Pub Date : 2021-12-15DOI: 10.4490/algae.2021.36.11.28
Jin Hee Ok, H. Jeong, Hee Chang Kang, Sang Ah Park, S. Eom, Ji Hyun You, Sung Yeon Lee
To explore the ecophysiological characteristics of the kleptoplastidic dinoflagellate Shimiella gracilenta, we determined its spatiotemporal distribution in Korean coastal waters and growth and ingestion rates as a function of prey concentration. The abundance of S. gracilenta at 28 stations from 2015 to 2018 was measured using quantitative realtime polymerase chain reaction. Cells of S. gracilenta were detected at least once at all the stations and in each season, when temperature and salinity were 1.7–26.4°C and 9.9–35.6, respectively. Moreover, among the 28 potential prey species tested, S. gracilenta SGJH1904 fed on diverse prey taxa. However, the highest abundance of S. gracilenta was only 3 cells mL-1 during the study period. The threshold Teleaulax amphioxeia concentration for S. gracilenta growth was 5,618 cells mL-1, which was much higher than the highest abundance of T. amphioxeia (667 cells mL-1). Thus, T. amphioxeia was not likely to support the growth of S. gracilenta in the field during the study period. However, the maximum specific growth and ingestion rates of S. gracilenta on T. amphioxeia, the optimal prey species, were 1.36 d-1 and 0.04 ng C predator- 1 d-1, respectively. Thus, if the abundance of T. amphioxeia was much higher than 5,618 cells mL-1, the abundance of S. gracilenta could be much higher than the highest abundance observed in this study. Eurythermal and euryhaline characteristics of S. gracilenta and its ability to feed on diverse prey species and conduct kleptoplastidy are likely to be responsible for its common spatiotemporal distribution.
{"title":"Ecophysiology of the kleptoplastidic dinoflagellate Shimiella gracilenta: I. spatiotemporal distribution in Korean coastal waters and growth and ingestion rates","authors":"Jin Hee Ok, H. Jeong, Hee Chang Kang, Sang Ah Park, S. Eom, Ji Hyun You, Sung Yeon Lee","doi":"10.4490/algae.2021.36.11.28","DOIUrl":"https://doi.org/10.4490/algae.2021.36.11.28","url":null,"abstract":"To explore the ecophysiological characteristics of the kleptoplastidic dinoflagellate Shimiella gracilenta, we determined its spatiotemporal distribution in Korean coastal waters and growth and ingestion rates as a function of prey concentration. The abundance of S. gracilenta at 28 stations from 2015 to 2018 was measured using quantitative realtime polymerase chain reaction. Cells of S. gracilenta were detected at least once at all the stations and in each season, when temperature and salinity were 1.7–26.4°C and 9.9–35.6, respectively. Moreover, among the 28 potential prey species tested, S. gracilenta SGJH1904 fed on diverse prey taxa. However, the highest abundance of S. gracilenta was only 3 cells mL-1 during the study period. The threshold Teleaulax amphioxeia concentration for S. gracilenta growth was 5,618 cells mL-1, which was much higher than the highest abundance of T. amphioxeia (667 cells mL-1). Thus, T. amphioxeia was not likely to support the growth of S. gracilenta in the field during the study period. However, the maximum specific growth and ingestion rates of S. gracilenta on T. amphioxeia, the optimal prey species, were 1.36 d-1 and 0.04 ng C predator- 1 d-1, respectively. Thus, if the abundance of T. amphioxeia was much higher than 5,618 cells mL-1, the abundance of S. gracilenta could be much higher than the highest abundance observed in this study. Eurythermal and euryhaline characteristics of S. gracilenta and its ability to feed on diverse prey species and conduct kleptoplastidy are likely to be responsible for its common spatiotemporal distribution.","PeriodicalId":7628,"journal":{"name":"Algae","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48167556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-15DOI: 10.4490/algae.2021.36.12.7
Seongmin Cheon, Sung-Gwon Lee, Hyun-Hee Hong, Hyun-Gwan Lee, Kwang Young Kim, Chungoo Park
Phylotranscriptomics is the study of phylogenetic relationships among taxa based on their DNA sequences derived from transcriptomes. Because of the relatively low cost of transcriptome sequencing compared with genome sequencing and the fact that phylotranscriptomics is almost as reliable as phylogenomics, the phylotranscriptomic analysis has recently emerged as the preferred method for studying evolutionary biology. However, it is challenging to perform transcriptomic and phylogenetic analyses together without programming expertise. This study presents a protocol for phylotranscriptomic analysis to aid marine biologists unfamiliar with UNIX command-line interface and bioinformatics tools. Here, we used transcriptomes to reconstruct a molecular phylogeny of dinoflagellate protists, a diverse and globally abundant group of marine plankton organisms whose large and complex genomic sequences have impeded conventional phylogenic analysis based on genomic data. We hope that our proposed protocol may serve as practical and helpful information for the training and education of novice phycologists.
{"title":"A guide to phylotranscriptomic analysis for phycologists","authors":"Seongmin Cheon, Sung-Gwon Lee, Hyun-Hee Hong, Hyun-Gwan Lee, Kwang Young Kim, Chungoo Park","doi":"10.4490/algae.2021.36.12.7","DOIUrl":"https://doi.org/10.4490/algae.2021.36.12.7","url":null,"abstract":"Phylotranscriptomics is the study of phylogenetic relationships among taxa based on their DNA sequences derived from transcriptomes. Because of the relatively low cost of transcriptome sequencing compared with genome sequencing and the fact that phylotranscriptomics is almost as reliable as phylogenomics, the phylotranscriptomic analysis has recently emerged as the preferred method for studying evolutionary biology. However, it is challenging to perform transcriptomic and phylogenetic analyses together without programming expertise. This study presents a protocol for phylotranscriptomic analysis to aid marine biologists unfamiliar with UNIX command-line interface and bioinformatics tools. Here, we used transcriptomes to reconstruct a molecular phylogeny of dinoflagellate protists, a diverse and globally abundant group of marine plankton organisms whose large and complex genomic sequences have impeded conventional phylogenic analysis based on genomic data. We hope that our proposed protocol may serve as practical and helpful information for the training and education of novice phycologists.","PeriodicalId":7628,"journal":{"name":"Algae","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44248165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-15DOI: 10.4490/algae.2021.36.11.20
Chang Geun Choi, Ju il Lee, I. Hwang, S. Boo
Raw material of gelidioid red algae yielding high-quality agar has been in short supply due to overharvesting, but in situ farming of gelidioids has not been practical due to their slow growth. To produce vegetative seedstock of a cosmopolitan species, Pterocladiella capillacea, we investigated the number and length of regenerated branches arising from sectioned fragments during 3 weeks of laboratory culture at 10, 15, 20, and 25°C. All sectioned fragments formed axis-like branches mostly from the upper cut edge and stolon-like branches mostly from the lower cut edge, showing a high capacity of regeneration and intrinsic bipolarity. At 20°C, the number of regenerated branches increased to 2.74 ± 1.29 on the upper cut edge and 4.26 ± 2.66 on the lower cut edge. Our study reveals that the use of fragments bearing regenerated branches as seedstock can be a simple method to initiate fast propagation for mass cultivation in the sea or outdoor tank.
{"title":"A simple method to produce fragment seedstock for aquaculture of Pterocladiella capillacea (Gelidiales, Rhodophyta)","authors":"Chang Geun Choi, Ju il Lee, I. Hwang, S. Boo","doi":"10.4490/algae.2021.36.11.20","DOIUrl":"https://doi.org/10.4490/algae.2021.36.11.20","url":null,"abstract":"Raw material of gelidioid red algae yielding high-quality agar has been in short supply due to overharvesting, but in situ farming of gelidioids has not been practical due to their slow growth. To produce vegetative seedstock of a cosmopolitan species, Pterocladiella capillacea, we investigated the number and length of regenerated branches arising from sectioned fragments during 3 weeks of laboratory culture at 10, 15, 20, and 25°C. All sectioned fragments formed axis-like branches mostly from the upper cut edge and stolon-like branches mostly from the lower cut edge, showing a high capacity of regeneration and intrinsic bipolarity. At 20°C, the number of regenerated branches increased to 2.74 ± 1.29 on the upper cut edge and 4.26 ± 2.66 on the lower cut edge. Our study reveals that the use of fragments bearing regenerated branches as seedstock can be a simple method to initiate fast propagation for mass cultivation in the sea or outdoor tank.","PeriodicalId":7628,"journal":{"name":"Algae","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49094387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-15DOI: 10.4490/algae.2021.36.12.2
I. Pozdnyakov, O. Matantseva, S. Skarlato
Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5- trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of Gprotein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.
{"title":"Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology","authors":"I. Pozdnyakov, O. Matantseva, S. Skarlato","doi":"10.4490/algae.2021.36.12.2","DOIUrl":"https://doi.org/10.4490/algae.2021.36.12.2","url":null,"abstract":"Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5- trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of Gprotein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.","PeriodicalId":7628,"journal":{"name":"Algae","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47622084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-15DOI: 10.4490/algae.2021.36.8.27
Zhaohe Luo, Na Wang, H. F. Mohamed, Ye Liang, Lulu Pei, Shu T Huang, H. Gu
Amphidinium species are amongst the most abundant benthic dinoflagellates in marine intertidal sandy ecosystems. Some of them produce a variety of bioactive compounds that have both harmful effects and pharmaceutical potential. In this study, Amphidinium cells were isolated from intertidal sand collected from the East China Sea. The two strains established were subjected to detailed examination by light, and scanning and transmission electron microscopy. The vegetative cells had a minute, irregular, and triangular-shaped epicone deflected to the left, thus fitting the description of Amphidinium sensu stricto. These strains are distinguished from other Amphidinium species by combination characteristics: (1) longitudinal flagellum inserted in the lower third of the cell; (2) icicle-shaped scales, 276 ± 17 nm in length, on the cell body surface; (3) asymmetrical hypocone with the left side longer than the right; and (4) presence of immotile cells. Therefore, they are described here as Amphidinium stirisquamtum sp. nov. The molecular tree inferred from small subunit rRNA, large subunit rRNA, and internal transcribed spacer-5.8S sequences revealed that A. stirisquamtum is grouped together with the type species of Amphidinium, A. operculatum, in a fully supported clade, but is distantly related to other Amphidinium species bearing body scale. Live A. stirisquamtum cells greatly affected the survival of rotifers and brine shrimp, their primary grazers, making them more susceptible to predation by the higher tropic level consumers in the food web. This will increase the risk of introducing toxicity, and consequently, the bioaccumulation of toxins through marine food webs.
{"title":"Amphidinium stirisquamtum sp. nov. (Dinophyceae), a new marine sand-dwelling dinoflagellate with a novel type of body scale","authors":"Zhaohe Luo, Na Wang, H. F. Mohamed, Ye Liang, Lulu Pei, Shu T Huang, H. Gu","doi":"10.4490/algae.2021.36.8.27","DOIUrl":"https://doi.org/10.4490/algae.2021.36.8.27","url":null,"abstract":"Amphidinium species are amongst the most abundant benthic dinoflagellates in marine intertidal sandy ecosystems. Some of them produce a variety of bioactive compounds that have both harmful effects and pharmaceutical potential. In this study, Amphidinium cells were isolated from intertidal sand collected from the East China Sea. The two strains established were subjected to detailed examination by light, and scanning and transmission electron microscopy. The vegetative cells had a minute, irregular, and triangular-shaped epicone deflected to the left, thus fitting the description of Amphidinium sensu stricto. These strains are distinguished from other Amphidinium species by combination characteristics: (1) longitudinal flagellum inserted in the lower third of the cell; (2) icicle-shaped scales, 276 ± 17 nm in length, on the cell body surface; (3) asymmetrical hypocone with the left side longer than the right; and (4) presence of immotile cells. Therefore, they are described here as Amphidinium stirisquamtum sp. nov. The molecular tree inferred from small subunit rRNA, large subunit rRNA, and internal transcribed spacer-5.8S sequences revealed that A. stirisquamtum is grouped together with the type species of Amphidinium, A. operculatum, in a fully supported clade, but is distantly related to other Amphidinium species bearing body scale. Live A. stirisquamtum cells greatly affected the survival of rotifers and brine shrimp, their primary grazers, making them more susceptible to predation by the higher tropic level consumers in the food web. This will increase the risk of introducing toxicity, and consequently, the bioaccumulation of toxins through marine food webs.","PeriodicalId":7628,"journal":{"name":"Algae","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42974304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-15DOI: 10.4490/algae.2021.36.7.19
Kevin J Erratt, I. Creed, Camille Chemali, Alexandra Ferrara, V. Tai, C. Trick
Increasing inputs of dissolved organic matter (DOM) to northern lakes is resulting in ‘lake browning.’ Lake browning profoundly affects phytoplankton community composition by modifying two important environmental drivers—light and nutrients. The impact of increased DOM on native isolates of red and green-pigmented cyanobacteria identified as Pseudanabaena, which emerged from a Dolichospermum bloom (Dickson Lake, Algonquin Provincial Park, Ontario, Canada) in 2015, were examined under controlled laboratory conditions. The genomes were sequenced to identify phylogenetic relatedness and physiological similarities, and the physical and chemical effects of increased DOM on cellular performance and competitiveness were assessed. Our study findings were that the isolated red and green phenotypes are two distinct species belonging to the genus Pseudanabaena; that both isolates remained physiologically unaffected when grown independently under defined DOM regimes; and that neither red nor green phenotype achieved a competitive advantage when grown together under defined DOM regimes. While photosynthetic pigment diversity among phytoplankton offers niche-differentiation opportunities, the results of this study illustrate the coexistence of two distinct photosynthetic pigment phenotypes under increasing DOM conditions.
北方湖泊溶解有机质(DOM)输入量的增加导致湖泊褐变。湖泊褐变通过改变光照和营养这两个重要的环境驱动因素,深刻地影响了浮游植物群落的组成。在可控的实验室条件下,研究了DOM增加对2015年加拿大安大略省阿尔冈昆省立公园迪克森湖Dolichospermum爆发(Dickson Lake, Algonquin Provincial Park, Canada)中出现的被鉴定为Pseudanabaena的红色和绿色蓝藻原生分离株的影响。对这些基因组进行测序,以确定系统发育相关性和生理相似性,并评估DOM增加对细胞性能和竞争力的物理和化学影响。我们的研究结果表明,分离的红色和绿色表型是属于假藻属的两个不同种;在定义的DOM制度下独立生长时,两种分离物在生理上都不受影响;当在定义的DOM制度下一起生长时,红色和绿色表型都没有获得竞争优势。虽然浮游植物的光合色素多样性提供了生态位分化的机会,但本研究的结果表明,在DOM增加的条件下,两种不同的光合色素表型共存。
{"title":"Performance and competitiveness of red vs. green phenotypes of a cyanobacterium grown under artificial lake browning","authors":"Kevin J Erratt, I. Creed, Camille Chemali, Alexandra Ferrara, V. Tai, C. Trick","doi":"10.4490/algae.2021.36.7.19","DOIUrl":"https://doi.org/10.4490/algae.2021.36.7.19","url":null,"abstract":"Increasing inputs of dissolved organic matter (DOM) to northern lakes is resulting in ‘lake browning.’ Lake browning profoundly affects phytoplankton community composition by modifying two important environmental drivers—light and nutrients. The impact of increased DOM on native isolates of red and green-pigmented cyanobacteria identified as Pseudanabaena, which emerged from a Dolichospermum bloom (Dickson Lake, Algonquin Provincial Park, Ontario, Canada) in 2015, were examined under controlled laboratory conditions. The genomes were sequenced to identify phylogenetic relatedness and physiological similarities, and the physical and chemical effects of increased DOM on cellular performance and competitiveness were assessed. Our study findings were that the isolated red and green phenotypes are two distinct species belonging to the genus Pseudanabaena; that both isolates remained physiologically unaffected when grown independently under defined DOM regimes; and that neither red nor green phenotype achieved a competitive advantage when grown together under defined DOM regimes. While photosynthetic pigment diversity among phytoplankton offers niche-differentiation opportunities, the results of this study illustrate the coexistence of two distinct photosynthetic pigment phenotypes under increasing DOM conditions.","PeriodicalId":7628,"journal":{"name":"Algae","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49047930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-15DOI: 10.4490/algae.2021.36.4.28
Ji-Hyeok Lee, Ginne Ahn, J. Ko, Nalae Kang, K. Jung, E. Han, G. Kim, Hee Jeong Kim, C. Choi, Y. Jeon
The hepatoprotective effect of liposoluble portion of Pyropia yezoensis (PYLP) was investigated against alcohol-induced liver injury in mice. Fatty acids were predominant in PYLP obtained from hexane fraction of 70% EtOH extract after ultrasonication. In particular, polyunsaturated fatty acids such as eicosapentaenoic acid and linoleic acid accounted for 56.91% of the total lipids. PYLP significantly reduced liver damage induced by the alcohol treatment in mice. PYLP treatment increased the activity of antioxidant enzymes including superoxide dismutase, catalase, and glutathion peroxidase by reducing thiobarbituric acid reactive substances. Histological observations showed that PYLP minimizes damage to living tissue induced by alcohol treatment by modulating the expression level of proteins involved in the anti-apoptotic signaling pathway. Our results suggest that PYLP, rich in polyunsaturated fatty acids extracted from the red alga P. yezoensis, will be useful as a potential liver protectant in the hangover industry.
{"title":"Liposoluble portion of the red alga Pyropia yezoensis protects alcohol induced liver injury in mice","authors":"Ji-Hyeok Lee, Ginne Ahn, J. Ko, Nalae Kang, K. Jung, E. Han, G. Kim, Hee Jeong Kim, C. Choi, Y. Jeon","doi":"10.4490/algae.2021.36.4.28","DOIUrl":"https://doi.org/10.4490/algae.2021.36.4.28","url":null,"abstract":"The hepatoprotective effect of liposoluble portion of Pyropia yezoensis (PYLP) was investigated against alcohol-induced liver injury in mice. Fatty acids were predominant in PYLP obtained from hexane fraction of 70% EtOH extract after ultrasonication. In particular, polyunsaturated fatty acids such as eicosapentaenoic acid and linoleic acid accounted for 56.91% of the total lipids. PYLP significantly reduced liver damage induced by the alcohol treatment in mice. PYLP treatment increased the activity of antioxidant enzymes including superoxide dismutase, catalase, and glutathion peroxidase by reducing thiobarbituric acid reactive substances. Histological observations showed that PYLP minimizes damage to living tissue induced by alcohol treatment by modulating the expression level of proteins involved in the anti-apoptotic signaling pathway. Our results suggest that PYLP, rich in polyunsaturated fatty acids extracted from the red alga P. yezoensis, will be useful as a potential liver protectant in the hangover industry.","PeriodicalId":7628,"journal":{"name":"Algae","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44056479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-15DOI: 10.4490/algae.2021.36.6.2
Moufida Abdennadher, A. Zouari, W. Medhioub, A. Penna, A. Hamza
This study provides the first report of the presence of Coolia malayensis in the Mediterranean Sea, co-occurring with C. monotis. Isolated strains from the Gulf of Gabès, Tunisia (South-eastern Mediterranean) were identified by morphological characterization and phylogenetic analysis. Examination by light and scanning electron microscopy revealed no significant morphological differences between the Tunisian isolates and other geographically distant strains of C. monotis and C. malayensis. Phylogenetic trees based on ITS1-5.8S-ITS2 and D1‒D3/28S rDNA sequences showed that C. monotis strains clustered with others from the Mediterranean and Atlantic whereas the C. malayensis isolate branched with isolates from the Pacific and the Atlantic, therefore revealing no geographical trend among C. monotis and C. malayensis populations. Ultrastructural analyses by transmission electron microscopy revealed the presence of numerous vesicles containing spirally coiled fibers in both C. malayensis and C. monotis cells, which we speculate to be involved in mucus production.
{"title":"Characterization of Coolia spp. (Gonyaucales, Dinophyceae) from Southern Tunisia: first record of Coolia malayensis in the Mediterranean Sea","authors":"Moufida Abdennadher, A. Zouari, W. Medhioub, A. Penna, A. Hamza","doi":"10.4490/algae.2021.36.6.2","DOIUrl":"https://doi.org/10.4490/algae.2021.36.6.2","url":null,"abstract":"This study provides the first report of the presence of Coolia malayensis in the Mediterranean Sea, co-occurring with C. monotis. Isolated strains from the Gulf of Gabès, Tunisia (South-eastern Mediterranean) were identified by morphological characterization and phylogenetic analysis. Examination by light and scanning electron microscopy revealed no significant morphological differences between the Tunisian isolates and other geographically distant strains of C. monotis and C. malayensis. Phylogenetic trees based on ITS1-5.8S-ITS2 and D1‒D3/28S rDNA sequences showed that C. monotis strains clustered with others from the Mediterranean and Atlantic whereas the C. malayensis isolate branched with isolates from the Pacific and the Atlantic, therefore revealing no geographical trend among C. monotis and C. malayensis populations. Ultrastructural analyses by transmission electron microscopy revealed the presence of numerous vesicles containing spirally coiled fibers in both C. malayensis and C. monotis cells, which we speculate to be involved in mucus production.","PeriodicalId":7628,"journal":{"name":"Algae","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71069377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-15DOI: 10.4490/algae.2021.36.8.26
Narae Han, Jiwoong Wi, Sungoh Im, Ka-Min Lim, Hun-Dong Lee, W. Jeong, Geun-Joong Kim, Chan Kim, E. Park, M. Hwang, D. Choi
An increase in seawater temperature owing to global warming is expected to substantially limit the growth of marine algae, including Pyropia yezoensis, a commercially valuable red alga. To improve our knowledge of the genes involved in the acquisition of heat tolerance in P. yezoensis, transcriptomes sequences were obtained from both the wild-type SG104 P. yezoensis and heat-tolerant mutant Gy500. We selected 1,251 differentially expressed genes that were up- or downregulated in response to the heat stress condition and in the heat-tolerant mutant Gy500, based on fragment per million reads expression values. Among them, PyHRG1 was downregulated under heat stress in SG104 and expressed at a low level in Gy500. PyHRG1 encodes a secretory protein of 26.5 kDa. PyHRG1 shows no significant sequence homology with any known genes deposited in public databases to date. However, PyHRG1 homologs were found in other red algae, including other Pyropia species. When PyHRG1 was introduced into the single-cell green alga Chlamydomonas reinhardtii, transformed cells overexpressing PyHRG1 showed severely retarded growth. These results demonstrate that PyHRG1 encodes a novel red algae-specific protein and plays a role in heat tolerance in algae. The transcriptome sequences obtained in this study, which include PyHRG1, will facilitate future studies to understand the molecular mechanisms involved in heat tolerance in red algae.
{"title":"Downregulation of PyHRG1, encoding a novel secretory protein in the red alga Pyropia yezoensis, enhances heat tolerance","authors":"Narae Han, Jiwoong Wi, Sungoh Im, Ka-Min Lim, Hun-Dong Lee, W. Jeong, Geun-Joong Kim, Chan Kim, E. Park, M. Hwang, D. Choi","doi":"10.4490/algae.2021.36.8.26","DOIUrl":"https://doi.org/10.4490/algae.2021.36.8.26","url":null,"abstract":"An increase in seawater temperature owing to global warming is expected to substantially limit the growth of marine algae, including Pyropia yezoensis, a commercially valuable red alga. To improve our knowledge of the genes involved in the acquisition of heat tolerance in P. yezoensis, transcriptomes sequences were obtained from both the wild-type SG104 P. yezoensis and heat-tolerant mutant Gy500. We selected 1,251 differentially expressed genes that were up- or downregulated in response to the heat stress condition and in the heat-tolerant mutant Gy500, based on fragment per million reads expression values. Among them, PyHRG1 was downregulated under heat stress in SG104 and expressed at a low level in Gy500. PyHRG1 encodes a secretory protein of 26.5 kDa. PyHRG1 shows no significant sequence homology with any known genes deposited in public databases to date. However, PyHRG1 homologs were found in other red algae, including other Pyropia species. When PyHRG1 was introduced into the single-cell green alga Chlamydomonas reinhardtii, transformed cells overexpressing PyHRG1 showed severely retarded growth. These results demonstrate that PyHRG1 encodes a novel red algae-specific protein and plays a role in heat tolerance in algae. The transcriptome sequences obtained in this study, which include PyHRG1, will facilitate future studies to understand the molecular mechanisms involved in heat tolerance in red algae.","PeriodicalId":7628,"journal":{"name":"Algae","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43641129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-15DOI: 10.4490/algae.2021.36.7.18
M. Wolf, Katia Sciuto, C. Maggs, A. Petrocelli, E. Cecere, A. Buosi, A. Sfriso
Radicilingua Papenfuss and Calonitophyllum Aregood are two small genera of the family Delesseriaceae that consist of only three and one taxonomically accepted species, respectively. The type species of these genera, Radicilingua thysanorhizans from England and Calonitophyllum medium from the Americas, are morphologically very similar, with the only recognized differences being vein size and procarp development. To date, only other two species were recognized inside the genus Radicilingua: R. adriatica and R. reptans. In this study, we analysed specimens of Radicilingua collected in the Adriatic and Ionian Sea (Mediterranean), including a syntype locality of R. adriatica (Trieste, northern Adriatic Sea), alongside material from near the type locality of R. thysanorhizans (Torpoint, Cornwall, UK). The sequences of the rbcL-5P gene fragment here produced represent the first molecular data available for the genus Radicilingua. Phylogenetic reconstruction showed that the specimens from the Adriatic and Ionian Seas were genetically distinct from the Atlantic R. thysanorhizans, even if morphologically overlapping with this species. A detailed morphological description of the Mediterranean specimens, together with an accurate literature search, suggested that they were distinct also from R. adriatica and R. reptans. For these reasons, a new species was here described to encompass the Mediterranean specimens investigated in this study: R. mediterranea Wolf, Sciuto & Sfriso. Moreover, in the rbcL-5P tree, sequences of the genera Radicilingua and Calonitophyllum grouped in a well-supported clade, distinct from the other genera of the subfamily Nitophylloideae, leading us to propose that Calonitophyllum medium should be transferred to Radicilingua.
{"title":"Merging the cryptic genera Radicilingua and Calonitophyllum (Delesseriaceae, Rhodophyta): molecular phylogeny and taxonomic revision","authors":"M. Wolf, Katia Sciuto, C. Maggs, A. Petrocelli, E. Cecere, A. Buosi, A. Sfriso","doi":"10.4490/algae.2021.36.7.18","DOIUrl":"https://doi.org/10.4490/algae.2021.36.7.18","url":null,"abstract":"Radicilingua Papenfuss and Calonitophyllum Aregood are two small genera of the family Delesseriaceae that consist of only three and one taxonomically accepted species, respectively. The type species of these genera, Radicilingua thysanorhizans from England and Calonitophyllum medium from the Americas, are morphologically very similar, with the only recognized differences being vein size and procarp development. To date, only other two species were recognized inside the genus Radicilingua: R. adriatica and R. reptans. In this study, we analysed specimens of Radicilingua collected in the Adriatic and Ionian Sea (Mediterranean), including a syntype locality of R. adriatica (Trieste, northern Adriatic Sea), alongside material from near the type locality of R. thysanorhizans (Torpoint, Cornwall, UK). The sequences of the rbcL-5P gene fragment here produced represent the first molecular data available for the genus Radicilingua. Phylogenetic reconstruction showed that the specimens from the Adriatic and Ionian Seas were genetically distinct from the Atlantic R. thysanorhizans, even if morphologically overlapping with this species. A detailed morphological description of the Mediterranean specimens, together with an accurate literature search, suggested that they were distinct also from R. adriatica and R. reptans. For these reasons, a new species was here described to encompass the Mediterranean specimens investigated in this study: R. mediterranea Wolf, Sciuto & Sfriso. Moreover, in the rbcL-5P tree, sequences of the genera Radicilingua and Calonitophyllum grouped in a well-supported clade, distinct from the other genera of the subfamily Nitophylloideae, leading us to propose that Calonitophyllum medium should be transferred to Radicilingua.","PeriodicalId":7628,"journal":{"name":"Algae","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48007643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}