.4 weekly COVID-19 cases per 100 000 people), tested the infectivity of SARS-CoV-2 in wastewater, and characterized the environmental factors influencing wastewater-bound SARS-CoV-2 and local COVID-19 using data-driven models (DDMs). The most sensitive virus quantification methods were selected (PEG precipitation and commercial kits for RT-qPCR detection, approximately 39% more sensitive) by comparing various methods. Using a surrogate virus showed reduced variation (approximately 24%) between the intra- and inter-laboratory results. The number of WWTPs with positive detection of SARS-CoV-2 in raw wastewater increased (four to twenty) as the national COVID-19 cases peaked. SARS-CoV-2 is more likely to be detected in moderately sized facilities located in populated areas with sanitary sewer systems. In addition, results of infectivity testing suggested no potential for COVID-19 transmission through wastewater. The DDMs indicated that the air temperature, water quality, and number of COVID-19 cases were related to the SARS-CoV-2 in wastewater. Community COVID-19 cases were predicted (test performance: 0.703–0.970) with the data on wastewater viral load and other variables implying that these factors should be monitored for wastewater surveillance.
以废水为基础的流行病学可追踪传染病和 COVID-19 的激增。由于样本处理和病毒检测方法繁多,废水中的病毒信号存在变异,要将信号与 COVID-19 流行率联系起来,应考虑包括污水处理厂(WWTP)特征在内的多种因素。本研究优化了病毒检测方法,验证了过程控制病毒的使用,调查了韩国 22 家污水处理厂(覆盖约 20% 的人口)在两个时期的情况(每 10 万人中 COVID-19 每周病例数分别为 24.8 例和 2027.4 例),检测了废水中 SARS-CoV-2 的感染性,并使用数据驱动模型(DDM)描述了影响废水中 SARS-CoV-2 和当地 COVID-19 的环境因素。通过比较各种方法,选出了最灵敏的病毒定量方法(PEG 沉淀法和 RT-qPCR 检测商业试剂盒,灵敏度高出约 39%)。使用替代病毒可减少实验室内和实验室间结果的差异(约 24%)。随着全国 COVID-19 病例达到高峰,原废水中检测出 SARS-CoV-2 呈阳性的污水处理厂数量也在增加(从四家增加到二十家)。SARS-CoV-2 更有可能在位于人口稠密地区、拥有卫生下水道系统的中等规模设施中检测到。此外,传染性测试结果表明 COVID-19 没有通过废水传播的可能性。DDM 表明,空气温度、水质和 COVID-19 病例数与废水中的 SARS-CoV-2 有关。社区 COVID-19 病例与废水病毒载量和其他变量数据的预测结果(测试性能:0.703-0.970)表明,在废水监测中应监测这些因素。
{"title":"Detection and infectivity of SARS-CoV-2 in Korean municipal wastewater facilities and characterization of environmental factors influencing wastewater-bound SARS-CoV-2","authors":"Jayun Kim, Yoon-ji Kim, Sook-young Lee, Jae-Ku Oem, Subin Kim, Keugtae Kim, Woosik Jung, Sungpyo Kim, Dong-Hwan Jeong, Minjoo Lee, Soo-Hyung Lee, Hyunook Kim, Joonhong Park","doi":"10.1039/d4ew00334a","DOIUrl":"https://doi.org/10.1039/d4ew00334a","url":null,"abstract":"Wastewater-based epidemiology can track infectious diseases and COVID-19 surges. There is variability in viral signals from wastewater owing to numerous sample processing and virus detection methods, and many factors including characteristics of wastewater treatment plants (WWTPs) should be considered to consistently associate the signals with COVID-19 prevalence. This study optimized the virus detection method, validated the use of a process-control virus, investigated 22 WWTPs across South Korea (covering approximately 20% of the population) during two periods (24.8 <em>versus</em> 2027.4 weekly COVID-19 cases per 100 000 people), tested the infectivity of SARS-CoV-2 in wastewater, and characterized the environmental factors influencing wastewater-bound SARS-CoV-2 and local COVID-19 using data-driven models (DDMs). The most sensitive virus quantification methods were selected (PEG precipitation and commercial kits for RT-qPCR detection, approximately 39% more sensitive) by comparing various methods. Using a surrogate virus showed reduced variation (approximately 24%) between the intra- and inter-laboratory results. The number of WWTPs with positive detection of SARS-CoV-2 in raw wastewater increased (four to twenty) as the national COVID-19 cases peaked. SARS-CoV-2 is more likely to be detected in moderately sized facilities located in populated areas with sanitary sewer systems. In addition, results of infectivity testing suggested no potential for COVID-19 transmission through wastewater. The DDMs indicated that the air temperature, water quality, and number of COVID-19 cases were related to the SARS-CoV-2 in wastewater. Community COVID-19 cases were predicted (test performance: 0.703–0.970) with the data on wastewater viral load and other variables implying that these factors should be monitored for wastewater surveillance.","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical and molecular characteristics of urban wastewater dissolved organic matter: insights into their correlations† 城市污水溶解有机物的光学和分子特征:对其相关性的深入了解
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-22 DOI: 10.1039/D4EW00519H
Jiangyong Chu and Zhenliang Liao

Urban domestic wastewater is a significant source of dissolved organic matter (DOM) in aquatic environments, critically impacting urban water quality. This study integrates the optical properties and molecular features of DOM, providing a comprehensive understanding of its behavior in urban sanitary sewage. Utilizing ultraviolet-visible (UV-vis) spectroscopy, three-dimensional synchronous fluorescence spectroscopy, and ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), we establish a robust bidirectional correlation between optical properties and molecular characteristics. Our findings reveal that urban domestic wastewater is predominantly composed of protein-like substances and microbial humic components, rich in heteroatoms and homologous compounds. The established correlations between optical and molecular features validate the DOM characterization system, demonstrating consistency between photochemical properties and molecular characteristics. Molecules related to photochemical parameters align with high H/C and low O/C ratio regions. The correlation analysis indicates that the highly associated areas are the fluorescent domains of protein-like materials and microbially derived humic-like substances. This innovative approach provides actionable insights for urban water quality management, highlighting the critical role of these methods in effective environmental monitoring.

城市生活污水是水生环境中溶解有机物(DOM)的重要来源,对城市水质造成了严重影响。本研究综合了 DOM 的光学特性和分子特征,为全面了解其在城市生活污水中的行为提供了依据。利用紫外-可见(UV-vis)光谱、三维同步荧光光谱和超高效液相色谱-四极杆飞行时间质谱(UPLC-Q-TOF-MS),我们在光学特性和分子特征之间建立了稳健的双向相关性。我们的研究结果表明,城市生活污水主要由蛋白质类物质和微生物腐殖质成分组成,富含杂原子和同源化合物。光学特征与分子特征之间建立的相关性验证了 DOM 表征系统,证明了光化学特征与分子特征之间的一致性。与光化学参数相关的分子与高 H/C 比值和低 O/C 比值区域一致。相关性分析表明,高度相关的区域是蛋白质类物质的荧光域和微生物衍生的腐殖类物质。这种创新方法为城市水质管理提供了可操作的见解,突出了这些方法在有效环境监测中的关键作用。
{"title":"Optical and molecular characteristics of urban wastewater dissolved organic matter: insights into their correlations†","authors":"Jiangyong Chu and Zhenliang Liao","doi":"10.1039/D4EW00519H","DOIUrl":"10.1039/D4EW00519H","url":null,"abstract":"<p >Urban domestic wastewater is a significant source of dissolved organic matter (DOM) in aquatic environments, critically impacting urban water quality. This study integrates the optical properties and molecular features of DOM, providing a comprehensive understanding of its behavior in urban sanitary sewage. Utilizing ultraviolet-visible (UV-vis) spectroscopy, three-dimensional synchronous fluorescence spectroscopy, and ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), we establish a robust bidirectional correlation between optical properties and molecular characteristics. Our findings reveal that urban domestic wastewater is predominantly composed of protein-like substances and microbial humic components, rich in heteroatoms and homologous compounds. The established correlations between optical and molecular features validate the DOM characterization system, demonstrating consistency between photochemical properties and molecular characteristics. Molecules related to photochemical parameters align with high H/C and low O/C ratio regions. The correlation analysis indicates that the highly associated areas are the fluorescent domains of protein-like materials and microbially derived humic-like substances. This innovative approach provides actionable insights for urban water quality management, highlighting the critical role of these methods in effective environmental monitoring.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DOM removal from Lake Kinneret by adsorption columns and biodegradation: a pilot study and modeling 通过吸附塔和生物降解去除基纳雷特湖中的 DOM:试点研究和模型制作
IF 5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-20 DOI: 10.1039/d4ew00407h
Mario L. Kummel, Ofri B. Zusman, Shlomo Nir, Yael G. Mishael
A year-long removal of dissolved organic matter (DOM) from Lake Kinneret water, the main reservoir of surface drinking water in Israel, was studied by adsorption pilot plant columns with media which included new (virgin) granular activated carbon (GAC), regenerated GAC (rGAC), a clay–polymer nanocomposite (PD–MMT), and a combined media (COMB) of PD–MMT composite followed by rGAC at the same volumes. Lake Kinneret water is characterized by low specific absorption of UV at 254 nm (SUVA254), high ionic strength and high bromide content. We studied DOM removal mechanisms by each adsorbent and their combination, via monitoring their emerging concentrations through the columns. The effect of DOM removal on trihalomethanes formation (THMF) was also elucidated. Simulated and predicted DOM adsorption in GAC columns by developing an extended model including adsorption and biodegradation is presented. The best yield of DOM removal results (expressed as UV254 and DOC) was by the COMB and GAC columns. The COMB presents a synergistic result by the combination of two removal mechanisms, electrostatic by PD–MMT and hydrophobic by rGAC. The analysis along the columns shows that whereas the removal by GAC and rGAC was carried out through all layers, the removal by PD–MMT was preferentially by the upper and middle layers. Emerging SUVA254 values decreased for all media throughout the pilot run. The humic matter (HM) compounds comprising hydrophobic characteristics were more efficiently removed than the non-absorbing fractions at 254 nm (NABS254) with more hydrophilic characteristics. THM precursors' removal by COMB as well as GAC satisfied the THM regulations. The removal of hydrophilic matter in the presence of bromide should improve the reduction of THM formation in treated water. Modeling of DOM removal at the laboratory and pilot plant, which focused on removal by GAC column, could fit the data only by considering DOM biodegradation. When a steady state during pilot operation was reached, biodegradation yields, the main contribution to DOM removal, improved the overall capacity of GAC removal beyond the adsorption process.
通过吸附中试设备柱,对以色列地表饮用水的主要蓄水池--基纳特湖水中的溶解有机物(DOM)进行了为期一年的去除研究,使用的介质包括新的(原始)颗粒活性碳(GAC)、再生颗粒活性碳(rGAC)、粘土-聚合物纳米复合材料(PD-MMT),以及由相同体积的 PD-MMT 复合材料和 rGAC 组成的组合介质(COMB)。基纳特湖水的特点是对 254 纳米波长紫外线(SUVA254)的吸收率低、离子强度高、溴化物含量高。我们研究了每种吸附剂及其组合去除 DOM 的机理,并通过监测吸附剂在吸附柱中出现的浓度。我们还阐明了去除 DOM 对三卤甲烷(THMF)形成的影响。通过建立一个包括吸附和生物降解的扩展模型,对 GAC 柱中的 DOM 吸附进行了模拟和预测。COMB 和 GAC 柱对 DOM 的去除效果(以 UV254 和 DOC 表示)最好。COMB 结合了两种去除机制,即 PD-MMT 的静电机制和 rGAC 的疏水机制,产生了协同效应。沿色谱柱进行的分析表明,GAC 和 rGAC 的去除作用是通过所有层进行的,而 PD-MMT 的去除作用则是通过上层和中层进行的。在整个试运行过程中,所有介质的 SUVA254 值都在下降。在 254 纳米波长(NABS254)下,具有疏水性特征的腐殖质(HM)化合物比具有亲水性特征的非吸收馏分去除效率更高。COMB 和 GAC 对三卤甲烷前体的去除符合三卤甲烷法规的要求。在有溴化物存在的情况下去除亲水性物质,可有效减少处理过的水中三卤甲烷的形成。实验室和中试工厂的 DOM 去除模型主要是通过 GAC 柱去除,只有考虑到 DOM 的生物降解,才能与数据相吻合。在中试运行期间达到稳定状态时,生物降解产量(对 DOM 去除的主要贡献)提高了 GAC 的整体去除能力,超过了吸附过程。
{"title":"DOM removal from Lake Kinneret by adsorption columns and biodegradation: a pilot study and modeling","authors":"Mario L. Kummel, Ofri B. Zusman, Shlomo Nir, Yael G. Mishael","doi":"10.1039/d4ew00407h","DOIUrl":"https://doi.org/10.1039/d4ew00407h","url":null,"abstract":"A year-long removal of dissolved organic matter (DOM) from Lake Kinneret water, the main reservoir of surface drinking water in Israel, was studied by adsorption pilot plant columns with media which included new (virgin) granular activated carbon (GAC), regenerated GAC (rGAC), a clay–polymer nanocomposite (PD–MMT), and a combined media (COMB) of PD–MMT composite followed by rGAC at the same volumes. Lake Kinneret water is characterized by low specific absorption of UV at 254 nm (SUVA<small><sub>254</sub></small>), high ionic strength and high bromide content. We studied DOM removal mechanisms by each adsorbent and their combination, <em>via</em> monitoring their emerging concentrations through the columns. The effect of DOM removal on trihalomethanes formation (THMF) was also elucidated. Simulated and predicted DOM adsorption in GAC columns by developing an extended model including adsorption and biodegradation is presented. The best yield of DOM removal results (expressed as UV<small><sub>254</sub></small> and DOC) was by the COMB and GAC columns. The COMB presents a synergistic result by the combination of two removal mechanisms, electrostatic by PD–MMT and hydrophobic by rGAC. The analysis along the columns shows that whereas the removal by GAC and rGAC was carried out through all layers, the removal by PD–MMT was preferentially by the upper and middle layers. Emerging SUVA<small><sub>254</sub></small> values decreased for all media throughout the pilot run. The humic matter (HM) compounds comprising hydrophobic characteristics were more efficiently removed than the non-absorbing fractions at 254 nm (NABS<small><sub>254</sub></small>) with more hydrophilic characteristics. THM precursors' removal by COMB as well as GAC satisfied the THM regulations. The removal of hydrophilic matter in the presence of bromide should improve the reduction of THM formation in treated water. Modeling of DOM removal at the laboratory and pilot plant, which focused on removal by GAC column, could fit the data only by considering DOM biodegradation. When a steady state during pilot operation was reached, biodegradation yields, the main contribution to DOM removal, improved the overall capacity of GAC removal beyond the adsorption process.","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membrane technology for water reuse in decentralised non-sewered sanitation systems: comparison of pressure driven (reverse osmosis) and thermally driven processes (membrane distillation and pervaporation) 分散式无污水排放卫生系统中水回用的膜技术:压力驱动(反渗透)和热力驱动(膜蒸馏和渗透)过程的比较
IF 5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-19 DOI: 10.1039/d4ew00200h
E. Mercer, C. Davey, Y. Bajón Fernández, S. Septien, S. Tyrrel, E. Cartmell, M. Pidou, E. J. McAdam
Membrane processes are an established barrier technology for water reclamation from wastewater. Applied at a household scale to improve sanitation practice, membrane technology can disrupt the source–receptor pathway, alleviate water scarcity through eliminating flush water and recover clean water for reuse. However, blackwater comprises a distinct composition compared to municipal wastewater, and there is only limited understanding on whether membrane selectivity is sufficient to produce water of sufficient quality for reuse. In this study, pressure driven and thermally driven membranes are evaluated for their potential to treat blackwater, by relating selectivity to relevant water quality standards (ISO 30500) and the transmission of volatile organic compounds (VOCs) that are primarily associated with faecal odour, and thus constitute a critical challenge to water reuse. Both pressure driven (reverse osmosis) and thermally driven (membrane distillation and pervaporation) membranes were able to produce water that conformed to category B of the ISO 30500 standard for the majority of determinants. A critical limiting factor was in the selectivity for ammonia and odorous VOCs which were generally poorly removed by reverse osmosis and membrane distillation. The high ammonia transmission was accounted for by the elevated pH of blackwater which shifted the ammonium equilibria toward volatile ammonia which is poorly separated by RO polymers, and is free to diffuse through the gas-filled micropores of the membrane distillation membrane. In contrast, greater ammonia and VOC separation was evidenced for the pervaporation membrane due to advanced polymer–solute interactions. In a preliminary assessment, the hydrophilicity exhibited by the membrane was also advantageous to withstanding fouling. If complemented with a polishing step to target the residual COD and VOCs (that may be of similar origin), pervaporation could deliver to category A standard for non-potable reuse. This is particularly advantageous for water scarce regions where solar or liquified fuels may be applied in favour of electricity for off-grid sanitation.
膜工艺是一种成熟的从废水中再生水的屏障技术。将膜技术应用于家庭规模以改善卫生习惯,可以破坏水源-受体途径,通过消除冲洗水缓解缺水问题,并回收清洁水进行再利用。然而,与城市污水相比,黑水的成分截然不同,人们对膜的选择性是否足以生产出水质足够再利用的水了解有限。在这项研究中,通过将选择性与相关水质标准(ISO 30500)和挥发性有机化合物(VOC)的传输联系起来,评估了压力驱动膜和热驱动膜处理黑水的潜力。压力驱动(反渗透)和热力驱动(膜蒸馏和渗透)膜都能生产出符合 ISO 30500 标准 B 类的水,其中大多数决定因素都符合标准。一个关键的限制因素是对氨和有气味的挥发性有机化合物的选择性,反渗透和膜蒸馏对这两种物质的去除率通常较低。氨的高透过率是由于黑水的 pH 值升高,使氨平衡转向挥发性氨,而挥发性氨很难被反渗透聚合物分离,可以自由地通过膜蒸馏膜充满气体的微孔扩散。与此相反,由于聚合物与溶质之间的相互作用,渗透蒸发膜的氨和挥发性有机化合物分离度更高。在初步评估中,膜的亲水性也有利于抵御污垢。如果再辅之以针对残留化学需氧量和挥发性有机化合物(可能来源相似)的抛光步骤,则渗透蒸发可达到非饮用水再利用的 A 类标准。这对于缺水地区尤为有利,因为这些地区可以使用太阳能或液化燃料,而不是离网卫生用电。
{"title":"Membrane technology for water reuse in decentralised non-sewered sanitation systems: comparison of pressure driven (reverse osmosis) and thermally driven processes (membrane distillation and pervaporation)","authors":"E. Mercer, C. Davey, Y. Bajón Fernández, S. Septien, S. Tyrrel, E. Cartmell, M. Pidou, E. J. McAdam","doi":"10.1039/d4ew00200h","DOIUrl":"https://doi.org/10.1039/d4ew00200h","url":null,"abstract":"Membrane processes are an established barrier technology for water reclamation from wastewater. Applied at a household scale to improve sanitation practice, membrane technology can disrupt the source–receptor pathway, alleviate water scarcity through eliminating flush water and recover clean water for reuse. However, blackwater comprises a distinct composition compared to municipal wastewater, and there is only limited understanding on whether membrane selectivity is sufficient to produce water of sufficient quality for reuse. In this study, pressure driven and thermally driven membranes are evaluated for their potential to treat blackwater, by relating selectivity to relevant water quality standards (ISO 30500) and the transmission of volatile organic compounds (VOCs) that are primarily associated with faecal odour, and thus constitute a critical challenge to water reuse. Both pressure driven (reverse osmosis) and thermally driven (membrane distillation and pervaporation) membranes were able to produce water that conformed to category B of the ISO 30500 standard for the majority of determinants. A critical limiting factor was in the selectivity for ammonia and odorous VOCs which were generally poorly removed by reverse osmosis and membrane distillation. The high ammonia transmission was accounted for by the elevated pH of blackwater which shifted the ammonium equilibria toward volatile ammonia which is poorly separated by RO polymers, and is free to diffuse through the gas-filled micropores of the membrane distillation membrane. In contrast, greater ammonia and VOC separation was evidenced for the pervaporation membrane due to advanced polymer–solute interactions. In a preliminary assessment, the hydrophilicity exhibited by the membrane was also advantageous to withstanding fouling. If complemented with a polishing step to target the residual COD and VOCs (that may be of similar origin), pervaporation could deliver to category A standard for non-potable reuse. This is particularly advantageous for water scarce regions where solar or liquified fuels may be applied in favour of electricity for off-grid sanitation.","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of culture- and ddPCR-based wastewater surveillance for carbapenem-resistant bacteria 基于培养和 ddPCR 的废水碳青霉烯耐药菌监测对比分析
IF 5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-16 DOI: 10.1039/d4ew00525b
Siyi Zhou, Esther G. Lou, Julia Schedler, Katherine B. Ensor, Loren Hopkins, Lauren B. Stadler
With the widespread use of last-resort antibiotics, carbapenems, clinical reports of infections associated with carbapenem-resistant Enterobacterales (CRE) have increased. Clinical surveillance for CRE involves susceptibility testing and/or whole genome sequencing of resistant isolates, which is laborious, resource intensive, and requires expertise. Wastewater surveillance can potentially complement clinical surveillance of CRE, and population-level antibiotic resistance (AR) surveillance more broadly. In this study, we quantitatively and qualitatively compared two widely used methods for AR wastewater surveillance: (1) a culture-based approach for quantifying carbapenem-resistant bacteria and (2) a digital droplet PCR (ddPCR) assay targeting five major carbapenemase-encoding genes. We developed a new multiplexed ddPCR assay to detect five carbapenemase-encoding genes and applied it to wastewater samples from three sites over 12 weeks. In parallel, we quantified carbapenem resistant bacteria and carbapenemase-producing bacteria using culture-based methods. We assessed associations between the concentrations of carbapenemase-encoding genes and resistant bacteria. Although both approaches showed similar trends in the overall abundance of dominant carbapenem-resistant bacteria and genes, there were weak correlations between the quantitative levels of resistance. Nanopore sequencing of the resistome of the carbapenem-resistant bacteria revealed that discrepancies arose from differences in the sensitivity and specificity of the methods. This study highlights tradeoffs between methods: culture-based methods offer detailed phenotypic data on carbapenem-resistant bacteria but have longer turnaround times and lower throughput, whereas ddPCR offers rapid, sensitive detection but may miss some resistance mechanisms. Integrating these methods with sequencing provides sensitive, quantitative AR information and their clinical relevance.
随着耐碳青霉烯类抗生素(碳青霉烯类抗生素)的广泛使用,耐碳青霉烯类肠杆菌(CRE)相关感染的临床报告也在增加。对 CRE 的临床监测需要对耐药分离株进行药敏试验和/或全基因组测序,这不仅费力、耗费资源,而且需要专业知识。废水监测有可能对 CRE 的临床监测以及更广泛的人群抗生素耐药性 (AR) 监测起到补充作用。在这项研究中,我们对两种广泛使用的 AR 废水监测方法进行了定量和定性比较:(1) 基于培养的碳青霉烯耐药细菌定量方法;(2) 针对五种主要碳青霉烯酶编码基因的数字液滴 PCR (ddPCR) 检测方法。我们开发了一种新的多重 ddPCR 检测方法来检测五种碳青霉烯酶编码基因,并将其应用于三个地点的废水样本,历时 12 周。与此同时,我们还使用基于培养的方法对碳青霉烯类耐药菌和碳青霉烯类酶产生菌进行了量化。我们评估了碳青霉烯酶编码基因浓度与耐药细菌之间的关联。虽然这两种方法都显示了显性耐碳青霉烯类细菌和基因总体数量的相似趋势,但耐药性的定量水平之间的相关性很弱。对碳青霉烯类耐药细菌耐药基因组的纳米孔测序显示,两种方法的灵敏度和特异性存在差异。这项研究强调了各种方法之间的权衡:基于培养的方法可提供耐碳青霉烯类细菌的详细表型数据,但周转时间较长,通量较低;而 ddPCR 可提供快速、灵敏的检测,但可能会漏掉一些耐药机制。将这些方法与测序结合可提供灵敏、定量的 AR 信息及其临床相关性。
{"title":"Comparative analysis of culture- and ddPCR-based wastewater surveillance for carbapenem-resistant bacteria","authors":"Siyi Zhou, Esther G. Lou, Julia Schedler, Katherine B. Ensor, Loren Hopkins, Lauren B. Stadler","doi":"10.1039/d4ew00525b","DOIUrl":"https://doi.org/10.1039/d4ew00525b","url":null,"abstract":"With the widespread use of last-resort antibiotics, carbapenems, clinical reports of infections associated with carbapenem-resistant <em>Enterobacterales</em> (CRE) have increased. Clinical surveillance for CRE involves susceptibility testing and/or whole genome sequencing of resistant isolates, which is laborious, resource intensive, and requires expertise. Wastewater surveillance can potentially complement clinical surveillance of CRE, and population-level antibiotic resistance (AR) surveillance more broadly. In this study, we quantitatively and qualitatively compared two widely used methods for AR wastewater surveillance: (1) a culture-based approach for quantifying carbapenem-resistant bacteria and (2) a digital droplet PCR (ddPCR) assay targeting five major carbapenemase-encoding genes. We developed a new multiplexed ddPCR assay to detect five carbapenemase-encoding genes and applied it to wastewater samples from three sites over 12 weeks. In parallel, we quantified carbapenem resistant bacteria and carbapenemase-producing bacteria using culture-based methods. We assessed associations between the concentrations of carbapenemase-encoding genes and resistant bacteria. Although both approaches showed similar trends in the overall abundance of dominant carbapenem-resistant bacteria and genes, there were weak correlations between the quantitative levels of resistance. Nanopore sequencing of the resistome of the carbapenem-resistant bacteria revealed that discrepancies arose from differences in the sensitivity and specificity of the methods. This study highlights tradeoffs between methods: culture-based methods offer detailed phenotypic data on carbapenem-resistant bacteria but have longer turnaround times and lower throughput, whereas ddPCR offers rapid, sensitive detection but may miss some resistance mechanisms. Integrating these methods with sequencing provides sensitive, quantitative AR information and their clinical relevance.","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predictive modeling of BOD throughout wastewater treatment: a generalizable machine learning approach for improved effluent quality 废水处理过程中生化需氧量的预测建模:改善出水水质的通用机器学习方法
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-16 DOI: 10.1039/D4EW00111G
Offir Inbar, Moni Shahar and Dror Avisar

Biochemical oxygen demand (BOD) is one of the most sensitive and essential indicators of wastewater quality. However, today, BOD detection methods require considerable effort and time, resulting in management and operational errors during the wastewater-treatment process which leads to the production of poor-quality effluent that poses a threat to public health and safety. Using advanced machine learning (ML) methods, we developed generalizable BOD prediction model based on a unique, centrally integrated database from 30 wastewater-treatment plants (WWTP) across Israel. The model is based on easily retrieved water parameters measured by on-site sensors or conventional analytical devices. In this work, three different ML algorithms were examined and compared, random forest (RF), support vector machine, and gradient tree boosting. The optimized RF model reached the best results, R2 of 0.91 and RMSE of 8.58 in predicting the total BOD at different stages of the treatment process. The three key features for modeling were chemical oxygen demand, total suspended solids, and total Kjeldahl nitrogen. We then present an approach to predict BOD in effluent, focusing on binary classification predictions for regulatory compliance. For a prediction threshold of BOD > 9 mg L−1, a recall of 0.89 was achieved. These results demonstrate the potential of the model to be a generalized solution for BOD predictions in WWTP across Israel, and possibly worldwide. This method can be used as a part of a sensor for BOD monitoring and management in wastewater, effectively minimizing the time gaps between routine lab testing. The fundamental challenge addressed herein has important global relevance, especially in an era in which the demand for high-quality wastewater reuse is expected to increase dramatically.

生化需氧量(BOD)是衡量废水质量最敏感、最基本的指标之一。然而,目前的生化需氧量检测方法需要耗费大量的精力和时间,导致污水处理过程中出现管理和操作失误,从而产生劣质污水,对公众健康和安全构成威胁。利用先进的机器学习 (ML) 方法,我们开发了可通用的生化需氧量预测模型,该模型基于来自以色列全国 30 家污水处理厂 (WWTP) 的独特中央集成数据库。该模型基于现场传感器或传统分析设备测量到的易于检索的水参数。在这项工作中,对三种不同的 ML 算法(随机森林 (RF)、支持向量机和梯度树增强)进行了研究和比较。经过优化的 RF 模型在预测处理过程不同阶段的总生化需氧量方面取得了最佳结果,R2 为 0.91,RMSE 为 8.58。建模的三个关键特征是化学需氧量、总悬浮固体和凯氏总氮。然后,我们介绍了一种预测污水中生化需氧量的方法,重点是二元分类预测,以符合法规要求。对于 BOD > 9 mg L-1 的预测阈值,回收率达到 0.89。这些结果表明,该模型有可能成为以色列乃至全球污水处理厂生化需氧量预测的通用解决方案。该方法可作为废水中生化需氧量监测和管理传感器的一部分,有效减少常规实验室检测之间的时间间隔。本文探讨的基本挑战具有重要的全球意义,尤其是在高质量废水回用需求预计将大幅增加的时代。
{"title":"Predictive modeling of BOD throughout wastewater treatment: a generalizable machine learning approach for improved effluent quality","authors":"Offir Inbar, Moni Shahar and Dror Avisar","doi":"10.1039/D4EW00111G","DOIUrl":"10.1039/D4EW00111G","url":null,"abstract":"<p >Biochemical oxygen demand (BOD) is one of the most sensitive and essential indicators of wastewater quality. However, today, BOD detection methods require considerable effort and time, resulting in management and operational errors during the wastewater-treatment process which leads to the production of poor-quality effluent that poses a threat to public health and safety. Using advanced machine learning (ML) methods, we developed generalizable BOD prediction model based on a unique, centrally integrated database from 30 wastewater-treatment plants (WWTP) across Israel. The model is based on easily retrieved water parameters measured by on-site sensors or conventional analytical devices. In this work, three different ML algorithms were examined and compared, random forest (RF), support vector machine, and gradient tree boosting. The optimized RF model reached the best results, <em>R</em><small><sup>2</sup></small> of 0.91 and RMSE of 8.58 in predicting the total BOD at different stages of the treatment process. The three key features for modeling were chemical oxygen demand, total suspended solids, and total Kjeldahl nitrogen. We then present an approach to predict BOD in effluent, focusing on binary classification predictions for regulatory compliance. For a prediction threshold of BOD &gt; 9 mg L<small><sup>−1</sup></small>, a recall of 0.89 was achieved. These results demonstrate the potential of the model to be a generalized solution for BOD predictions in WWTP across Israel, and possibly worldwide. This method can be used as a part of a sensor for BOD monitoring and management in wastewater, effectively minimizing the time gaps between routine lab testing. The fundamental challenge addressed herein has important global relevance, especially in an era in which the demand for high-quality wastewater reuse is expected to increase dramatically.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pyrolysis of municipal sewage sludge: challenges, opportunities and new valorization routes for biochar, bio-oil, and pyrolysis gas† 城市污水污泥热解:生物炭、生物油和热解气体的挑战、机遇和新的价值化途径
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-16 DOI: 10.1039/D4EW00278D
Vincenzo Pelagalli, Michela Langone, Silvio Matassa, Marco Race, Riccardo Tuffi, Stefano Papirio, Piet N. L. Lens, Marco Lazzazzara, Alessandro Frugis, Luigi Petta and Giovanni Esposito

The efficient management of municipal sewage sludge (MSS) daily produced worldwide by biological wastewater treatment processes is nowadays of utmost importance. Classic treatment/disposal methods are affected by efficiency and/or safety issues. Innovative thermochemical treatments are gaining momentum as promising alternatives. Pyrolysis of MSS can result in the recovery of precious resources, such as nutrients and organic matter, and their conversion into three valuable fractions, i.e. biochar, bio-oil, and pyrolysis gas. These products are employable in innovative biorefinery pathways towards a wide range of value-added materials. In this review, an integrated biorefinery platform for MSS valorization is presented. After a brief introduction on MSS properties and issues related to its management, a deep focus on the influence that the feedstock and pyrolysis conditions have on the product yields and composition was conducted. Innovative valorization routes for biochar, bio-oil and pyrolysis gas were extensively discussed by highlighting challenges, opportunities, advantages and drawbacks. The characteristics required by these products to be efficiently valorized, as well as the main solution for their enhancement, were described. Additionally, economic considerations on MSS pyrolysis derived from full-scale applications conducted at the European and global level were elaborated. Finally, future perspectives about biochar, bio-oil and pyrolysis gas employment in cutting-edge upcycling routes have been reported.

如今,如何有效管理全世界每天通过生物废水处理工艺产生的城市污水污泥(MSS)至关重要。传统的处理/处置方法受到效率和/或安全问题的影响。创新的热化学处理方法作为一种有前途的替代方法,正日益受到重视。热解 MSS 可以回收营养物质和有机物等宝贵资源,并将其转化为三种有价值的馏分,即生物炭、生物油和热解气体。这些产品可用于创新的生物炼制途径,生产出多种增值材料。在本综述中,将介绍一个用于 MSS 价值化的集成生物精炼平台。在简要介绍了 MSS 的特性及其管理相关问题后,深入探讨了原料和热解条件对产品产量和成分的影响。通过强调挑战、机遇、优势和缺点,广泛讨论了生物炭、生物油和热解气体的创新价值化路线。还介绍了这些产品有效增值所需的特征,以及提高这些特征的主要解决方案。此外,还阐述了从欧洲和全球层面开展的大规模应用中得出的 MSS 热解的经济考虑因素。最后,报告了生物炭、生物油和热解气体在最先进的循环利用路线中的应用前景。
{"title":"Pyrolysis of municipal sewage sludge: challenges, opportunities and new valorization routes for biochar, bio-oil, and pyrolysis gas†","authors":"Vincenzo Pelagalli, Michela Langone, Silvio Matassa, Marco Race, Riccardo Tuffi, Stefano Papirio, Piet N. L. Lens, Marco Lazzazzara, Alessandro Frugis, Luigi Petta and Giovanni Esposito","doi":"10.1039/D4EW00278D","DOIUrl":"10.1039/D4EW00278D","url":null,"abstract":"<p >The efficient management of municipal sewage sludge (MSS) daily produced worldwide by biological wastewater treatment processes is nowadays of utmost importance. Classic treatment/disposal methods are affected by efficiency and/or safety issues. Innovative thermochemical treatments are gaining momentum as promising alternatives. Pyrolysis of MSS can result in the recovery of precious resources, such as nutrients and organic matter, and their conversion into three valuable fractions, <em>i.e.</em> biochar, bio-oil, and pyrolysis gas. These products are employable in innovative biorefinery pathways towards a wide range of value-added materials. In this review, an integrated biorefinery platform for MSS valorization is presented. After a brief introduction on MSS properties and issues related to its management, a deep focus on the influence that the feedstock and pyrolysis conditions have on the product yields and composition was conducted. Innovative valorization routes for biochar, bio-oil and pyrolysis gas were extensively discussed by highlighting challenges, opportunities, advantages and drawbacks. The characteristics required by these products to be efficiently valorized, as well as the main solution for their enhancement, were described. Additionally, economic considerations on MSS pyrolysis derived from full-scale applications conducted at the European and global level were elaborated. Finally, future perspectives about biochar, bio-oil and pyrolysis gas employment in cutting-edge upcycling routes have been reported.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable treatment for low ammonia nitrogen sewage wastewater in cold climates: natural polymer gel–organic synthetic polymer embedded anammox bacteria immobilized pellets 寒冷气候条件下低氨氮污水的可持续处理:天然聚合物凝胶-有机合成聚合物包埋固定化厌氧菌颗粒
IF 5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-16 DOI: 10.1039/d4ew00538d
Jun Li, Salma Tabassum, Hüseyin Altundag
The sewage denitrification process is concerned mainly with the treatment of industrial water with high NH4+–N (>500 mg N L−1). In this work, the denitrification effect of hybrid carrier (a natural polymer gel and an organic synthetic polymer)-embedded anammox bacteria pellets to treat NH4+–N urban sewage wastewater at low temperature through batch and continuous tests was studied. After 99 days of operation in a UASB reactor, the rapid start-up of anammox was realized. The TN volumetric load grew gradually as the influent substrate concentration increased. The final influent water had an NH4+–N load of 300 mg L−1, an HRT of 5 h, a temperature of 32 °C, and NH4+–N and nitrite nitrogen removal efficiencies above 85%. Batch tests for polyvinyl alcohol, polyvinyl alcohol–sodium alginate and polyvinyl alcohol–sodium bicarbonate pellets were performed. The optimized pellets performed exceptionally well in terms of mass transfer, elasticity, and mechanical strength. Embedded carrier materials are enhanced by added sodium alginate, silica powder, CaCO3 powder and iron powder. A device containing embedded anammox bacteria pellets (EABP) was more resistant to low-temperature stress throughout the process of gradually cooling and lowering NH4+–N than a device containing mature free sludge. In the analysis and strengthening test of EABP at 15 °C, NH4+–N removal increased from 59% to 99%. At an HRT of 10 h, the increase in rate reached 67.8%. Compared to unembedded anammox bacteria pellets, the PS/PN of embedded pellets was lower, and the sludge activity and settleability were improved. Increasing HRT improved the ability of the embedded bacteria to withstand low temperatures, stimulating bacterial strains to produce more EPS. This study can be used to build a test to simulate future engineering applications in protecting the freshwater environment from the potential deleterious effects of pollutants from untreated sewage wastewater under low-temperature conditions and ammonium concentrations.
污水反硝化工艺主要涉及高NH4+-N(>500 mg N L-1)工业废水的处理。本研究通过间歇和连续试验,研究了混合载体(天然高分子凝胶和有机合成聚合物)包埋厌氧菌颗粒在低温下处理 NH4+-N 城市污水的反硝化效果。在 UASB 反应器中运行 99 天后,实现了anammox 的快速启动。随着进水底物浓度的增加,TN 的体积负荷逐渐增加。最终进水的 NH4+-N 负荷为 300 mg L-1,HRT 为 5 h,温度为 32 °C,NH4+-N 和亚硝酸盐脱氮效率超过 85%。对聚乙烯醇、聚乙烯醇-海藻酸钠和聚乙烯醇-碳酸氢钠颗粒进行了批量试验。优化后的颗粒在传质、弹性和机械强度方面表现优异。通过添加海藻酸钠、硅粉、CaCO3 粉和铁粉,增强了嵌入载体材料的性能。在逐渐冷却和降低 NH4+-N 的整个过程中,含有嵌入式厌氧菌颗粒(EABP)的装置比含有成熟游离污泥的装置更能抵抗低温应力。在 15 °C 下对 EABP 的分析和强化测试中,NH4+-N 的去除率从 59% 提高到 99%。在 10 小时的 HRT 条件下,去除率提高了 67.8%。与未包埋的厌氧菌颗粒相比,包埋颗粒的 PS/PN 值更低,污泥活性和沉降性得到改善。增加 HRT 可提高包埋细菌耐低温的能力,刺激细菌菌株产生更多的 EPS。这项研究可用于建立一个试验,模拟未来在低温条件和氨浓度下保护淡水环境免受未经处理的污水中污染物潜在有害影响的工程应用。
{"title":"Sustainable treatment for low ammonia nitrogen sewage wastewater in cold climates: natural polymer gel–organic synthetic polymer embedded anammox bacteria immobilized pellets","authors":"Jun Li, Salma Tabassum, Hüseyin Altundag","doi":"10.1039/d4ew00538d","DOIUrl":"https://doi.org/10.1039/d4ew00538d","url":null,"abstract":"The sewage denitrification process is concerned mainly with the treatment of industrial water with high NH<small><sub>4</sub></small><small><sup>+</sup></small>–N (&gt;500 mg N L<small><sup>−1</sup></small>). In this work, the denitrification effect of hybrid carrier (a natural polymer gel and an organic synthetic polymer)-embedded anammox bacteria pellets to treat NH<small><sub>4</sub></small><small><sup>+</sup></small>–N urban sewage wastewater at low temperature through batch and continuous tests was studied. After 99 days of operation in a UASB reactor, the rapid start-up of anammox was realized. The TN volumetric load grew gradually as the influent substrate concentration increased. The final influent water had an NH<small><sub>4</sub></small><small><sup>+</sup></small>–N load of 300 mg L<small><sup>−1</sup></small>, an HRT of 5 h, a temperature of 32 °C, and NH<small><sub>4</sub></small><small><sup>+</sup></small>–N and nitrite nitrogen removal efficiencies above 85%. Batch tests for polyvinyl alcohol, polyvinyl alcohol–sodium alginate and polyvinyl alcohol–sodium bicarbonate pellets were performed. The optimized pellets performed exceptionally well in terms of mass transfer, elasticity, and mechanical strength. Embedded carrier materials are enhanced by added sodium alginate, silica powder, CaCO<small><sub>3</sub></small> powder and iron powder. A device containing embedded anammox bacteria pellets (EABP) was more resistant to low-temperature stress throughout the process of gradually cooling and lowering NH<small><sub>4</sub></small><small><sup>+</sup></small>–N than a device containing mature free sludge. In the analysis and strengthening test of EABP at 15 °C, NH<small><sub>4</sub></small><small><sup>+</sup></small>–N removal increased from 59% to 99%. At an HRT of 10 h, the increase in rate reached 67.8%. Compared to unembedded anammox bacteria pellets, the PS/PN of embedded pellets was lower, and the sludge activity and settleability were improved. Increasing HRT improved the ability of the embedded bacteria to withstand low temperatures, stimulating bacterial strains to produce more EPS. This study can be used to build a test to simulate future engineering applications in protecting the freshwater environment from the potential deleterious effects of pollutants from untreated sewage wastewater under low-temperature conditions and ammonium concentrations.","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of 2D/2D ZnIn2S4/MgAl-LDH core–shell nanostructures toward enhanced photodegradation of organic dyes† 设计二维/二维 ZnIn2S4/MgAl-LDH 核壳纳米结构以增强有机染料的光降解能力
IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Pub Date : 2024-08-16 DOI: 10.1039/D4EW00340C
Qiang Gao, Lingchun Ye, Wei Liu, Junxi Li, Yuchen Cui, Naicai Xu and Mingjin Zhang

The rational design of semiconductor photocatalysts with multi-dimensional nanostructures is an effective way to solve the problem of water environmental pollution. Herein, a series of ZnIn2S4/MgAl-LDH (ZIS/LDH) composites with core–shell nanostructures were synthesized by in situ growth of 2D ZnIn2S4 nanosheets on hexagonal LDH sheets. The obtained ZIS/LDH composite exhibited enhanced photocatalytic performance with 100% degradation efficiency for methyl orange (MO) within 20 min illumination, which was mainly attributed to the heterostructure formed by the excellent interface contact of the nanostructures, thereby inhibiting the recombination of photogenerated charges. Additionally, the as-synthesized photocatalyst shows satisfactory photocatalytic activity in stability tests and removal experiments for various dye pollutants. The present work provides novel insight into the design of heterojunction photocatalysts with multidimensional nanostructures and environmentally friendly applications.

合理设计具有多维纳米结构的半导体光催化剂是解决水环境污染问题的有效途径。本文通过在六边形 LDH 片上原位生长二维 ZnIn2S4 纳米片,合成了一系列具有核壳纳米结构的 ZnIn2S4/MgAl-LDH (ZIS/LDH)复合材料。得到的 ZIS/LDH 复合材料具有更强的光催化性能,在 20 分钟的光照时间内对甲基橙(MO)的降解效率达到 100%,这主要归功于纳米结构之间良好的界面接触所形成的异质结构,从而抑制了光生电荷的重组。此外,所合成的光催化剂在稳定性测试和去除各种染料污染物的实验中显示出令人满意的光催化活性。本研究成果为设计具有多维纳米结构的异质结光催化剂及环境友好型应用提供了新的见解。
{"title":"Design of 2D/2D ZnIn2S4/MgAl-LDH core–shell nanostructures toward enhanced photodegradation of organic dyes†","authors":"Qiang Gao, Lingchun Ye, Wei Liu, Junxi Li, Yuchen Cui, Naicai Xu and Mingjin Zhang","doi":"10.1039/D4EW00340C","DOIUrl":"10.1039/D4EW00340C","url":null,"abstract":"<p >The rational design of semiconductor photocatalysts with multi-dimensional nanostructures is an effective way to solve the problem of water environmental pollution. Herein, a series of ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small>/MgAl-LDH (ZIS/LDH) composites with core–shell nanostructures were synthesized by <em>in situ</em> growth of 2D ZnIn<small><sub>2</sub></small>S<small><sub>4</sub></small> nanosheets on hexagonal LDH sheets. The obtained ZIS/LDH composite exhibited enhanced photocatalytic performance with 100% degradation efficiency for methyl orange (MO) within 20 min illumination, which was mainly attributed to the heterostructure formed by the excellent interface contact of the nanostructures, thereby inhibiting the recombination of photogenerated charges. Additionally, the as-synthesized photocatalyst shows satisfactory photocatalytic activity in stability tests and removal experiments for various dye pollutants. The present work provides novel insight into the design of heterojunction photocatalysts with multidimensional nanostructures and environmentally friendly applications.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Science: Water Research & Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1