首页 > 最新文献

Russian Journal of Electrochemistry最新文献

英文 中文
A Correlation between the Electrochemical Behavior, and Antibacterial Activity of Some S-Triazino-Benzimidazoles 某些 S-三嗪基苯并咪唑的电化学行为与抗菌活性之间的相关性
IF 1.1 4区 工程技术 Q4 ELECTROCHEMISTRY Pub Date : 2024-05-09 DOI: 10.1134/S1023193524040025
R. Guedouar, W. Tahri, M. Abidi, S. Besbes-Hentati, M. M. Kammoun

The electrochemical behavior of the biologically active redox chemicals is essential in point of view antibacterial activity. In some cases, the electronic exchanges are coupled to chemical reactions that produce new oxidative or reductive species, which might form electrodeposits. This contribution presents a comparative study of the antibacterial activities and the anodic oxidation of S-triazino-benzimidazole derivatives substituted at the triazine ring with phenyl, 4-fluorophenyl and pentafluorophenyl groups. By combining bactericidal screening against E. coli, P. aeruginosa, S. aureus, and S. typhimurium, to a cyclic voltammetry investigation, it was revealed that the fluorine phenyl substituents in the S-triazine benzimidazole derivatives enhance the electrons ejection to the platinum disk and the subsequent chemical reactions. Additionally, by cycling of potential the non-fluorinated chemical produces a rather passive film on the electrode surface, whereas the fluorinated ones generate electroactive and electrocatalytic coatings. Comparing the results obtained with S-triazino-benzimidazole derivatives to those with 2-aminobenzimidazole, plausible mechanisms of their bactericidal action are suggested.

摘要 从抗菌活性的角度来看,生物活性氧化还原化学物质的电化学行为至关重要。在某些情况下,电子交换与化学反应耦合,产生新的氧化或还原物种,从而可能形成电沉积物。本文对 S-三嗪基苯并咪唑衍生物的抗菌活性和阳极氧化作用进行了比较研究,这些衍生物在三嗪环上被苯基、4-氟苯基和五氟苯基取代。通过结合对大肠杆菌、绿脓杆菌、金黄色葡萄球菌和伤寒杆菌的杀菌筛选和循环伏安法研究,发现 S-三嗪苯并咪唑衍生物中的氟苯基取代基增强了电子向铂盘的射出和随后的化学反应。此外,通过电位循环,非氟化化学物质会在电极表面产生一层相当被动的薄膜,而氟化化学物质则会产生电活性和电催化涂层。将 S-三嗪基苯并咪唑衍生物与 2-氨基苯并咪唑的研究结果进行比较,提出了其杀菌作用的合理机制。
{"title":"A Correlation between the Electrochemical Behavior, and Antibacterial Activity of Some S-Triazino-Benzimidazoles","authors":"R. Guedouar,&nbsp;W. Tahri,&nbsp;M. Abidi,&nbsp;S. Besbes-Hentati,&nbsp;M. M. Kammoun","doi":"10.1134/S1023193524040025","DOIUrl":"10.1134/S1023193524040025","url":null,"abstract":"<p>The electrochemical behavior of the biologically active redox chemicals is essential in point of view antibacterial activity. In some cases, the electronic exchanges are coupled to chemical reactions that produce new oxidative or reductive species, which might form electrodeposits. This contribution presents a comparative study of the antibacterial activities and the anodic oxidation of <i>S</i>-triazino-benzimidazole derivatives substituted at the triazine ring with phenyl, 4-fluorophenyl and pentafluorophenyl groups. By combining bactericidal screening against <i>E. coli</i>, <i>P. aeruginosa</i>, <i>S. aureus</i>, and <i>S. typhimurium</i>, to a cyclic voltammetry investigation, it was revealed that the fluorine phenyl substituents in the <i>S</i>-triazine benzimidazole derivatives enhance the electrons ejection to the platinum disk and the subsequent chemical reactions. Additionally, by cycling of potential the non-fluorinated chemical produces a rather passive film on the electrode surface, whereas the fluorinated ones generate electroactive and electrocatalytic coatings. Comparing the results obtained with <i>S</i>-triazino-benzimidazole derivatives to those with 2-aminobenzimidazole, plausible mechanisms of their bactericidal action are suggested.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 4","pages":"303 - 313"},"PeriodicalIF":1.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinetics of Electrodeposition of Nickel–Cobalt–Alumina Composite Electrochemical Coating 镍-钴-氧化铝复合电化学涂层的电沉积动力学
IF 1.1 4区 工程技术 Q4 ELECTROCHEMISTRY Pub Date : 2024-05-09 DOI: 10.1134/S1023193524040074
K. V. Ovchinnikova, I. G. Bobrikova, I. Yu. Zhukova, A. A. Kuts, L. A. Degtyar

The kinetic features of electrodeposition of wear- and corrosion-resistant composite electrochemical coating (CEC) of nickel–cobalt–alumina from a chloride colloidal electrolyte are studied. The application of potentiodynamic, chronopotentiometric and temperature–kinetic methods, as well as the use of the calculated temperature coefficient of reaction rate and the diffusion coefficients of nickel ions, enabled us to determine the mechanism of CEC electrodeposition. The analysis of the data on the kinetic features of CEC electrodeposition showed that the nature of the slow stage of the process is associated with the electrophoretic transfer of electroactive particles to the cathode and the stage of the overgrowth of dispersed particles adsorbed on the cathode surface with the electrodeposited metals, which proceed at comparable rates.

摘要 研究了从氯化物胶体电解液中电沉积镍-钴-氧化铝耐磨耐腐蚀复合电化学涂层(CEC)的动力学特征。通过应用电位动力法、计时电位法和温度动力学法,以及利用计算得出的反应速率温度系数和镍离子扩散系数,我们确定了 CEC 电沉积的机理。对 CEC 电沉积动力学特征数据的分析表明,该过程缓慢阶段的性质与电活性粒子向阴极的电泳转移以及吸附在阴极表面的分散粒子与电沉积金属的过度生长阶段有关,这两个阶段的速度相当。
{"title":"Kinetics of Electrodeposition of Nickel–Cobalt–Alumina Composite Electrochemical Coating","authors":"K. V. Ovchinnikova,&nbsp;I. G. Bobrikova,&nbsp;I. Yu. Zhukova,&nbsp;A. A. Kuts,&nbsp;L. A. Degtyar","doi":"10.1134/S1023193524040074","DOIUrl":"10.1134/S1023193524040074","url":null,"abstract":"<p>The kinetic features of electrodeposition of wear- and corrosion-resistant composite electrochemical coating (CEC) of nickel–cobalt–alumina from a chloride colloidal electrolyte are studied. The application of potentiodynamic, chronopotentiometric and temperature–kinetic methods, as well as the use of the calculated temperature coefficient of reaction rate and the diffusion coefficients of nickel ions, enabled us to determine the mechanism of CEC electrodeposition. The analysis of the data on the kinetic features of CEC electrodeposition showed that the nature of the slow stage of the process is associated with the electrophoretic transfer of electroactive particles to the cathode and the stage of the overgrowth of dispersed particles adsorbed on the cathode surface with the electrodeposited metals, which proceed at comparable rates.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 4","pages":"245 - 251"},"PeriodicalIF":1.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface Degradation of Lithium–Manganese Spinel in Contact with Lithium-Hexafluorophosphate-Containing Electrolyte Solution 锂锰尖晶石与含六氟磷酸锂的电解质溶液接触时的表面降解现象
IF 1.1 4区 工程技术 Q4 ELECTROCHEMISTRY Pub Date : 2024-05-09 DOI: 10.1134/S1023193524040049
A. A. Koshkina, T. V. Yaroslavtseva, A. E. Ukshe, M. V. Kuznetsov, V. T. Surikov, O. V. Bushkova

A set of computational and experimental methods is used in the study of chemical side interactions in the LiMn2O4-based lithium-ion cathodic half-cell over the 25–60°C temperature range. The degradation of LiMn2O4-spinel-based electrodes is shown to start upon the LiMn2O4 granules contacting the standard (basic) electrolyte solution (1 m LiPF6 in a mixture of ethylene carbonate and dimethyl carbonate (1 : 1, by wt)). It is established that under current-less conditions, the degradation of the LiMn2O4-based electrode is caused by the mutual thermodynamic instability between LiMn2O4 and the LiPF6 lithium salt. The equilibrium interaction products are determined, and the mechanism of the critical temperature influence on the degradation of lithium-ion batteries with lithium–manganese spinel is refined. A model is proposed for the primary surface layer at the LiMn2O4/electrolyte interface formation and evolution, which explains the distinctive features of the degradation processes in this system.

摘要 在研究 25-60°C 温度范围内基于 LiMn2O4 的锂离子阴极半电池中的化学侧相互作用时,使用了一套计算和实验方法。研究表明,当锰酸锂颗粒接触标准(碱性)电解质溶液(1 m LiPF6 在碳酸乙烯酯和碳酸二甲酯(重量比为 1:1)的混合物中)时,锰酸锂-尖晶石基电极开始降解。研究证实,在无电流条件下,锰酸锂电极的降解是由锰酸锂和 LiPF6 锂盐之间的相互热力学不稳定性引起的。确定了平衡相互作用产物,并完善了临界温度对锂锰尖晶石锂离子电池降解的影响机理。提出了锂锰尖晶石/电解质界面一次表层的形成和演化模型,解释了该体系降解过程的显著特点。
{"title":"Surface Degradation of Lithium–Manganese Spinel in Contact with Lithium-Hexafluorophosphate-Containing Electrolyte Solution","authors":"A. A. Koshkina,&nbsp;T. V. Yaroslavtseva,&nbsp;A. E. Ukshe,&nbsp;M. V. Kuznetsov,&nbsp;V. T. Surikov,&nbsp;O. V. Bushkova","doi":"10.1134/S1023193524040049","DOIUrl":"10.1134/S1023193524040049","url":null,"abstract":"<p>A set of computational and experimental methods is used in the study of chemical side interactions in the LiMn<sub>2</sub>O<sub>4</sub>-based lithium-ion cathodic half-cell over the 25–60°C temperature range. The degradation of LiMn<sub>2</sub>O<sub>4</sub>-spinel-based electrodes is shown to start upon the LiMn<sub>2</sub>O<sub>4</sub> granules contacting the standard (basic) electrolyte solution (1 m LiPF<sub>6</sub> in a mixture of ethylene carbonate and dimethyl carbonate (1 : 1, by wt)). It is established that under current-less conditions, the degradation of the LiMn<sub>2</sub>O<sub>4</sub>-based electrode is caused by the mutual thermodynamic instability between LiMn<sub>2</sub>O<sub>4</sub> and the LiPF<sub>6</sub> lithium salt. The equilibrium interaction products are determined, and the mechanism of the critical temperature influence on the degradation of lithium-ion batteries with lithium–manganese spinel is refined. A model is proposed for the primary surface layer at the LiMn<sub>2</sub>O<sub>4</sub>/electrolyte interface formation and evolution, which explains the distinctive features of the degradation processes in this system.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 4","pages":"263 - 282"},"PeriodicalIF":1.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carboxymethyl Cellulose Based Biopolymer Electrolyte with Hybrid Fillers for Dye Sensitized Solar Cell 基于羧甲基纤维素的生物聚合物电解质与混合填料用于染料敏化太阳能电池
IF 1.1 4区 工程技术 Q4 ELECTROCHEMISTRY Pub Date : 2024-05-09 DOI: 10.1134/S1023193524040098
Neeru Sharma, Ashlesha P. Kawale, Arti Srivastava, Priyanka Chawla, Shivansh Tripathi, Mridula Tripathi

The aim of the present study is to evaluate the potential of both the use of zinc oxide (ZnO) nanoparticles as primary filler and graphene as secondary filler in carboxy methyl cellulose based polymer electrolyte. The films were characterized structurally and morphologically by X-ray diffraction (XRD), Fourier-transform infra red spectroscopy (FT-IR), scanning electron microscopy (XRD). XRD results showed that ZnO nanoparticles inclusion reduced the crystallinity of the prepared biopolymer electrolyte. Addition of graphene as secondary filler further reduced the crystallinity of the prepared biopolymer electrolyte film. The FTIR technique and SEM images confirmed the complexation of salts with the polymer matrix. Due to graphene’s ability to create conductive layers, the inclusion of a little amount of it as a supplementary filler increased the A.C. conductivity from 1.63 × 10–5 to 2.6 × 10–4 S cm–1. The synergistic effects of both fillers contributed to raising the polymer electrolyte film’s electrical conductivity. Utilizing this polymer electrolyte layer enabled the creation of a solid state DSSC with an efficiency of 2.6%.

摘要 本研究旨在评估在羧甲基纤维素基聚合物电解液中使用氧化锌(ZnO)纳米颗粒作为主要填料和石墨烯作为次要填料的潜力。通过 X 射线衍射 (XRD)、傅立叶变换红外光谱 (FT-IR)、扫描电子显微镜 (XRD) 对薄膜的结构和形态进行了表征。XRD 结果表明,氧化锌纳米粒子的加入降低了所制备生物聚合物电解质的结晶度。石墨烯作为辅助填料的加入进一步降低了制备的生物聚合物电解质薄膜的结晶度。傅立叶变换红外技术和扫描电镜图像证实了盐与聚合物基质的络合。由于石墨烯具有形成导电层的能力,加入少量石墨烯作为辅助填料可将 A.C. 电导率从 1.63 × 10-5 提高到 2.6 × 10-4 S cm-1。两种填料的协同作用有助于提高聚合物电解质薄膜的导电率。利用这种聚合物电解质层,可以制造出效率为 2.6% 的固态 DSSC。
{"title":"Carboxymethyl Cellulose Based Biopolymer Electrolyte with Hybrid Fillers for Dye Sensitized Solar Cell","authors":"Neeru Sharma,&nbsp;Ashlesha P. Kawale,&nbsp;Arti Srivastava,&nbsp;Priyanka Chawla,&nbsp;Shivansh Tripathi,&nbsp;Mridula Tripathi","doi":"10.1134/S1023193524040098","DOIUrl":"10.1134/S1023193524040098","url":null,"abstract":"<p>The aim of the present study is to evaluate the potential of both the use of zinc oxide (ZnO) nanoparticles as primary filler and graphene as secondary filler in carboxy methyl cellulose based polymer electrolyte. The films were characterized structurally and morphologically by X-ray diffraction (XRD), Fourier-transform infra red spectroscopy (FT-IR), scanning electron microscopy (XRD). XRD results showed that ZnO nanoparticles inclusion reduced the crystallinity of the prepared biopolymer electrolyte. Addition of graphene as secondary filler further reduced the crystallinity of the prepared biopolymer electrolyte film. The FTIR technique and SEM images confirmed the complexation of salts with the polymer matrix. Due to graphene’s ability to create conductive layers, the inclusion of a little amount of it as a supplementary filler increased the A.C. conductivity from 1.63 × 10<sup>–5</sup> to 2.6 × 10<sup>–4</sup> S cm<sup>–1</sup>. The synergistic effects of both fillers contributed to raising the polymer electrolyte film’s electrical conductivity. Utilizing this polymer electrolyte layer enabled the creation of a solid state DSSC with an efficiency of 2.6%.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 4","pages":"314 - 320"},"PeriodicalIF":1.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Solution Composition on the Desorption Behavior of Self-Assembled Monolayers of Alkanethiols with Different Terminal Groups 溶液成分对具有不同末端基团的烷硫醇自组装单层解吸行为的影响
IF 1.1 4区 工程技术 Q4 ELECTROCHEMISTRY Pub Date : 2024-05-09 DOI: 10.1134/S1023193524040062
S. N. Ovchinnikova, T. P. Aleksandrova

Voltammetry and chronoamperometry are used to study the effect of the solution composition on the desorption behavior of self-assembled monolayers of alkanethiols with approximately the same chain length but different terminal groups of thiols (R: –CH3, –CH2OH, and –NH2). The hydrophilic properties of the terminal groups for the studied thiols increased in the –CH3 ( ll ) –NH2 ≤ –CH2OH series. It is found that the anionic and cationic composition of electrolyte affected significantly the electrochemical stability and blocking ability of self-assembled monolayers of thiols with different terminal groups. It is established that the electrochemical stability and blocking ability of the self-assembled monolayers decreased in the Li+, Na+, K+ series in alkaline solutions regardless of the thiol terminal group. The cation nature in perchlorate and chloride solutions manifested itself only for thiol with the –NH2 terminal group. The shape of cathodic voltammograms changed for this thiol when passing from alkaline to ({text{ClO}}_{4}^{ - }) and Сl medium, possibly owing to a change in the amino group protonation degree.

摘要 采用伏安法和时变法研究了溶液组成对链长大致相同但硫醇末端基团(R:-CH3、-CH2OH 和 -NH2)不同的烷硫醇自组装单层的解吸行为的影响。所研究的硫醇末端基团的亲水性在 -CH3 ( ll ) -NH2 ≤ -CH2OH 系列中有所增加。研究发现,电解质的阴离子和阳离子成分对不同末端基团的硫醇自组装单层的电化学稳定性和阻断能力有显著影响。研究证实,在碱性溶液中,无论硫醇的末端基团是什么,自组装单层的电化学稳定性和阻断能力在 Li+、Na+、K+ 系列中都会下降。在高氯酸盐和氯化物溶液中的阳离子性质只体现在带有 -NH2 端基的硫醇上。当这种硫醇从碱性介质转入({text{ClO}}_{4}^{ - }) 和Сl-介质时,阴极伏安图的形状发生了变化,这可能是由于氨基质子化程度发生了变化。
{"title":"Effect of Solution Composition on the Desorption Behavior of Self-Assembled Monolayers of Alkanethiols with Different Terminal Groups","authors":"S. N. Ovchinnikova,&nbsp;T. P. Aleksandrova","doi":"10.1134/S1023193524040062","DOIUrl":"10.1134/S1023193524040062","url":null,"abstract":"<p>Voltammetry and chronoamperometry are used to study the effect of the solution composition on the desorption behavior of self-assembled monolayers of alkanethiols with approximately the same chain length but different terminal groups of thiols (R: –CH<sub>3</sub>, –CH<sub>2</sub>OH, and –NH<sub>2</sub>). The hydrophilic properties of the terminal groups for the studied thiols increased in the –CH<sub>3</sub> <span>( ll )</span> –NH<sub>2</sub> ≤ –CH<sub>2</sub>OH series. It is found that the anionic and cationic composition of electrolyte affected significantly the electrochemical stability and blocking ability of self-assembled monolayers of thiols with different terminal groups. It is established that the electrochemical stability and blocking ability of the self-assembled monolayers decreased in the Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup> series in alkaline solutions regardless of the thiol terminal group. The cation nature in perchlorate and chloride solutions manifested itself only for thiol with the –NH<sub>2</sub> terminal group. The shape of cathodic voltammograms changed for this thiol when passing from alkaline to <span>({text{ClO}}_{4}^{ - })</span> and Сl<sup>–</sup> medium, possibly owing to a change in the amino group protonation degree.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 4","pages":"283 - 289"},"PeriodicalIF":1.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical Study of the Antitumor Antibiotic Doxorubicin in Its Free Form and Encapsulated in a Biocompatible Copolymer of N-Vinylpyrrolidone and (di)Methacrylates 抗肿瘤抗生素多柔比星游离态和包裹在生物相容性 N-乙烯基吡咯烷酮和(二)甲基丙烯酸酯共聚物中的电化学研究
IF 1.1 4区 工程技术 Q4 ELECTROCHEMISTRY Pub Date : 2024-05-09 DOI: 10.1134/S1023193524040050
V. A. Kurmaz, D. V. Konev, S. V. Kurmaz, N. S. Emel’yanova

A comparative study of the electrochemical behavior of various forms of the antitumor antibiotic doxorubicin (DOX), both free and encapsulated in micelle-like nanoparticles of the biocompatible amphiphilic copolymer of N-vinylpyrrolidone (VP) and methacrylic acid, viz., triethylene glycol dimethacrylate (TEGDM), is carried out in aqueous neutral buffers on a glassy carbon electrode. The hydrodynamic radii Rh of the copolymer and the DOX polymeric nanostructures are determined using dynamic light scattering. Using cyclic and square wave voltammetry, for both forms of DOX at pH 7.24, the two main redox transitions are revealed namely, the irreversible oxidation/rereduction in the potential interval from 0.2 to 0.6 V and the reversible reduction/reoxidation in the interval from –0.4 to –0.7 V (vs. saturated Ag/AgCl), and their redox potentials are determined. For both redox transitions, the potential difference between the corresponding peaks does not exceed several tens (20–30) mV; and, moreover, the oxidation of the encapsulated form proceeds easier as compared with the free form, whereas its reduction is somewhat more difficult. The analysis of the dependence of the reduction current of both DOX forms on the potential scan rate shows that the electron transfer to a free DOX molecule is largely determined by the rate of reagent accumulation in the adsorption layer, whereas the electron transfer to the encapsulated form is characterized by the mixed adsorption-diffusion control. Based on voltammetric data and the results of quantum chemical modeling, it is concluded that a hydrogen bond is formed between the oxygen-containing groups of copolymer’s monomeric units and the H atoms in OH and NH2 groups of DOX. The bond energy in these structures is calculated and shown to be close to the classical values, assuming that the carbonyl group in the VP lactam ring in the encapsulating polymer is the electron donor, and the hydrogen atoms in OH and NH2 groups of DOX are the electron acceptors. At the same time, the bonds involving oxygen of the ester group in the TEGDM unit are extremely weak.

摘要 在水性中性缓冲液中,在玻璃碳电极上对各种形式的抗肿瘤抗生素多柔比星(DOX)的电化学行为进行了比较研究,这些抗肿瘤抗生素既有游离的,也有包裹在具有生物相容性的 N-乙烯基吡咯烷酮(VP)和甲基丙烯酸的两亲共聚物(即三乙二醇二甲基丙烯酸酯(TEGDM))胶束状纳米颗粒中的。使用动态光散射法测定了共聚物和 DOX 聚合物纳米结构的流体力学半径 Rh。利用循环伏安法和方波伏安法,在 pH 值为 7.24 的条件下,对两种形式的 DOX 进行了两种主要的氧化还原跃迁,即在 0.2 至 0.6 V 电位区间内的不可逆氧化/还原跃迁和在 -0.4 至 -0.7 V 电位区间内的可逆还原/氧化跃迁(相对于饱和 Ag/AgCl),并确定了它们的氧化还原电位。对于这两种氧化还原转变,相应峰值之间的电位差不超过几十(20-30)毫伏;此外,与游离态相比,封装态的氧化过程更容易进行,而还原过程则更加困难。对两种 DOX 形式的还原电流与电位扫描速率的关系进行的分析表明,电子向游离 DOX 分子的转移主要取决于吸附层中试剂的积累速率,而电子向封装形式的转移则受吸附-扩散混合控制的影响。根据伏安数据和量子化学建模的结果,可以得出结论:共聚物单体单元的含氧基团与 DOX 的 OH 和 NH2 基团中的 H 原子之间形成了氢键。假设封装聚合物中 VP 内酰胺环上的羰基是电子供体,而 DOX 的 OH 和 NH2 基团中的氢原子是电子受体,则计算得出这些结构中的键能接近经典值。同时,TEGDM 单元中涉及酯基氧的键非常弱。
{"title":"Electrochemical Study of the Antitumor Antibiotic Doxorubicin in Its Free Form and Encapsulated in a Biocompatible Copolymer of N-Vinylpyrrolidone and (di)Methacrylates","authors":"V. A. Kurmaz,&nbsp;D. V. Konev,&nbsp;S. V. Kurmaz,&nbsp;N. S. Emel’yanova","doi":"10.1134/S1023193524040050","DOIUrl":"10.1134/S1023193524040050","url":null,"abstract":"<p>A comparative study of the electrochemical behavior of various forms of the antitumor antibiotic doxorubicin (DOX), both free and encapsulated in micelle-like nanoparticles of the biocompatible amphiphilic copolymer of <i>N</i>-vinylpyrrolidone (VP) and methacrylic acid, viz., triethylene glycol dimethacrylate (TEGDM), is carried out in aqueous neutral buffers on a glassy carbon electrode. The hydrodynamic radii <i>R</i><sub>h</sub> of the copolymer and the DOX polymeric nanostructures are determined using dynamic light scattering. Using cyclic and square wave voltammetry, for both forms of DOX at pH 7.24, the two main redox transitions are revealed namely, the irreversible oxidation/rereduction in the potential interval from 0.2 to 0.6 V and the reversible reduction/reoxidation in the interval from –0.4 to –0.7 V (vs. saturated Ag/AgCl), and their redox potentials are determined. For both redox transitions, the potential difference between the corresponding peaks does not exceed several tens (20–30) mV; and, moreover, the oxidation of the encapsulated form proceeds easier as compared with the free form, whereas its reduction is somewhat more difficult. The analysis of the dependence of the reduction current of both DOX forms on the potential scan rate shows that the electron transfer to a free DOX molecule is largely determined by the rate of reagent accumulation in the adsorption layer, whereas the electron transfer to the encapsulated form is characterized by the mixed adsorption-diffusion control. Based on voltammetric data and the results of quantum chemical modeling, it is concluded that a hydrogen bond is formed between the oxygen-containing groups of copolymer’s monomeric units and the H atoms in OH and NH<sub>2</sub> groups of DOX. The bond energy in these structures is calculated and shown to be close to the classical values, assuming that the carbonyl group in the VP lactam ring in the encapsulating polymer is the electron donor, and the hydrogen atoms in OH and NH<sub>2</sub> groups of DOX are the electron acceptors. At the same time, the bonds involving oxygen of the ester group in the TEGDM unit are extremely weak.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 4","pages":"321 - 337"},"PeriodicalIF":1.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effects of Temperature and Lithium Polysulfides on the Composition of Lithium Cathodic Deposits Formed at a Steel Electrode 温度和多硫化锂对钢电极上形成的锂阴极沉积物成分的影响
IF 1.1 4区 工程技术 Q4 ELECTROCHEMISTRY Pub Date : 2024-05-09 DOI: 10.1134/S1023193524040037
E. V. Karaseva, S. E. Mochalov, V. S. Kolosnitsyn

The effect of lithium polysulfides on the amount and ratio of electrochemically active metallic lithium, electrochemically inactive metallic lithium, and chemically formed lithium compounds in the cathodic deposits formed on a stainless-steel electrode during galvanostatic cycling in 1 М LiClO4 solution in sulfolane at 15, 30, 45, and 60°C is studied using the method we have developed earlier. It is shown that the increase in temperature leads to increase in the Coulomb efficiency of cycling and the amount of electrochemically active metallic lithium; a decrease in the amount of electrochemically inactive metallic lithium, regardless of the presence of lithium polysulfides in the electrolyte. When lithium polysulfides have been introduced into the electrolyte, an increase in the Coulomb efficiency of the metallic lithium cycling and a change in the ratio of various forms of lithium in the cathodic deposits toward an increase in electrochemically active lithium by about 1.5 times are observed. The lithium polysulfides are assumed to contribute to the dissolution of electrochemically inactive metallic lithium, forming an interfacial “sulfide” film at the electrode, which possessed high ionic conductivity and good protective properties, the more so, at elevated temperatures.

摘要 使用我们之前开发的方法,研究了在 15、30、45 和 60°C 下,在 1 М LiClO4 溶液在磺烷中进行电静电循环时,锂多硫化物对不锈钢电极上形成的阴极沉积物中电化学活性金属锂、电化学非活性金属锂和化学形成的锂化合物的数量和比例的影响。结果表明,无论电解质中是否存在多硫化锂,温度升高都会导致循环库仑效率和电化学活性金属锂的数量增加,而电化学非活性金属锂的数量则会减少。在电解液中引入多硫化锂后,金属锂循环的库仑效率提高,阴极沉积物中各种形式锂的比例发生变化,电化学活性锂增加了约 1.5 倍。多硫化锂被认为有助于电化学不活跃金属锂的溶解,在电极上形成了一层界面 "硫化物 "薄膜,该薄膜具有高离子导电性和良好的保护特性,在高温下更是如此。
{"title":"The Effects of Temperature and Lithium Polysulfides on the Composition of Lithium Cathodic Deposits Formed at a Steel Electrode","authors":"E. V. Karaseva,&nbsp;S. E. Mochalov,&nbsp;V. S. Kolosnitsyn","doi":"10.1134/S1023193524040037","DOIUrl":"10.1134/S1023193524040037","url":null,"abstract":"<p>The effect of lithium polysulfides on the amount and ratio of electrochemically active metallic lithium, electrochemically inactive metallic lithium, and chemically formed lithium compounds in the cathodic deposits formed on a stainless-steel electrode during galvanostatic cycling in 1 М LiClO<sub>4</sub> solution in sulfolane at 15, 30, 45, and 60°C is studied using the method we have developed earlier. It is shown that the increase in temperature leads to increase in the Coulomb efficiency of cycling and the amount of electrochemically active metallic lithium; a decrease in the amount of electrochemically inactive metallic lithium, regardless of the presence of lithium polysulfides in the electrolyte. When lithium polysulfides have been introduced into the electrolyte, an increase in the Coulomb efficiency of the metallic lithium cycling and a change in the ratio of various forms of lithium in the cathodic deposits toward an increase in electrochemically active lithium by about 1.5 times are observed. The lithium polysulfides are assumed to contribute to the dissolution of electrochemically inactive metallic lithium, forming an interfacial “sulfide” film at the electrode, which possessed high ionic conductivity and good protective properties, the more so, at elevated temperatures.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"60 4","pages":"252 - 262"},"PeriodicalIF":1.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcium–Borosilicate Glass-Ceramics as a Sealant for Solid Oxide Fuel Cells 作为固体氧化物燃料电池密封剂的硼硅酸钙玻璃陶瓷
IF 1.2 4区 工程技术 Q4 ELECTROCHEMISTRY Pub Date : 2024-05-08 DOI: 10.1134/s1023193524030121
A. O. Zhigachev, S. I. Bredikhin, E. A. Agarkova, D. V. Matveev

Abstract

The applicability of calcium–borosilicate glass-ceramics with high boron oxide content as a sealant for solid oxide fuel cells is studied. Chemical composition of the studied materials is: 33 mol % CaO, 21 mol % B2O3, and 46 mol % SiO2. The material is studied as an alternative to the existing calcium– and barium–aluminosilicate-based sealants because of the latters’ limited adhesion to steel interconnects in fuel cells. The studied sealant is shown to have a softening point of about 920–930°C, which allows using it for sealing of fuel cells at 925°C. Use of relatively low sealing temperature allows avoiding overheating of the cell during the sealing and avoiding the accompanying degradation of the battery operational characteristics. The studied sealant demonstrated excellent adhesion to the surface of interconnect materials (the Crofer 22 APU steel). Furthermore, the studied sealant is found to be thermomechanically compatible with the Crofer 22 APU steel and ZrO2-based electrolytes.

摘要 研究了高氧化硼含量的钙硼硅酸盐玻璃陶瓷作为固体氧化物燃料电池密封剂的适用性。所研究材料的化学成分为33 mol % CaO、21 mol % B2O3 和 46 mol % SiO2。由于现有的钙基和硅酸铝钡基密封剂对燃料电池中的钢互联件的粘附力有限,因此将这种材料作为替代品进行研究。研究表明,这种密封剂的软化点约为 920-930°C,因此可在 925°C 下对燃料电池进行密封。使用相对较低的密封温度可以避免在密封过程中电池过热,并避免随之而来的电池运行特性下降。所研究的密封剂与互连材料(Crofer 22 APU 钢)表面的粘附性极佳。此外,还发现所研究的密封剂与 Crofer 22 APU 钢和基于二氧化锆的电解液具有热机械兼容性。
{"title":"Calcium–Borosilicate Glass-Ceramics as a Sealant for Solid Oxide Fuel Cells","authors":"A. O. Zhigachev, S. I. Bredikhin, E. A. Agarkova, D. V. Matveev","doi":"10.1134/s1023193524030121","DOIUrl":"https://doi.org/10.1134/s1023193524030121","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The applicability of calcium–borosilicate glass-ceramics with high boron oxide content as a sealant for solid oxide fuel cells is studied. Chemical composition of the studied materials is: 33 mol % CaO, 21 mol % B<sub>2</sub>O<sub>3</sub>, and 46 mol % SiO<sub>2</sub>. The material is studied as an alternative to the existing calcium– and barium–aluminosilicate-based sealants because of the latters’ limited adhesion to steel interconnects in fuel cells. The studied sealant is shown to have a softening point of about 920–930°C, which allows using it for sealing of fuel cells at 925°C. Use of relatively low sealing temperature allows avoiding overheating of the cell during the sealing and avoiding the accompanying degradation of the battery operational characteristics. The studied sealant demonstrated excellent adhesion to the surface of interconnect materials (the Crofer 22 APU steel). Furthermore, the studied sealant is found to be thermomechanically compatible with the Crofer 22 APU steel and ZrO<sub>2</sub>-based electrolytes.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"74 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigations on PbS/SiPY-Based Photocathode for Photoelectrochemical Reduction of CO2 基于 PbS/SiPY 的光电阴极用于光电化学还原 CO2 的研究
IF 1.2 4区 工程技术 Q4 ELECTROCHEMISTRY Pub Date : 2024-05-08 DOI: 10.1134/s1023193524030054
K. Benfadel, L. Talbi, S. Anas Boussaa, A. Boukezzata, Y. Ouadah, D. Allam, S. Hocine, L. Allad, A. Ouerk, C. Torki, S. Bouanik, S. Achacha, A. Manseri, F. Kezzoula, A. Keffous, S. Kaci

Abstract

Lead Sulfide (PbS) nanoparticle-decorated silicon (Si) pyramids array on Si-based photocathodes are fabricated by using pure chemical methods. The PbS thin layers were synthesized by chemical solution deposition onto flat Silicon (Si) and pyramidal textured Silicon (SiPY) obtained from alkaline Si substrate etching. Scanning Electron Microscopy (SEM) was used to carry out the morphological characterization, while UV–Vis-NIR Spectroscopy was used to study the optical properties. The Linear sweep voltammetry (LSV) was conducted to study the catalytic activity in dark and under white light irradiation using a potentiostat station. Cyclic voltammetry in the presence of and without purging CO2 was also investigated. The LSV investigations showed the synergy effect between PbS thin films and Si for the rising and transport of the charge carriers. The results showed a higher photocatalytic towards CO2 reduction of PbS/SiPY compared to Silicon substrate without surface texturization and sensitization. The photoelectrode based on PbS/SiPY could efficiently be used as a photocathode for the photoelectrochemical (PEC) reduction of CO2 to Methanol.

摘要 采用纯化学方法在硅基光电阴极上制作了硫化铅(PbS)纳米粒子装饰硅(Si)金字塔阵列。硫化铅薄层是通过化学溶液沉积法合成在平面硅(Si)和碱性硅基底蚀刻获得的金字塔纹理硅(SiPY)上的。扫描电子显微镜(SEM)用于进行形态表征,紫外-可见-近红外光谱用于研究光学特性。使用恒电位仪进行线性扫描伏安法(LSV),以研究黑暗环境和白光照射下的催化活性。此外,还研究了有二氧化碳吹扫和无二氧化碳吹扫时的循环伏安法。LSV 研究表明,在电荷载流子的上升和传输方面,PbS 薄膜和硅之间存在协同效应。结果表明,与未进行表面纹理化和敏化处理的硅基底相比,PbS/SiPY 对二氧化碳还原的光催化能力更强。基于 PbS/SiPY 的光电阴极可有效地用作光电化学(PEC)将 CO2 还原成甲醇的光电阴极。
{"title":"Investigations on PbS/SiPY-Based Photocathode for Photoelectrochemical Reduction of CO2","authors":"K. Benfadel, L. Talbi, S. Anas Boussaa, A. Boukezzata, Y. Ouadah, D. Allam, S. Hocine, L. Allad, A. Ouerk, C. Torki, S. Bouanik, S. Achacha, A. Manseri, F. Kezzoula, A. Keffous, S. Kaci","doi":"10.1134/s1023193524030054","DOIUrl":"https://doi.org/10.1134/s1023193524030054","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Lead Sulfide (PbS) nanoparticle-decorated silicon (Si) pyramids array on Si-based photocathodes are fabricated by using pure chemical methods. The PbS thin layers were synthesized by chemical solution deposition onto flat Silicon (Si) and pyramidal textured Silicon (SiPY) obtained from alkaline Si substrate etching. Scanning Electron Microscopy (SEM) was used to carry out the morphological characterization, while UV–Vis-NIR Spectroscopy was used to study the optical properties. The Linear sweep voltammetry (LSV) was conducted to study the catalytic activity in dark and under white light irradiation using a potentiostat station. Cyclic voltammetry in the presence of and without purging CO<sub>2</sub> was also investigated. The LSV investigations showed the synergy effect between PbS thin films and Si for the rising and transport of the charge carriers. The results showed a higher photocatalytic towards CO<sub>2</sub> reduction of PbS/SiPY compared to Silicon substrate without surface texturization and sensitization. The photoelectrode based on PbS/SiPY could efficiently be used as a photocathode for the photoelectrochemical (PEC) reduction of CO<sub>2</sub> to Methanol.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"32 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of the Formation Features of Pt(0) Nanoparticles at the Interface of Nickel–Aqueous Solution of Reagents under SILD Conditions and Their Electrocatalytic Properties in Hydrogen Evolution Reaction during Water Electrolysis in an Alkaline Medium SILD 条件下镍-试剂水溶液界面上 Pt(0) 纳米粒子的形成特征及其在碱性介质中电解水过程中氢气进化反应的电催化特性研究
IF 1.2 4区 工程技术 Q4 ELECTROCHEMISTRY Pub Date : 2024-05-08 DOI: 10.1134/s1023193524030078
M. V. Kaneva, L. B. Gulina, V. P. Tolstoy

Abstract

The article explores the features of Pt(0) nanoparticle formation at the interface of nickel-aqueous solution of reagents and a similar interface containing nanoflakes of Co(OH)2. The synthesis was carried out under Successive Ionic Layers Deposition (SILD) conditions, and solutions of Na2PtCl6, CoCl2, and NaBH4 were used as the reagents. Pt(0) nanolayers were produced on the nickel surface using Na2PtCl6 and NaBH4 solutions, and for Co(OH)2 nanolayers CoCl2 and NaBH4 solutions were used. Structural chemical studies of the samples synthesized were performed by HRTEM, FESEM, EDX, SAED, XPS, FT-IR, and Raman spectroscopy. It was shown that Pt(0) nanolayers consist of separate nanoparticles, while Co(OH)2 nanolayers consist of nanoflakes. The main attention in the work is paid to the formation features of Pt(0) nanoparticles on a nickel surface to which a nanolayer of Co(OH)2 was previously applied. The study of the electrocatalytic properties of such samples in the hydrogen evolution reaction (HER) during water electrolysis in the alkaline medium showed that the best properties are exhibited by nanoparticles synthesized after 20–40 SILD cycles and on nickel substrates with Co(OH)2 nanolayers applied in advance. Also, it was found that among these samples the best properties are displayed by those containing Co(OH)2 layers synthesized after 5 SILD cycles. One of the best examples of this series was obtained from 40 SILD cycles and is characterized by the overpotential value at 29 mV of current density at 10 mA/cm2, the Tafel slope value at 29.5 mV/dec, and high stability of these values at multiple cycle potential. It is noted that the Pt(0) nanoparticles synthesized after 40 SILD cycles are 4–8 nm in size and are located on the surface of the nanoflakes at a distance of about 10 nm from each other for the nickel foam sample, on the surface of which a Co(OH)2 nanolayer was synthesized as a result of 5 SILD cycles. These features contribute to the formation of a set of Pt(0) nanoparticle contact points with the surface of Co(OH)2 nanoflakes, which determines the high electrocatalytic activity and stability of properties of such structures.

摘要 本文探讨了在试剂的镍水溶液界面和含有纳米片状 Co(OH)2 的类似界面上形成 Pt(0) 纳米粒子的特征。合成在连续离子层沉积(SILD)条件下进行,试剂为 Na2PtCl6、CoCl2 和 NaBH4 溶液。使用 Na2PtCl6 和 NaBH4 溶液在镍表面生成了 Pt(0) 纳米层,使用 CoCl2 和 NaBH4 溶液生成了 Co(OH)2 纳米层。利用 HRTEM、FESEM、EDX、SAED、XPS、FT-IR 和拉曼光谱对合成的样品进行了结构化学研究。研究表明,Pt(0) 纳米层由独立的纳米颗粒组成,而 Co(OH)2 纳米层则由纳米片组成。这项工作的主要关注点是铂(0)纳米颗粒在镍表面的形成特征,而镍表面之前曾涂覆了一层纳米 Co(OH)2。对此类样品在碱性介质中电解水时氢进化反应(HER)的电催化特性进行的研究表明,经过 20-40 个 SILD 周期合成的纳米粒子以及在事先涂有纳米 Co(OH)2 涂层的镍基底上合成的纳米粒子表现出最佳特性。此外,研究还发现,在这些样品中,经过 5 个 SILD 周期合成的含有 Co(OH)2 涂层的样品具有最佳性能。该系列中最好的样品之一是在 40 个 SILD 周期后获得的,其特点是过电位值为 29 mV,电流密度为 10 mA/cm2,塔菲尔斜率值为 29.5 mV/dec,并且这些值在多个周期电位下具有很高的稳定性。值得注意的是,经过 40 次 SILD 循环后合成的 Pt(0) 纳米粒子大小为 4-8 nm,位于纳米片表面,彼此间的距离约为 10 nm(泡沫镍样品),而在泡沫镍样品表面,经过 5 次 SILD 循环后合成了 Co(OH)2 纳米层。这些特征有助于在 Co(OH)2 纳米片表面形成一组铂(0)纳米粒子接触点,从而决定了这种结构具有较高的电催化活性和稳定性能。
{"title":"Study of the Formation Features of Pt(0) Nanoparticles at the Interface of Nickel–Aqueous Solution of Reagents under SILD Conditions and Their Electrocatalytic Properties in Hydrogen Evolution Reaction during Water Electrolysis in an Alkaline Medium","authors":"M. V. Kaneva, L. B. Gulina, V. P. Tolstoy","doi":"10.1134/s1023193524030078","DOIUrl":"https://doi.org/10.1134/s1023193524030078","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The article explores the features of Pt(0) nanoparticle formation at the interface of nickel-aqueous solution of reagents and a similar interface containing nanoflakes of Co(OH)<sub>2</sub>. The synthesis was carried out under Successive Ionic Layers Deposition (SILD) conditions, and solutions of Na<sub>2</sub>PtCl<sub>6</sub>, CoCl<sub>2</sub>, and NaBH<sub>4</sub> were used as the reagents. Pt(0) nanolayers were produced on the nickel surface using Na<sub>2</sub>PtCl<sub>6</sub> and NaBH<sub>4</sub> solutions, and for Co(OH)<sub>2</sub> nanolayers CoCl<sub>2</sub> and NaBH<sub>4</sub> solutions were used. Structural chemical studies of the samples synthesized were performed by HRTEM, FESEM, EDX, SAED, XPS, FT-IR, and Raman spectroscopy. It was shown that Pt(0) nanolayers consist of separate nanoparticles, while Co(OH)<sub>2</sub> nanolayers consist of nanoflakes. The main attention in the work is paid to the formation features of Pt(0) nanoparticles on a nickel surface to which a nanolayer of Co(OH)<sub>2</sub> was previously applied. The study of the electrocatalytic properties of such samples in the hydrogen evolution reaction (HER) during water electrolysis in the alkaline medium showed that the best properties are exhibited by nanoparticles synthesized after 20–40 SILD cycles and on nickel substrates with Co(OH)<sub>2</sub> nanolayers applied in advance. Also, it was found that among these samples the best properties are displayed by those containing Co(OH)<sub>2</sub> layers synthesized after 5 SILD cycles. One of the best examples of this series was obtained from 40 SILD cycles and is characterized by the overpotential value at 29 mV of current density at 10 mA/cm<sup>2</sup>, the Tafel slope value at 29.5 mV/dec, and high stability of these values at multiple cycle potential. It is noted that the Pt(0) nanoparticles synthesized after 40 SILD cycles are 4–8 nm in size and are located on the surface of the nanoflakes at a distance of about 10 nm from each other for the nickel foam sample, on the surface of which a Co(OH)<sub>2</sub> nanolayer was synthesized as a result of 5 SILD cycles. These features contribute to the formation of a set of Pt(0) nanoparticle contact points with the surface of Co(OH)<sub>2</sub> nanoflakes, which determines the high electrocatalytic activity and stability of properties of such structures.</p>","PeriodicalId":760,"journal":{"name":"Russian Journal of Electrochemistry","volume":"32 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140927198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Russian Journal of Electrochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1