A series of planar billets of NiO/Ce0.8Gd0.2O2 (NiO/GDC) anodes for solid oxide fuel cells are fabricated by the method of microdrop 3D printing using a pneumatic dispenser. The porosity and the coefficient of sintering-induced shrinkage of anode billets are studied as a function of their preparation method. The anode billets are reduced to obtain Ni/Ce0.8Gd0.2O2 cermet and the thus obtained samples are studied as regards the effect of printing parameters on their morphology and structure. It is shown that the use of 3D printing increases the porosity of the Ni/GDC composite from 7 to 23% as compared with the casted samples, on retention of the high conductivity of (2.82 ± 0.06) × 103 S/cm.