首页 > 最新文献

American Journal of Respiratory Cell and Molecular Biology最新文献

英文 中文
Circular RNA-Cacna1d Plays a Critical Role in Sepsis-induced Lung Injury by Sponging microRNA-185-5p. CircRNA-Cacna1d在脓毒症诱发的肺损伤中通过海绵miRNA-185-5p发挥关键作用
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-01 DOI: 10.1165/rcmb.2024-0067OC
Jiajia Wang, Jinhui Gao, Ling Ding, Xuanzhe Yang, Dong Zheng, Yuanyuan Zeng, Jianjie Zhu, Wei Lei, Cheng Chen, Zeyi Liu, Jian-An Huang

The role of circular RNAs (circRNAs) in sepsis-induced lung injury is not clear. This study investigated the role and molecular mechanism of a novel circRNA in sepsis-induced lung injury and explored its prognostic value in patients with sepsis. In this study, aberrant circRNA expression profiling in lung tissues from mice with sepsis-induced lung injury was analyzed using high-throughput sequencing. circRNA-Cacna1d was verified by qRT-PCR, and its biological function in sepsis-induced lung injury was validated in vitro and in vivo. The interactions among circRNA-Cacna1d, microRNAs (miRNAs), and their downstream genes were verified. Furthermore, the clinical value of circRNA-Cacna1d in peripheral blood from patients with sepsis was also evaluated. We found that circRNA-Cacna1d expression was significantly increased in lung tissues of mice with sepsis and in microvascular endothelial cells after LPS challenge. circRNA-Cacna1d knockdown alleviated inflammatory response and ameliorated the permeability of vascular endothelium, thereby mitigating sepsis-induced lung injury and significantly improving the survival rate of mice with sepsis. Mechanistically, circRNA-Cacna1d directly interacted with miRNA-185-5p and functioned as a miRNA sponge to regulate the RhoA/ROCK1 signaling pathway. The expression level of circRNA-Cacna1d in patients with early sepsis was significantly higher than that in the healthy control subjects. Higher levels of circRNA-Cacna1d in patients with sepsis were associated with increased disease severity and poorer outcomes. In conclusions, circRNA-Cacna1d may play a role in sepsis-induced lung injury by regulating the RhoA/ROCK1 axis by acting as a miRNA-185-5p sponge. circRNA-Cacna1d is a potential therapeutic target for sepsis-induced lung injury and a prognostic biomarker in sepsis.

循环RNA在脓毒症诱发的肺损伤中的作用尚不明确。本研究探讨了一种新型 circRNA 在脓毒症诱导的肺损伤中的作用和分子机制,并探讨了其在脓毒症患者中的预后价值。本研究利用高通量测序技术分析了脓毒症诱发肺损伤小鼠肺组织中异常 circRNA 的表达谱。通过实时定量聚合酶链反应验证了循环RNA-Cacna1d,并在体外和体内验证了其在脓毒症诱导的肺损伤中的生物学功能。研究还验证了 circRNA-Cacna1d、miRNA 及其下游基因之间的相互作用。此外,还评估了脓毒症患者外周血中 circRNA-Cacna1d 的临床价值。我们发现,脂多糖(LPS)挑战后,脓毒症小鼠肺组织和微血管内皮细胞中的 circRNA-Cacna1d 表达明显增加。circRNA-Cacna1d的敲除减轻了炎症反应,改善了血管内皮的通透性,从而减轻了脓毒症诱发的肺损伤,显著提高了脓毒症小鼠的存活率。从机制上看,circRNA-Cacna1d直接与miRNA-185-5p相互作用,并作为miRNA海绵调控RhoA/ROCK1信号通路。早期败血症患者的 circRNA-Cacna1d 表达水平明显高于健康对照组。脓毒症患者体内较高水平的 circRNA-Cacna1d 与疾病严重程度增加和较差的预后有关。总之,circRNA-Cacna1d可能通过作为miRNA-185-5p海绵调节RhoA/ROCK1轴,在脓毒症诱发的肺损伤中发挥作用。循环RNA-Cacna1d是脓毒症诱发肺损伤的潜在治疗靶点,也是脓毒症的预后生物标志物。
{"title":"Circular RNA-Cacna1d Plays a Critical Role in Sepsis-induced Lung Injury by Sponging microRNA-185-5p.","authors":"Jiajia Wang, Jinhui Gao, Ling Ding, Xuanzhe Yang, Dong Zheng, Yuanyuan Zeng, Jianjie Zhu, Wei Lei, Cheng Chen, Zeyi Liu, Jian-An Huang","doi":"10.1165/rcmb.2024-0067OC","DOIUrl":"10.1165/rcmb.2024-0067OC","url":null,"abstract":"<p><p>The role of circular RNAs (circRNAs) in sepsis-induced lung injury is not clear. This study investigated the role and molecular mechanism of a novel circRNA in sepsis-induced lung injury and explored its prognostic value in patients with sepsis. In this study, aberrant circRNA expression profiling in lung tissues from mice with sepsis-induced lung injury was analyzed using high-throughput sequencing. circRNA-Cacna1d was verified by qRT-PCR, and its biological function in sepsis-induced lung injury was validated <i>in vitro</i> and <i>in vivo</i>. The interactions among circRNA-Cacna1d, microRNAs (miRNAs), and their downstream genes were verified. Furthermore, the clinical value of circRNA-Cacna1d in peripheral blood from patients with sepsis was also evaluated. We found that circRNA-Cacna1d expression was significantly increased in lung tissues of mice with sepsis and in microvascular endothelial cells after LPS challenge. circRNA-Cacna1d knockdown alleviated inflammatory response and ameliorated the permeability of vascular endothelium, thereby mitigating sepsis-induced lung injury and significantly improving the survival rate of mice with sepsis. Mechanistically, circRNA-Cacna1d directly interacted with miRNA-185-5p and functioned as a miRNA sponge to regulate the RhoA/ROCK1 signaling pathway. The expression level of circRNA-Cacna1d in patients with early sepsis was significantly higher than that in the healthy control subjects. Higher levels of circRNA-Cacna1d in patients with sepsis were associated with increased disease severity and poorer outcomes. In conclusions, circRNA-Cacna1d may play a role in sepsis-induced lung injury by regulating the RhoA/ROCK1 axis by acting as a miRNA-185-5p sponge. circRNA-Cacna1d is a potential therapeutic target for sepsis-induced lung injury and a prognostic biomarker in sepsis.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":"181-194"},"PeriodicalIF":5.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Airway Smooth Muscle Dysfunction in Asthma: Releasing the Anchor. 哮喘的气道平滑肌功能障碍:释放锚。
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-01 DOI: 10.1165/rcmb.2024-0374ED
Anthony N Gerber
{"title":"Airway Smooth Muscle Dysfunction in Asthma: Releasing the Anchor.","authors":"Anthony N Gerber","doi":"10.1165/rcmb.2024-0374ED","DOIUrl":"10.1165/rcmb.2024-0374ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":"117-118"},"PeriodicalIF":5.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Stretch Induces Senescence of Lung Epithelial Cells and Drives Fibroblast Activation by Paracrine Mechanisms. 机械拉伸诱导肺上皮细胞衰老并通过旁分泌机制驱动成纤维细胞活化
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-01 DOI: 10.1165/rcmb.2023-0449OC
Paula Martín-Vicente, Cecilia López-Martínez, Inés López-Alonso, Sara M Exojo-Ramírez, Israel David Duarte-Herrera, Laura Amado-Rodríguez, Irene Ordoñez, Elias Cuesta-Llavona, Juan Gómez, Natalia Campo, Cecilia M O'Kane, Daniel F McAuley, Covadonga Huidobro, Guillermo M Albaiceta

Severe lung injury requiring mechanical ventilation may lead to secondary fibrosis. Senescence, a cell response characterized by cell cycle arrest and a shift toward a proinflammatory/profibrotic phenotype, is one of the involved mechanisms. In this study, we explore the contribution of mechanical stretch as a trigger of senescence of the respiratory epithelium and its link with fibrosis. Human lung epithelial cells and fibroblasts were exposed in vitro to mechanical stretch, and senescence was assessed. In addition, fibroblasts were exposed to culture media preconditioned by senescent epithelial cells, and their activation was studied. Transcriptomic profiles from stretched, senescent epithelial cells and activated fibroblasts were combined to identify potential activated pathways. Finally, the senolytic effects of digoxin were tested in these models. Mechanical stretch induced senescence in lung epithelial cells, but not in fibroblasts. This stretch-induced senescence has specific features compared with senescence induced by doxorubicin. Fibroblasts were activated after exposure to supernatants conditioned by epithelial senescent cells. Transcriptomic analyses revealed Notch signaling as potentially responsible for the epithelial-mesenchymal cross-talk, because blockade of this pathway inhibits fibroblast activation. Treatment with digoxin reduced the percentage of senescent cells after stretch and ameliorated the fibroblast response to preconditioned media. These results suggest that lung fibrosis in response to mechanical stretch may be caused by the paracrine effects of senescent cells. This pathogenetic mechanism can be pharmacologically manipulated to improve lung repair.

需要机械通气的严重肺损伤可能会导致继发性纤维化。衰老是一种细胞反应,其特点是细胞周期停滞并向促炎/促纤维化表型转变,这是其中的一种机制。在这里,我们探讨了机械拉伸作为呼吸道上皮细胞衰老诱因的贡献及其与纤维化的联系。在体外将人肺上皮细胞和成纤维细胞暴露于机械拉伸,并对衰老进行评估。此外,还将成纤维细胞暴露于由衰老上皮细胞预处理的培养基中,并对其活化情况进行了研究。将拉伸、衰老上皮细胞和激活的成纤维细胞的转录组图谱结合起来,以确定潜在的激活途径。最后,在这些模型中测试了地高辛的衰老效应。机械拉伸诱导肺上皮细胞衰老,但不诱导成纤维细胞衰老。与多柔比星诱导的衰老相比,拉伸诱导的衰老具有特殊的特征。成纤维细胞暴露于上皮衰老细胞调制的上清液后被激活。转录组分析表明,notch信号传导可能是上皮细胞-间充质干细胞串联的一个原因,因为阻断这一通路可抑制成纤维细胞的活化。用地高辛治疗可降低拉伸后衰老细胞的比例,并改善成纤维细胞对预处理介质的反应。这些结果表明,机械拉伸导致的肺纤维化可能是由衰老细胞的旁分泌效应引起的。这种致病机制可以通过药物治疗来改善肺修复。
{"title":"Mechanical Stretch Induces Senescence of Lung Epithelial Cells and Drives Fibroblast Activation by Paracrine Mechanisms.","authors":"Paula Martín-Vicente, Cecilia López-Martínez, Inés López-Alonso, Sara M Exojo-Ramírez, Israel David Duarte-Herrera, Laura Amado-Rodríguez, Irene Ordoñez, Elias Cuesta-Llavona, Juan Gómez, Natalia Campo, Cecilia M O'Kane, Daniel F McAuley, Covadonga Huidobro, Guillermo M Albaiceta","doi":"10.1165/rcmb.2023-0449OC","DOIUrl":"10.1165/rcmb.2023-0449OC","url":null,"abstract":"<p><p>Severe lung injury requiring mechanical ventilation may lead to secondary fibrosis. Senescence, a cell response characterized by cell cycle arrest and a shift toward a proinflammatory/profibrotic phenotype, is one of the involved mechanisms. In this study, we explore the contribution of mechanical stretch as a trigger of senescence of the respiratory epithelium and its link with fibrosis. Human lung epithelial cells and fibroblasts were exposed <i>in vitro</i> to mechanical stretch, and senescence was assessed. In addition, fibroblasts were exposed to culture media preconditioned by senescent epithelial cells, and their activation was studied. Transcriptomic profiles from stretched, senescent epithelial cells and activated fibroblasts were combined to identify potential activated pathways. Finally, the senolytic effects of digoxin were tested in these models. Mechanical stretch induced senescence in lung epithelial cells, but not in fibroblasts. This stretch-induced senescence has specific features compared with senescence induced by doxorubicin. Fibroblasts were activated after exposure to supernatants conditioned by epithelial senescent cells. Transcriptomic analyses revealed Notch signaling as potentially responsible for the epithelial-mesenchymal cross-talk, because blockade of this pathway inhibits fibroblast activation. Treatment with digoxin reduced the percentage of senescent cells after stretch and ameliorated the fibroblast response to preconditioned media. These results suggest that lung fibrosis in response to mechanical stretch may be caused by the paracrine effects of senescent cells. This pathogenetic mechanism can be pharmacologically manipulated to improve lung repair.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":"195-205"},"PeriodicalIF":5.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelialized Bronchioalveolar Lung Organoids Model Endothelial Cell Responses to Injury. 内皮化支气管肺泡有机体模拟内皮细胞对损伤的反应
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-01 DOI: 10.1165/rcmb.2023-0373MA
Anna-Lena Ament, Monika Heiner, Marie Christin Hessler, Ioannis Alexopoulos, Katharina Steeg, Ulrich Gärtner, Ana Ivonne Vazquez-Armendariz, Susanne Herold

Organoid three-dimensional systems are powerful platforms to study development and disease. Recently, the complexity of lung organoid models derived from adult mouse and human stem cells has increased substantially in terms of cellular composition and structural complexity. However, a murine lung organoid system with a clear integrated endothelial compartment is still missing. Here, we describe a novel method that adds another level of intricacy to our published bronchioalveolar lung organoid (BALO) model by microinjection of FACS-sorted lung endothelial cells (ECs) into differentiated organoid cultures. Before microinjection, ECs obtained from the lung homogenate of young mice expressed typical EC markers such as CD31 and vascular endothelial cadherin and showed tube formation capacity. Following microinjection, ECs surrounded the BALO's alveolar-like compartment, aligning with type I and type II alveolar epithelial cells, as demonstrated by confocal and electron microscopy. Notably, expression of Car4 and Aplnr was as well detected, suggesting the presence of EC microvascular phenotypes in the cultured ECs. Moreover, upon epithelial cell injury by LPS and influenza A virus, endothelialized BALOs released proinflammatory cytokines, leading to the upregulation ICAM-1 (intercellular adhesion molecule 1) in ECs. In summary, we characterized for the first time an organoid model that incorporates ECs into the alveolar structures of lung organoids, not only increasing our previous model's cellular and structural complexity but also providing a suitable niche to model lung endothelium responses to injury ex vivo.

类器官三维系统是研究发育和疾病的强大平台。最近,由成年小鼠和人类干细胞衍生的肺器官模型在细胞组成和结构复杂性方面都有了大幅提高。然而,具有明确整合内皮区室的小鼠肺器质体系统仍然缺失。在这里,我们描述了一种新方法,通过将FACS分选的肺内皮细胞(ECs)显微注射到已分化的类器官培养物中,为我们已发表的支气管肺泡肺类器官(BALO)模型增加了另一层次的复杂性。显微注射前,从幼年小鼠肺匀浆(LH)中获得的EC表达典型的EC标志物,如CD31和血管内皮(VE)-Cadherin,并显示出管形成能力。共聚焦显微镜和电子显微镜显示,显微注射后,ECs包围了BALO的肺泡样区,与肺泡上皮细胞I型(AECI)和II型(AECII)对齐。值得注意的是,还检测到了 Car4 和 Aplnr 的表达,这表明培养的心血管细胞中存在心血管微血管表型。此外,当上皮细胞受到脂多糖(LPS)和甲型流感病毒(IV)损伤时,内皮化的 BALO(eBALO)会释放促炎细胞因子,导致 ECs 中的细胞间粘附分子 1(ICAM-1)上调。总之,我们首次鉴定了一种将肺内皮细胞纳入肺泡结构的类器官模型,这不仅增加了我们以前模型的细胞和结构复杂性,还为模拟肺内皮细胞对体内损伤的反应提供了一个合适的位置。
{"title":"Endothelialized Bronchioalveolar Lung Organoids Model Endothelial Cell Responses to Injury.","authors":"Anna-Lena Ament, Monika Heiner, Marie Christin Hessler, Ioannis Alexopoulos, Katharina Steeg, Ulrich Gärtner, Ana Ivonne Vazquez-Armendariz, Susanne Herold","doi":"10.1165/rcmb.2023-0373MA","DOIUrl":"10.1165/rcmb.2023-0373MA","url":null,"abstract":"<p><p>Organoid three-dimensional systems are powerful platforms to study development and disease. Recently, the complexity of lung organoid models derived from adult mouse and human stem cells has increased substantially in terms of cellular composition and structural complexity. However, a murine lung organoid system with a clear integrated endothelial compartment is still missing. Here, we describe a novel method that adds another level of intricacy to our published bronchioalveolar lung organoid (BALO) model by microinjection of FACS-sorted lung endothelial cells (ECs) into differentiated organoid cultures. Before microinjection, ECs obtained from the lung homogenate of young mice expressed typical EC markers such as CD31 and vascular endothelial cadherin and showed tube formation capacity. Following microinjection, ECs surrounded the BALO's alveolar-like compartment, aligning with type I and type II alveolar epithelial cells, as demonstrated by confocal and electron microscopy. Notably, expression of Car4 and Aplnr was as well detected, suggesting the presence of EC microvascular phenotypes in the cultured ECs. Moreover, upon epithelial cell injury by LPS and influenza A virus, endothelialized BALOs released proinflammatory cytokines, leading to the upregulation ICAM-1 (intercellular adhesion molecule 1) in ECs. In summary, we characterized for the first time an organoid model that incorporates ECs into the alveolar structures of lung organoids, not only increasing our previous model's cellular and structural complexity but also providing a suitable niche to model lung endothelium responses to injury <i>ex vivo</i>.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":"124-132"},"PeriodicalIF":5.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exposure to Urban Air Pollution Particulate Matter Modifies Th1/Th2 Mtb Immunity in the Human Lung.
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-01 DOI: 10.1165/rcmb.2024-0240LE
Srijata Sarkar, Claudia Carranza, Yolanda Gonzalez, Junfeng Jim Zhang, Álvaro R Osornio Vargas, Pamela Ohman-Strickland, Martha Torres, Stephan Schwander
{"title":"Exposure to Urban Air Pollution Particulate Matter Modifies Th1/Th2 <i>Mtb</i> Immunity in the Human Lung.","authors":"Srijata Sarkar, Claudia Carranza, Yolanda Gonzalez, Junfeng Jim Zhang, Álvaro R Osornio Vargas, Pamela Ohman-Strickland, Martha Torres, Stephan Schwander","doi":"10.1165/rcmb.2024-0240LE","DOIUrl":"10.1165/rcmb.2024-0240LE","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":"72 2","pages":"222-225"},"PeriodicalIF":5.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Type I Interferon Targets Alveolar Macrophages to Promote Bacterial Pneumonia after Viral Infection.
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-29 DOI: 10.1165/rcmb.2024-0552OC
Sunil Palani, Md Bashir Uddin, Michael McKelvey, Shengjun Shao, Wenzhe Wu, Xiaoyong Bao, Jiaren Sun, Keer Sun

Exposure to influenza A virus (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) is well-known to increase the risk of Streptococcus pneumoniae (SPn) pneumonia in humans. Type I interferon (IFN-I) is a hallmark response to acute viral infections, and alveolar macrophages (AMs) constitute the first line of airway defense against opportunistic bacteria. Our study reveals that virus-induced IFN-I receptor (IFNAR1) signaling directly impairs AM-dependent antibacterial protection. Using Ifnar1 conditional knockout mouse models, in vivo antibodies, bone marrow chimeric mice, and AM reconstitution, we demonstrate that IFN-I intrinsically targets AMs to drive hypersusceptibility to SPn following IAV infection. Importantly, we show that RSV and hMPV infection induces robust IFN-I signaling in AMs, coinciding with lethal susceptibility to secondary SPn pneumonia. In contrast, seasonal human coronavirus neither induces significant IFN-I signaling in AMs nor immune predisposition to SPn. Therefore, we conclude that IFN-I inhibition of AMs represents a crucial mechanism underlying antibacterial complications following otherwise asymptomatic or mild respiratory viral infections.

{"title":"Type I Interferon Targets Alveolar Macrophages to Promote Bacterial Pneumonia after Viral Infection.","authors":"Sunil Palani, Md Bashir Uddin, Michael McKelvey, Shengjun Shao, Wenzhe Wu, Xiaoyong Bao, Jiaren Sun, Keer Sun","doi":"10.1165/rcmb.2024-0552OC","DOIUrl":"10.1165/rcmb.2024-0552OC","url":null,"abstract":"<p><p>Exposure to influenza A virus (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) is well-known to increase the risk of <i>Streptococcus pneumoniae (SPn)</i> pneumonia in humans. Type I interferon (IFN-I) is a hallmark response to acute viral infections, and alveolar macrophages (AMs) constitute the first line of airway defense against opportunistic bacteria. Our study reveals that virus-induced IFN-I receptor (IFNAR1) signaling directly impairs AM-dependent antibacterial protection. Using <i>Ifnar1</i> conditional knockout mouse models, in vivo antibodies, bone marrow chimeric mice, and AM reconstitution, we demonstrate that IFN-I intrinsically targets AMs to drive hypersusceptibility to <i>SPn</i> following IAV infection. Importantly, we show that RSV and hMPV infection induces robust IFN-I signaling in AMs, coinciding with lethal susceptibility to secondary <i>SPn</i> pneumonia. In contrast, seasonal human coronavirus neither induces significant IFN-I signaling in AMs nor immune predisposition to <i>SPn</i>. Therefore, we conclude that IFN-I inhibition of AMs represents a crucial mechanism underlying antibacterial complications following otherwise asymptomatic or mild respiratory viral infections.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circulating Back to Blood: Erythrocyte Precursors Put the Brakes on Acute Lung Injury.
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-23 DOI: 10.1165/rcmb.2024-0632ED
Jourdan E Brune, Anne M Manicone
{"title":"Circulating Back to Blood: Erythrocyte Precursors Put the Brakes on Acute Lung Injury.","authors":"Jourdan E Brune, Anne M Manicone","doi":"10.1165/rcmb.2024-0632ED","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0632ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143027823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loss of Iron Regulatory Protein 2 (IRP2) Protects Mice from Lung Inflammation during Bronchoconstriction.
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-23 DOI: 10.1165/rcmb.2024-0638ED
Patricia P Ogger
{"title":"Loss of Iron Regulatory Protein 2 (IRP2) Protects Mice from Lung Inflammation during Bronchoconstriction.","authors":"Patricia P Ogger","doi":"10.1165/rcmb.2024-0638ED","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0638ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143027825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bubble Trouble: Epithelial Extracellular Vesicles and Their microRNA Mischief in COPD.
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-23 DOI: 10.1165/rcmb.2024-0583ED
Isaac Kirubakaran Sundar
{"title":"Bubble Trouble: Epithelial Extracellular Vesicles and Their microRNA Mischief in COPD.","authors":"Isaac Kirubakaran Sundar","doi":"10.1165/rcmb.2024-0583ED","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0583ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143027822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Old Dog Performing the Same Old Tricks: The Role of TGF-β Receptor in Tissue Factor Release and Extracellular Vesicle Formation.
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-23 DOI: 10.1165/rcmb.2024-0627ED
R Chad Wade, Jessy S Deshane
{"title":"An Old Dog Performing the Same Old Tricks: The Role of TGF-β Receptor in Tissue Factor Release and Extracellular Vesicle Formation.","authors":"R Chad Wade, Jessy S Deshane","doi":"10.1165/rcmb.2024-0627ED","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0627ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143027815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American Journal of Respiratory Cell and Molecular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1