José Manuel Porras, J. Lara, Cristóbal Romero, Sebastián Ventura
Predicting student dropout is a crucial task in online education. Traditionally, each educational entity (institution, university, faculty, department, etc.) creates and uses its own prediction model starting from its own data. However, that approach is not always feasible or advisable and may depend on the availability of data, local infrastructure, and resources. In those cases, there are various machine learning approaches for sharing data and/or models between educational entities, using a classical centralized machine learning approach or other more advanced approaches such as transfer learning or federated learning. In this paper, we used data from three different LMS Moodle servers representing homogeneous different-sized educational entities. We tested the performance of the different machine learning approaches for the problem of predicting student dropout with multiple educational entities involved. We used a deep learning algorithm as a predictive classifier method. Our preliminary findings provide useful information on the benefits and drawbacks of each approach, as well as suggestions for enhancing performance when there are multiple institutions. In our case, repurposed transfer learning, stacked transfer learning, and centralized approaches produced similar or better results than the locally trained models for most of the entities.
{"title":"A Case-Study Comparison of Machine Learning Approaches for Predicting Student’s Dropout from Multiple Online Educational Entities","authors":"José Manuel Porras, J. Lara, Cristóbal Romero, Sebastián Ventura","doi":"10.3390/a16120554","DOIUrl":"https://doi.org/10.3390/a16120554","url":null,"abstract":"Predicting student dropout is a crucial task in online education. Traditionally, each educational entity (institution, university, faculty, department, etc.) creates and uses its own prediction model starting from its own data. However, that approach is not always feasible or advisable and may depend on the availability of data, local infrastructure, and resources. In those cases, there are various machine learning approaches for sharing data and/or models between educational entities, using a classical centralized machine learning approach or other more advanced approaches such as transfer learning or federated learning. In this paper, we used data from three different LMS Moodle servers representing homogeneous different-sized educational entities. We tested the performance of the different machine learning approaches for the problem of predicting student dropout with multiple educational entities involved. We used a deep learning algorithm as a predictive classifier method. Our preliminary findings provide useful information on the benefits and drawbacks of each approach, as well as suggestions for enhancing performance when there are multiple institutions. In our case, repurposed transfer learning, stacked transfer learning, and centralized approaches produced similar or better results than the locally trained models for most of the entities.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"45 19","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138605469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recognizing human actions can help in numerous ways, such as health monitoring, intelligent surveillance, virtual reality and human–computer interaction. A quick and accurate detection algorithm is required for daily real-time detection. This paper first proposes to generate a lightweight graph neural network by self-distillation for human action recognition tasks. The lightweight graph neural network was evaluated on the NTU-RGB+D dataset. The results demonstrate that, with competitive accuracy, the heavyweight graph neural network can be compressed by up to 80%. Furthermore, the learned representations have denser clusters, estimated by the Davies–Bouldin index, the Dunn index and silhouette coefficients. The ideal input data and algorithm capacity are also discussed.
{"title":"A Lightweight Graph Neural Network Algorithm for Action Recognition Based on Self-Distillation","authors":"Miao Feng, Jean Meunier","doi":"10.3390/a16120552","DOIUrl":"https://doi.org/10.3390/a16120552","url":null,"abstract":"Recognizing human actions can help in numerous ways, such as health monitoring, intelligent surveillance, virtual reality and human–computer interaction. A quick and accurate detection algorithm is required for daily real-time detection. This paper first proposes to generate a lightweight graph neural network by self-distillation for human action recognition tasks. The lightweight graph neural network was evaluated on the NTU-RGB+D dataset. The results demonstrate that, with competitive accuracy, the heavyweight graph neural network can be compressed by up to 80%. Furthermore, the learned representations have denser clusters, estimated by the Davies–Bouldin index, the Dunn index and silhouette coefficients. The ideal input data and algorithm capacity are also discussed.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"7 5","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138624751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Cisneros, Alain Lalande, Binnaz Yalcin, Fabrice Meriaudeau, Stephan Collins
Using a high-throughput neuroanatomical screen of histological brain sections developed in collaboration with the International Mouse Phenotyping Consortium, we previously reported a list of 198 genes whose inactivation leads to neuroanatomical phenotypes. To achieve this milestone, tens of thousands of hours of manual image segmentation were necessary. The present work involved developing a full pipeline to automate the application of deep learning methods for the automated segmentation of 24 anatomical regions used in the aforementioned screen. The dataset includes 2000 annotated parasagittal slides (24,000 × 14,000 pixels). Our approach consists of three main parts: the conversion of images (.ROI to .PNG), the training of the deep learning approach on the compressed images (512 × 256 and 2048 × 1024 pixels of the deep learning approach) to extract the regions of interest using either the U-Net or Attention U-Net architectures, and finally the transformation of the identified regions (.PNG to .ROI), enabling visualization and editing within the Fiji/ImageJ 1.54 software environment. With an image resolution of 2048 × 1024, the Attention U-Net provided the best results with an overall Dice Similarity Coefficient (DSC) of 0.90 ± 0.01 for all 24 regions. Using one command line, the end-user is now able to pre-analyze images automatically, then runs the existing analytical pipeline made of ImageJ macros to validate the automatically generated regions of interest resulting. Even for regions with low DSC, expert neuroanatomists rarely correct the results. We estimate a time savings of 6 to 10 times.
{"title":"Automatic Segmentation of Histological Images of Mouse Brains","authors":"Juan Cisneros, Alain Lalande, Binnaz Yalcin, Fabrice Meriaudeau, Stephan Collins","doi":"10.3390/a16120553","DOIUrl":"https://doi.org/10.3390/a16120553","url":null,"abstract":"Using a high-throughput neuroanatomical screen of histological brain sections developed in collaboration with the International Mouse Phenotyping Consortium, we previously reported a list of 198 genes whose inactivation leads to neuroanatomical phenotypes. To achieve this milestone, tens of thousands of hours of manual image segmentation were necessary. The present work involved developing a full pipeline to automate the application of deep learning methods for the automated segmentation of 24 anatomical regions used in the aforementioned screen. The dataset includes 2000 annotated parasagittal slides (24,000 × 14,000 pixels). Our approach consists of three main parts: the conversion of images (.ROI to .PNG), the training of the deep learning approach on the compressed images (512 × 256 and 2048 × 1024 pixels of the deep learning approach) to extract the regions of interest using either the U-Net or Attention U-Net architectures, and finally the transformation of the identified regions (.PNG to .ROI), enabling visualization and editing within the Fiji/ImageJ 1.54 software environment. With an image resolution of 2048 × 1024, the Attention U-Net provided the best results with an overall Dice Similarity Coefficient (DSC) of 0.90 ± 0.01 for all 24 regions. Using one command line, the end-user is now able to pre-analyze images automatically, then runs the existing analytical pipeline made of ImageJ macros to validate the automatically generated regions of interest resulting. Even for regions with low DSC, expert neuroanatomists rarely correct the results. We estimate a time savings of 6 to 10 times.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"5 3","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138627079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As computer networks become increasingly important in various domains, the need for secure and reliable networks becomes more pressing, particularly in the context of blockchain-enabled supply chain networks. One way to ensure network security is by using intrusion detection systems (IDSs), which are specialised devices that detect anomalies and attacks in the network. However, these systems are vulnerable to data poisoning attacks, such as label and distance-based flipping, which can undermine their effectiveness within blockchain-enabled supply chain networks. In this research paper, we investigate the effect of these attacks on a network intrusion detection system using several machine learning models, including logistic regression, random forest, SVC, and XGB Classifier, and evaluate each model via their F1 Score, confusion matrix, and accuracy. We run each model three times: once without any attack, once with random label flipping with a randomness of 20%, and once with distance-based label flipping attacks with a distance threshold of 0.5. Additionally, this research tests an eight-layer neural network using accuracy metrics and a classification report library. The primary goal of this research is to provide insights into the effect of data poisoning attacks on machine learning models within the context of blockchain-enabled supply chain networks. By doing so, we aim to contribute to developing more robust intrusion detection systems tailored to the specific challenges of securing blockchain-based supply chain networks.
随着计算机网络在各个领域变得越来越重要,对安全可靠网络的需求也变得更加迫切,特别是在区块链支持的供应链网络中。确保网络安全的一种方法是使用入侵检测系统(IDS),这是一种检测网络异常和攻击的专用设备。然而,这些系统很容易受到数据中毒攻击,如基于标签和距离的翻转,这会削弱它们在区块链供应链网络中的有效性。在本研究论文中,我们使用几种机器学习模型(包括逻辑回归、随机森林、SVC 和 XGB 分类器)研究了这些攻击对网络入侵检测系统的影响,并通过 F1 分数、混淆矩阵和准确率对每个模型进行了评估。我们将每个模型运行三次:一次不带任何攻击,一次是随机标签翻转(随机性为 20%),一次是基于距离的标签翻转攻击(距离阈值为 0.5)。此外,本研究还使用准确度指标和分类报告库测试了八层神经网络。本研究的主要目标是深入了解在区块链支持的供应链网络中,数据中毒攻击对机器学习模型的影响。通过这样做,我们旨在为开发更强大的入侵检测系统做出贡献,该系统是针对确保基于区块链的供应链网络安全所面临的具体挑战而量身定制的。
{"title":"Predicting the Impact of Data Poisoning Attacks in Blockchain-Enabled Supply Chain Networks","authors":"Usman Javed Butt, Osama Hussien, Krison Hasanaj, Khaled Shaalan, Bilal Hassan, Haider al-Khateeb","doi":"10.3390/a16120549","DOIUrl":"https://doi.org/10.3390/a16120549","url":null,"abstract":"As computer networks become increasingly important in various domains, the need for secure and reliable networks becomes more pressing, particularly in the context of blockchain-enabled supply chain networks. One way to ensure network security is by using intrusion detection systems (IDSs), which are specialised devices that detect anomalies and attacks in the network. However, these systems are vulnerable to data poisoning attacks, such as label and distance-based flipping, which can undermine their effectiveness within blockchain-enabled supply chain networks. In this research paper, we investigate the effect of these attacks on a network intrusion detection system using several machine learning models, including logistic regression, random forest, SVC, and XGB Classifier, and evaluate each model via their F1 Score, confusion matrix, and accuracy. We run each model three times: once without any attack, once with random label flipping with a randomness of 20%, and once with distance-based label flipping attacks with a distance threshold of 0.5. Additionally, this research tests an eight-layer neural network using accuracy metrics and a classification report library. The primary goal of this research is to provide insights into the effect of data poisoning attacks on machine learning models within the context of blockchain-enabled supply chain networks. By doing so, we aim to contribute to developing more robust intrusion detection systems tailored to the specific challenges of securing blockchain-based supply chain networks.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"52 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139209509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The rapid and accurate detection of orthopedic medical devices is pivotal in enhancing health care delivery, particularly by improving workflow efficiency. Despite advancements in medical imaging technology, current detection models often fail to meet the unique requirements of orthopedic device detection. To address this gap, we introduce OrthoDETR, a Transformer-based object detection model specifically designed and optimized for orthopedic medical devices. OrthoDETR is an evolution of the DETR (Detection Transformer) model, with several key modifications to better serve orthopedic applications. We replace the ResNet backbone with the MLP-Mixer, improve the multi-head self-attention mechanism, and refine the loss function for more accurate detections. In our comparative study, OrthoDETR outperformed other models, achieving an AP50 score of 0.897, an AP50:95 score of 0.864, an AR50:95 score of 0.895, and a frame per second (FPS) rate of 26. This represents a significant improvement over the DETR model, which achieved an AP50 score of 0.852, an AP50:95 score of 0.842, an AR50:95 score of 0.862, and an FPS rate of 20. OrthoDETR not only accelerates the detection process but also maintains an acceptable performance trade-off. The real-world impact of this model is substantial. By facilitating the precise and quick detection of orthopedic devices, OrthoDETR can potentially revolutionize the management of orthopedic workflows, improving patient care, and enhancing the efficiency of healthcare systems. This paper underlines the significance of specialized object detection models in orthopedics and sets the stage for further research in this direction.
{"title":"OrthoDETR: A Streamlined Transformer-Based Approach for Precision Detection of Orthopedic Medical Devices","authors":"Xiaobo Zhang, Huashun Li, Jingzhao Li, Xuehai Zhou","doi":"10.3390/a16120550","DOIUrl":"https://doi.org/10.3390/a16120550","url":null,"abstract":"The rapid and accurate detection of orthopedic medical devices is pivotal in enhancing health care delivery, particularly by improving workflow efficiency. Despite advancements in medical imaging technology, current detection models often fail to meet the unique requirements of orthopedic device detection. To address this gap, we introduce OrthoDETR, a Transformer-based object detection model specifically designed and optimized for orthopedic medical devices. OrthoDETR is an evolution of the DETR (Detection Transformer) model, with several key modifications to better serve orthopedic applications. We replace the ResNet backbone with the MLP-Mixer, improve the multi-head self-attention mechanism, and refine the loss function for more accurate detections. In our comparative study, OrthoDETR outperformed other models, achieving an AP50 score of 0.897, an AP50:95 score of 0.864, an AR50:95 score of 0.895, and a frame per second (FPS) rate of 26. This represents a significant improvement over the DETR model, which achieved an AP50 score of 0.852, an AP50:95 score of 0.842, an AR50:95 score of 0.862, and an FPS rate of 20. OrthoDETR not only accelerates the detection process but also maintains an acceptable performance trade-off. The real-world impact of this model is substantial. By facilitating the precise and quick detection of orthopedic devices, OrthoDETR can potentially revolutionize the management of orthopedic workflows, improving patient care, and enhancing the efficiency of healthcare systems. This paper underlines the significance of specialized object detection models in orthopedics and sets the stage for further research in this direction.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"1 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139213500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artificial neural networks have changed many fields by giving scientists a strong way to model complex phenomena. They are also becoming increasingly useful for solving various difficult scientific problems. Still, people keep trying to find faster and more accurate ways to simulate dynamic systems. This research explores the transformative capabilities of physics-informed neural networks, a specialized subset of artificial neural networks, in modeling complex dynamical systems with enhanced speed and accuracy. These networks incorporate known physical laws into the learning process, ensuring predictions remain consistent with fundamental principles, which is crucial when dealing with scientific phenomena. This study focuses on optimizing the application of this specialized network for simultaneous system dynamics simulations and learning time-varying parameters, particularly when the number of unknowns in the system matches the number of undetermined parameters. Additionally, we explore scenarios with a mismatch between parameters and equations, optimizing network architecture to enhance convergence speed, computational efficiency, and accuracy in learning the time-varying parameter. Our approach enhances the algorithm’s performance and accuracy, ensuring optimal use of computational resources and yielding more precise results. Extensive experiments are conducted on four different dynamical systems: first-order irreversible chain reactions, biomass transfer, the Brusselsator model, and the Lotka-Volterra model, using synthetically generated data to validate our approach. Additionally, we apply our method to the susceptible-infected-recovered model, utilizing real-world COVID-19 data to learn the time-varying parameters of the pandemic’s spread. A comprehensive comparison between the performance of our approach and fully connected deep neural networks is presented, evaluating both accuracy and computational efficiency in parameter identification and system dynamics capture. The results demonstrate that the physics-informed neural networks outperform fully connected deep neural networks in performance, especially with increased network depth, making them ideal for real-time complex system modeling. This underscores the physics-informed neural network’s effectiveness in scientific modeling in scenarios with balanced unknowns and parameters. Furthermore, it provides a fast, accurate, and efficient alternative for analyzing dynamic systems.
{"title":"Optimizing Physics-Informed Neural Network in Dynamic System Simulation and Learning of Parameters","authors":"Ebenezer O. Oluwasakin, Abdul Q. M. Khaliq","doi":"10.3390/a16120547","DOIUrl":"https://doi.org/10.3390/a16120547","url":null,"abstract":"Artificial neural networks have changed many fields by giving scientists a strong way to model complex phenomena. They are also becoming increasingly useful for solving various difficult scientific problems. Still, people keep trying to find faster and more accurate ways to simulate dynamic systems. This research explores the transformative capabilities of physics-informed neural networks, a specialized subset of artificial neural networks, in modeling complex dynamical systems with enhanced speed and accuracy. These networks incorporate known physical laws into the learning process, ensuring predictions remain consistent with fundamental principles, which is crucial when dealing with scientific phenomena. This study focuses on optimizing the application of this specialized network for simultaneous system dynamics simulations and learning time-varying parameters, particularly when the number of unknowns in the system matches the number of undetermined parameters. Additionally, we explore scenarios with a mismatch between parameters and equations, optimizing network architecture to enhance convergence speed, computational efficiency, and accuracy in learning the time-varying parameter. Our approach enhances the algorithm’s performance and accuracy, ensuring optimal use of computational resources and yielding more precise results. Extensive experiments are conducted on four different dynamical systems: first-order irreversible chain reactions, biomass transfer, the Brusselsator model, and the Lotka-Volterra model, using synthetically generated data to validate our approach. Additionally, we apply our method to the susceptible-infected-recovered model, utilizing real-world COVID-19 data to learn the time-varying parameters of the pandemic’s spread. A comprehensive comparison between the performance of our approach and fully connected deep neural networks is presented, evaluating both accuracy and computational efficiency in parameter identification and system dynamics capture. The results demonstrate that the physics-informed neural networks outperform fully connected deep neural networks in performance, especially with increased network depth, making them ideal for real-time complex system modeling. This underscores the physics-informed neural network’s effectiveness in scientific modeling in scenarios with balanced unknowns and parameters. Furthermore, it provides a fast, accurate, and efficient alternative for analyzing dynamic systems.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"93 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139216705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomedical imaging is a broad field concerning image capture for diagnostic and therapeutic purposes [...]
生物医学成像是一个广泛的领域,涉及用于诊断和治疗目的的图像捕捉 [...]
{"title":"Special Issue on “Algorithms for Biomedical Image Analysis and Processing”","authors":"L. Antonelli, Lucia Maddalena","doi":"10.3390/a16120544","DOIUrl":"https://doi.org/10.3390/a16120544","url":null,"abstract":"Biomedical imaging is a broad field concerning image capture for diagnostic and therapeutic purposes [...]","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"23 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139227007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Ayub, Tayyaba, Saddam Hussain, Syed Sajid Ullah, Jawaid Iqbal
Sentiment analysis holds great importance within the domain of natural language processing as it examines both the expressed and underlying emotions conveyed through review content. Furthermore, researchers have discovered that relying solely on the overall sentiment derived from the textual content is inadequate. Consequently, sentiment analysis was developed to extract nuanced expressions from textual information. One of the challenges in this field is effectively extracting emotional elements using multi-label data that covers various aspects. This article presents a novel approach called the Ensemble of DenseNet based on Aquila Optimizer (EDAO). EDAO is specifically designed to enhance the precision and diversity of multi-label learners. Unlike traditional multi-label methods, EDAO strongly emphasizes improving model diversity and accuracy in multi-label scenarios. To evaluate the effectiveness of our approach, we conducted experiments on seven distinct datasets, including emotions, hotels, movies, proteins, automobiles, medical, news, and birds. Our initial strategy involves establishing a preprocessing mechanism to obtain precise and refined data. Subsequently, we used the Vader tool with Bag of Words (BoW) for feature extraction. In the third stage, we created word associations using the word2vec method. The improved data were also used to train and test the DenseNet model, which was fine-tuned using the Aquila Optimizer (AO). On the news, emotion, auto, bird, movie, hotel, protein, and medical datasets, utilizing the aspect-based multi-labeling technique, we achieved accuracy rates of 95%, 97%, and 96%, respectively, with DenseNet-AO. Our proposed model demonstrates that EDAO outperforms other standard methods across various multi-label datasets with different dimensions. The implemented strategy has been rigorously validated through experimental results, showcasing its effectiveness compared to existing benchmark approaches.
{"title":"An Efficient Optimized DenseNet Model for Aspect-Based Multi-Label Classification","authors":"N. Ayub, Tayyaba, Saddam Hussain, Syed Sajid Ullah, Jawaid Iqbal","doi":"10.3390/a16120548","DOIUrl":"https://doi.org/10.3390/a16120548","url":null,"abstract":"Sentiment analysis holds great importance within the domain of natural language processing as it examines both the expressed and underlying emotions conveyed through review content. Furthermore, researchers have discovered that relying solely on the overall sentiment derived from the textual content is inadequate. Consequently, sentiment analysis was developed to extract nuanced expressions from textual information. One of the challenges in this field is effectively extracting emotional elements using multi-label data that covers various aspects. This article presents a novel approach called the Ensemble of DenseNet based on Aquila Optimizer (EDAO). EDAO is specifically designed to enhance the precision and diversity of multi-label learners. Unlike traditional multi-label methods, EDAO strongly emphasizes improving model diversity and accuracy in multi-label scenarios. To evaluate the effectiveness of our approach, we conducted experiments on seven distinct datasets, including emotions, hotels, movies, proteins, automobiles, medical, news, and birds. Our initial strategy involves establishing a preprocessing mechanism to obtain precise and refined data. Subsequently, we used the Vader tool with Bag of Words (BoW) for feature extraction. In the third stage, we created word associations using the word2vec method. The improved data were also used to train and test the DenseNet model, which was fine-tuned using the Aquila Optimizer (AO). On the news, emotion, auto, bird, movie, hotel, protein, and medical datasets, utilizing the aspect-based multi-labeling technique, we achieved accuracy rates of 95%, 97%, and 96%, respectively, with DenseNet-AO. Our proposed model demonstrates that EDAO outperforms other standard methods across various multi-label datasets with different dimensions. The implemented strategy has been rigorously validated through experimental results, showcasing its effectiveness compared to existing benchmark approaches.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"55 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139224015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The operation and maintenance (O&M) issues of offshore wind turbines (WTs) are more challenging because of the harsh operational environment and hard accessibility. As sudden component failures within WTs bring about durable downtimes and significant revenue losses, condition monitoring and predictive fault diagnostic approaches must be developed to detect faults before they occur, thus preventing durable downtimes and costly unplanned maintenance. Based primarily on supervisory control and data acquisition (SCADA) data, thirty-three weighty features from operational data are extracted, and eight specific faults are categorised for fault predictions from status information. By providing a model-agnostic vector representation for time, Time2Vec (T2V), into Long Short-Term Memory (LSTM), this paper develops a novel deep-learning neural network model, T2V-LSTM, conducting multi-level fault predictions. The classification steps allow fault diagnosis from 10 to 210 min prior to faults. The results show that T2V-LSTM can successfully predict over 84.97% of faults and outperform LSTM and other counterparts in both overall and individual fault predictions due to its topmost recall scores in most multistep-ahead cases performed. Thus, the proposed T2V-LSTM can correctly diagnose more faults and upgrade the predictive performances based on vanilla LSTM in terms of accuracy, recall scores, and F-scores.
{"title":"Wind Turbine Predictive Fault Diagnostics Based on a Novel Long Short-Term Memory Model","authors":"Shuo Zhang, Emma Robinson, Malabika Basu","doi":"10.3390/a16120546","DOIUrl":"https://doi.org/10.3390/a16120546","url":null,"abstract":"The operation and maintenance (O&M) issues of offshore wind turbines (WTs) are more challenging because of the harsh operational environment and hard accessibility. As sudden component failures within WTs bring about durable downtimes and significant revenue losses, condition monitoring and predictive fault diagnostic approaches must be developed to detect faults before they occur, thus preventing durable downtimes and costly unplanned maintenance. Based primarily on supervisory control and data acquisition (SCADA) data, thirty-three weighty features from operational data are extracted, and eight specific faults are categorised for fault predictions from status information. By providing a model-agnostic vector representation for time, Time2Vec (T2V), into Long Short-Term Memory (LSTM), this paper develops a novel deep-learning neural network model, T2V-LSTM, conducting multi-level fault predictions. The classification steps allow fault diagnosis from 10 to 210 min prior to faults. The results show that T2V-LSTM can successfully predict over 84.97% of faults and outperform LSTM and other counterparts in both overall and individual fault predictions due to its topmost recall scores in most multistep-ahead cases performed. Thus, the proposed T2V-LSTM can correctly diagnose more faults and upgrade the predictive performances based on vanilla LSTM in terms of accuracy, recall scores, and F-scores.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"16 3 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139227221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michalis Mavrovouniotis, Maria N. Anastasiadou, D. Hadjimitsis
Ant colony optimization (ACO) has proven its adaptation capabilities on optimization problems with dynamic environments. In this work, the dynamic traveling salesman problem (DTSP) is used as the base problem to generate dynamic test cases. Two types of dynamic changes for the DTSP are considered: (1) node changes and (2) weight changes. In the experiments, ACO algorithms are systematically compared in different DTSP test cases. Statistical tests are performed using the arithmetic mean and standard deviation of ACO algorithms, which is the standard method of comparing ACO algorithms. To complement the comparisons, the quantiles of the distribution are also used to measure the peak-, average-, and bad-case performance of ACO algorithms. The experimental results demonstrate some advantages of using quantiles for evaluating the performance of ACO algorithms in some DTSP test cases.
{"title":"Measuring the Performance of Ant Colony Optimization Algorithms for the Dynamic Traveling Salesman Problem","authors":"Michalis Mavrovouniotis, Maria N. Anastasiadou, D. Hadjimitsis","doi":"10.3390/a16120545","DOIUrl":"https://doi.org/10.3390/a16120545","url":null,"abstract":"Ant colony optimization (ACO) has proven its adaptation capabilities on optimization problems with dynamic environments. In this work, the dynamic traveling salesman problem (DTSP) is used as the base problem to generate dynamic test cases. Two types of dynamic changes for the DTSP are considered: (1) node changes and (2) weight changes. In the experiments, ACO algorithms are systematically compared in different DTSP test cases. Statistical tests are performed using the arithmetic mean and standard deviation of ACO algorithms, which is the standard method of comparing ACO algorithms. To complement the comparisons, the quantiles of the distribution are also used to measure the peak-, average-, and bad-case performance of ACO algorithms. The experimental results demonstrate some advantages of using quantiles for evaluating the performance of ACO algorithms in some DTSP test cases.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"69 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139222344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}