首页 > 最新文献

American Journal of Respiratory Cell and Molecular Biology最新文献

英文 中文
September Highlights/Papers by Junior Investigators/NIH News. 九月份要闻/初级研究人员的论文/NIH 新闻。
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1165/rcmb.71i3RedAlert
{"title":"September Highlights/Papers by Junior Investigators/NIH News.","authors":"","doi":"10.1165/rcmb.71i3RedAlert","DOIUrl":"https://doi.org/10.1165/rcmb.71i3RedAlert","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic Potential of Sodium Houttuyfonate in Pulmonary Hypertension through Orai-Ca2+ Channels. 蕺菜酸钠通过 Orai-Ca2+ 通道对肺动脉高压的治疗潜力
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1165/rcmb.2024-0214ED
Anaïs Saint-Martin Willer, Kristell El Jekmek, Fabrice Antigny
{"title":"Therapeutic Potential of Sodium Houttuyfonate in Pulmonary Hypertension through Orai-Ca<sup>2+</sup> Channels.","authors":"Anaïs Saint-Martin Willer, Kristell El Jekmek, Fabrice Antigny","doi":"10.1165/rcmb.2024-0214ED","DOIUrl":"10.1165/rcmb.2024-0214ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376245/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140943276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long Story Short: Understanding Isoform-Specific Expression of FAM13A. 长话短说:了解 FAM13A 的同工酶特异性表达。
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1165/rcmb.2024-0166ED
Cera A McDonald, Ryan A Langlois
{"title":"Long Story Short: Understanding Isoform-Specific Expression of <i>FAM13A</i>.","authors":"Cera A McDonald, Ryan A Langlois","doi":"10.1165/rcmb.2024-0166ED","DOIUrl":"10.1165/rcmb.2024-0166ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376243/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140850738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
STING Contributes to Pulmonary Hypertension by Targeting IFN and BMPR2 Signaling through Regulating of F2RL3. STING 通过调控 F2RL3 靶向干扰素和 BMPR2 信号对肺动脉高压做出贡献
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1165/rcmb.2023-0308OC
Lin Deng, Chengrui Cao, Zongye Cai, Ziping Wang, Bin Leng, Zhen Chen, Fanhao Kong, Zhiyue Zhou, Jun He, Xiaowei Nie, Jin-Song Bian

Pulmonary hypertension (PH) is an incurable disease characterized by pulmonary vascular remodeling. Endothelial injury and inflammation are the key triggers of disease initiation. Recent findings suggest that STING (stimulator of IFN genes) activation plays a critical role in endothelial dysfunction and IFN signaling. Here, we investigated the involvement of STING in the pathogenesis of PH. Patients with PH and rodent PH model samples, a Sugen 5416/hypoxia PH model, and pulmonary artery endothelial cells (PAECs) were used to evaluate the hypothesis. We found that the cyclic guanosine monophosphate-AMP synthase-STING signaling pathway was activated in lung tissues from rodent PH models and patients with PH and in TNF-α-induced PAECs in vitro. Specifically, STING expression was significantly elevated in the endothelial cells in PH disease settings. In the Sugen 5416/hypoxia mouse model, genetic knockout or pharmacological inhibition of STING prevented the progression of PH. Functionally, knockdown of STING reduced the proliferation and migration of PAECs. Mechanistically, STING transcriptionally regulates its binding partner F2RL3 (F2R-like thrombin or trypsin receptor 3) through the STING-NF-κB axis, which activated IFN signaling and repressed BMPR2 (bone morphogenetic protein receptor 2) signaling both in vitro and in vivo. Further analysis revealed that F2RL3 expression was increased in PH settings and identified negative feedback regulation of F2RL3/BMPR2 signaling. Accordingly, a positive correlation of expression amounts between STING and F2RL3/IFN-stimulated genes was observed in vivo. Our findings suggest that STING activation in PAECs plays a critical role in the pathobiology of PH. Targeting STING may be a promising therapeutic strategy for preventing the development of PH.

肺动脉高压(PH)是一种以肺血管重塑为特征的不治之症。内皮损伤和炎症是诱发该病的关键因素。最近的研究结果表明,STING(干扰素基因刺激因子)的激活在内皮功能障碍和干扰素信号转导中起着关键作用。在此,我们研究了 STING 在 PH 发病机制中的参与。我们利用PH患者和啮齿动物PH模型样本、Sugen5416/缺氧(SuHx)PH模型和肺动脉内皮细胞(PAECs)来评估这一假设。我们发现,在啮齿类 PH 模型和 PH 患者的肺组织中,以及在体外 TNF-α 诱导的 PAECs 中,环 GMP-AMP(cGAS)-STING 信号通路被激活。具体而言,STING在PH疾病的内皮细胞中表达明显升高。在SuHx小鼠模型中,基因敲除或药物抑制STING可预防PH的恶化。在功能上,STING的敲除可减少PAECs的增殖和迁移。从机理上讲,STING通过STING-NF-κB轴对其结合伙伴F2RL3进行转录调控,从而在体外和体内激活干扰素信号传导,抑制BMPR2信号传导。进一步的分析表明,F2RL3的表达在PH环境中有所增加,并确定了F2RL3/BMPR2信号传导的负反馈调节。因此,在体内观察到 STING 和 F2RL3/干扰素刺激基因(ISGs)的表达水平呈正相关。我们的研究结果表明,PAECs 中 STING 的激活在 PH 的病理生物学中起着关键作用。以 STING 为靶点可能是预防 PH 发生的一种很有前景的治疗策略。
{"title":"STING Contributes to Pulmonary Hypertension by Targeting IFN and BMPR2 Signaling through Regulating of F2RL3.","authors":"Lin Deng, Chengrui Cao, Zongye Cai, Ziping Wang, Bin Leng, Zhen Chen, Fanhao Kong, Zhiyue Zhou, Jun He, Xiaowei Nie, Jin-Song Bian","doi":"10.1165/rcmb.2023-0308OC","DOIUrl":"10.1165/rcmb.2023-0308OC","url":null,"abstract":"<p><p>Pulmonary hypertension (PH) is an incurable disease characterized by pulmonary vascular remodeling. Endothelial injury and inflammation are the key triggers of disease initiation. Recent findings suggest that STING (stimulator of IFN genes) activation plays a critical role in endothelial dysfunction and IFN signaling. Here, we investigated the involvement of STING in the pathogenesis of PH. Patients with PH and rodent PH model samples, a Sugen 5416/hypoxia PH model, and pulmonary artery endothelial cells (PAECs) were used to evaluate the hypothesis. We found that the cyclic guanosine monophosphate-AMP synthase-STING signaling pathway was activated in lung tissues from rodent PH models and patients with PH and in TNF-α-induced PAECs <i>in vitro</i>. Specifically, STING expression was significantly elevated in the endothelial cells in PH disease settings. In the Sugen 5416/hypoxia mouse model, genetic knockout or pharmacological inhibition of STING prevented the progression of PH. Functionally, knockdown of STING reduced the proliferation and migration of PAECs. Mechanistically, STING transcriptionally regulates its binding partner F2RL3 (F2R-like thrombin or trypsin receptor 3) through the STING-NF-κB axis, which activated IFN signaling and repressed BMPR2 (bone morphogenetic protein receptor 2) signaling both <i>in vitro</i> and <i>in vivo</i>. Further analysis revealed that F2RL3 expression was increased in PH settings and identified negative feedback regulation of F2RL3/BMPR2 signaling. Accordingly, a positive correlation of expression amounts between STING and F2RL3/IFN-stimulated genes was observed <i>in vivo</i>. Our findings suggest that STING activation in PAECs plays a critical role in the pathobiology of PH. Targeting STING may be a promising therapeutic strategy for preventing the development of PH.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collagen 18A1/Endostatin Expression in the Progression of Right Ventricular Remodeling and Dysfunction in Pulmonary Arterial Hypertension. 肺动脉高压患者右心室重塑和功能障碍进展过程中胶原 18A1/ 内ostatin 的表达
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-01 DOI: 10.1165/rcmb.2024-0039OC
Anjira S Ambade, Mario Naranjo, Tijana Tuhy, Rose Yu, Mery Marimoutou, Allen D Everett, Larissa A Shimoda, Stefan L Zimmerman, Ilton M Cubero Salazar, Catherine E Simpson, Ryan J Tedford, Steven Hsu, Paul M Hassoun, Rachel L Damico

Numerous studies have demonstrated that endostatin (ES), a potent angiostatic peptide derived from collagen type XVIII α 1 chain and encoded by COL18A1, is elevated in pulmonary arterial hypertension (PAH). It is important to note that elevated ES has consistently been associated with altered hemodynamics, poor functional status, and adverse outcomes in adult and pediatric PAH. This study used serum samples from patients with Group I PAH and plasma and tissue samples derived from the Sugen/hypoxia rat pulmonary hypertension model to define associations between COL18A1/ES and disease development, including hemodynamics, right ventricle (RV) remodeling, and RV dysfunction. Using cardiac magnetic resonance imaging and advanced hemodynamic assessments with pressure-volume loops in patients with PAH to assess RV-pulmonary arterial coupling, we observed a strong relationship between circulating ES levels and metrics of RV structure and function. Specifically, RV mass and the ventricular mass index were positively associated with ES, whereas RV ejection fraction and RV-pulmonary arterial coupling were inversely associated with ES levels. Our animal data demonstrate that the development of pulmonary hypertension is associated with increased COL18A1/ES in the heart as well as the lungs. Disease-associated increases in COL18A1 mRNA and protein were most pronounced in the RV compared with the left ventricle and lung. COL18A1 expression in the RV was strongly associated with disease-associated changes in RV mass, fibrosis, and myocardial capillary density. These findings indicate that COL18A1/ES increases early in disease development in the RV and implicates COL18A1/ES in pathologic RV dysfunction in PAH.

大量研究表明,肺动脉高压(PAH)患者体内内ostatin(ES)会升高,ES 是一种强效的血管收缩肽,来源于 XVIII 型胶原 alpha 1 链,由 COL18A1 编码。重要的是,ES 的升高一直与成人和儿童 PAH 的血液动力学改变、不良功能状态和不良预后有关。这项研究使用了 I 组 PAH 患者的血清样本和来自 Sugen/慢性缺氧(SuHx)大鼠肺动脉高压(PH)模型的血浆和组织样本,以确定 COL18A1/ES 与疾病发展(包括血液动力学、右心室重塑和右心室功能障碍)之间的关系。我们利用心脏磁共振(CMR)成像和先进的血流动力学评估技术,对 PAH 患者进行压力-容积(PV)环路评估,以评估 RV-肺动脉(PA)耦合,观察到循环 ES 水平与 RV 结构和功能指标之间存在密切关系。具体来说,RV 质量和心室质量指数(VMI)与 ES 呈正相关,而 RV 射血分数和 RV-PA 耦合与 ES 水平呈反相关。我们的动物实验数据表明,PH 的发生与心脏和肺中 COL18A1/ES 的增加有关。与左心室(LV)和肺相比,COL18A1 mRNA和蛋白质在RV中的疾病相关增加最为明显。COL18A1在RV中的表达与RV质量、纤维化和心肌毛细血管密度的疾病相关变化密切相关。这些研究结果表明,COL18A1/ES 在 RV 疾病发展的早期就会增加,并表明 COL18A1/ES 与 PAH 病理 RV 功能障碍有关。
{"title":"Collagen 18A1/Endostatin Expression in the Progression of Right Ventricular Remodeling and Dysfunction in Pulmonary Arterial Hypertension.","authors":"Anjira S Ambade, Mario Naranjo, Tijana Tuhy, Rose Yu, Mery Marimoutou, Allen D Everett, Larissa A Shimoda, Stefan L Zimmerman, Ilton M Cubero Salazar, Catherine E Simpson, Ryan J Tedford, Steven Hsu, Paul M Hassoun, Rachel L Damico","doi":"10.1165/rcmb.2024-0039OC","DOIUrl":"10.1165/rcmb.2024-0039OC","url":null,"abstract":"<p><p>Numerous studies have demonstrated that endostatin (ES), a potent angiostatic peptide derived from collagen type XVIII α 1 chain and encoded by <i>COL18A1</i>, is elevated in pulmonary arterial hypertension (PAH). It is important to note that elevated ES has consistently been associated with altered hemodynamics, poor functional status, and adverse outcomes in adult and pediatric PAH. This study used serum samples from patients with Group I PAH and plasma and tissue samples derived from the Sugen/hypoxia rat pulmonary hypertension model to define associations between <i>COL18A1</i>/ES and disease development, including hemodynamics, right ventricle (RV) remodeling, and RV dysfunction. Using cardiac magnetic resonance imaging and advanced hemodynamic assessments with pressure-volume loops in patients with PAH to assess RV-pulmonary arterial coupling, we observed a strong relationship between circulating ES levels and metrics of RV structure and function. Specifically, RV mass and the ventricular mass index were positively associated with ES, whereas RV ejection fraction and RV-pulmonary arterial coupling were inversely associated with ES levels. Our animal data demonstrate that the development of pulmonary hypertension is associated with increased <i>COL18A1</i>/ES in the heart as well as the lungs. Disease-associated increases in <i>COL18A1</i> mRNA and protein were most pronounced in the RV compared with the left ventricle and lung. <i>COL18A1</i> expression in the RV was strongly associated with disease-associated changes in RV mass, fibrosis, and myocardial capillary density. These findings indicate that <i>COL18A1</i>/ES increases early in disease development in the RV and implicates <i>COL18A1</i>/ES in pathologic RV dysfunction in PAH.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376241/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting Fibrosis in Right Ventricular Pressure-Overload: Balancing on a Tightrope? 针对右心室压力超负荷时的纤维化:走钢丝?
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-27 DOI: 10.1165/rcmb.2024-0377ED
Jessie van Wezenbeek, Frances S de Man
{"title":"Targeting Fibrosis in Right Ventricular Pressure-Overload: Balancing on a Tightrope?","authors":"Jessie van Wezenbeek, Frances S de Man","doi":"10.1165/rcmb.2024-0377ED","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0377ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Airway Smooth Muscle Dysfunction in Asthma: Releasing the Anchor. 哮喘的气道平滑肌功能障碍:释放锚。
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-22 DOI: 10.1165/rcmb.2024-0374ED
Anthony N Gerber
{"title":"Airway Smooth Muscle Dysfunction in Asthma: Releasing the Anchor.","authors":"Anthony N Gerber","doi":"10.1165/rcmb.2024-0374ED","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0374ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of MRTF-A Ameliorates Pathological Remodeling of the Pressure-loaded Right Ventricle. 抑制 MRTF-A 可改善压力负荷右心室的病理重塑。
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-20 DOI: 10.1165/rcmb.2023-0465OC
Mark F Rzepka, Sonja Raschzok, Xavier A Lee, Kana Yazaki, John Dauz, Mei Sun, Theo Meister, Linda Nghiem, Golam Kabir, Jean-Francois Desjardins, Wolfgang M Kuebler, Andras Kapus, Kim A Connelly, Mark K Friedberg

Right ventricular (RV) fibrosis is associated with RV dysfunction in a variety of RV pressure-loading conditions where RV mechanical stress is increased, but the underlying mechanisms driving RV fibrosis are incompletely understood. In pulmonary and cardiovascular diseases characterized by elevated mechanical stress and transforming growth factor - beta-1 (TGF-β1) signaling, myocardin-related transcription factor A (MRTF-A) is a mechanosensitive protein critical to driving myofibroblast transition and fibrosis. Here we investigated whether MRTF-A inhibition improves RV pro-fibrotic remodeling and function in response to a pulmonary artery banding (PAB) model of RV pressure-loading. Rats were assigned into either 1) sham or 2) PAB groups. MRTF-A inhibitor CCG-1423 was administered daily at 0.75mg/kg in a subset of PAB animals. Echocardiography and pressure-volume hemodynamics were obtained at a terminal experiment 6-weeks later. RV myocardial samples were analyzed for fibrosis, cardiomyocyte hypertrophy, and pro-fibrotic signaling. MRTF-A inhibition slightly reduced systolic dysfunction in PAB rats reflected by increased lateral tricuspid annulus peak systolic velocity, while diastolic function parameters were not significantly improved. RV remodeling was attenuated in PAB rats with MRTF-A inhibition, displaying reduced fibrosis. This was accompanied with a reduction in PAB-induced upregulation of yes-associated protein (YAP) and its paralog transcriptional co-activator with PDZ-binding motif (TAZ). We also confirmed using a second-generation MRTF-A inhibitor CCG-203971 that MRTF-A is critical in driving RV fibroblast expression of TAZ and markers of myofibroblast transition in response to TGF-β1 stress and RhoA activation. These studies identify RhoA, MRTF-A, and YAP/TAZ as interconnected regulators of pro-fibrotic signaling in RV pressure-loading, and as potential targets to improve RV pro-fibrotic remodeling.

在各种右心室压力负荷条件下,右心室纤维化与右心室功能障碍有关,在这些条件下,右心室机械应力增加,但驱动右心室纤维化的潜在机制尚不完全清楚。在以机械应力升高和转化生长因子-β-1(TGF-β1)信号传导为特征的肺部和心血管疾病中,心肌蛋白相关转录因子 A(MRTF-A)是一种机械敏感蛋白,对驱动肌成纤维细胞转化和纤维化至关重要。在此,我们研究了抑制MRTF-A是否能改善肺动脉束带(PAB)模型RV压力负荷下的RV促纤维化重塑和功能。大鼠被分配到 1) 假组或 2) PAB 组。在PAB动物中,每天以0.75毫克/千克的剂量给药MRTF-A抑制剂CCG-1423。在 6 周后的终末实验中进行超声心动图检查和压力-容积血流动力学检查。对 RV 心肌样本进行了纤维化、心肌细胞肥大和促纤维化信号传导分析。MRTF-A抑制可轻微减轻PAB大鼠的收缩功能障碍,表现为三尖瓣环外侧峰值收缩速度增加,而舒张功能参数没有明显改善。MRTF-A抑制剂减轻了PAB大鼠的RV重塑,减少了纤维化。与此同时,PAB 诱导的是相关蛋白(YAP)及其具有 PDZ 结合基调的同系物转录共激活因子(TAZ)的上调也有所降低。我们还使用第二代MRTF-A抑制剂CCG-203971证实,MRTF-A在响应TGF-β1压力和RhoA激活时对驱动RV成纤维细胞表达TAZ和肌成纤维细胞转化标记物至关重要。这些研究发现,RhoA、MRTF-A 和 YAP/TAZ 是 RV 压力负荷下促纤维化信号转导的相互关联的调节因子,也是改善 RV 促纤维化重塑的潜在靶点。
{"title":"Inhibition of MRTF-A Ameliorates Pathological Remodeling of the Pressure-loaded Right Ventricle.","authors":"Mark F Rzepka, Sonja Raschzok, Xavier A Lee, Kana Yazaki, John Dauz, Mei Sun, Theo Meister, Linda Nghiem, Golam Kabir, Jean-Francois Desjardins, Wolfgang M Kuebler, Andras Kapus, Kim A Connelly, Mark K Friedberg","doi":"10.1165/rcmb.2023-0465OC","DOIUrl":"https://doi.org/10.1165/rcmb.2023-0465OC","url":null,"abstract":"<p><p>Right ventricular (RV) fibrosis is associated with RV dysfunction in a variety of RV pressure-loading conditions where RV mechanical stress is increased, but the underlying mechanisms driving RV fibrosis are incompletely understood. In pulmonary and cardiovascular diseases characterized by elevated mechanical stress and transforming growth factor - beta-1 (TGF-β1) signaling, myocardin-related transcription factor A (MRTF-A) is a mechanosensitive protein critical to driving myofibroblast transition and fibrosis. Here we investigated whether MRTF-A inhibition improves RV pro-fibrotic remodeling and function in response to a pulmonary artery banding (PAB) model of RV pressure-loading. Rats were assigned into either 1) sham or 2) PAB groups. MRTF-A inhibitor CCG-1423 was administered daily at 0.75mg/kg in a subset of PAB animals. Echocardiography and pressure-volume hemodynamics were obtained at a terminal experiment 6-weeks later. RV myocardial samples were analyzed for fibrosis, cardiomyocyte hypertrophy, and pro-fibrotic signaling. MRTF-A inhibition slightly reduced systolic dysfunction in PAB rats reflected by increased lateral tricuspid annulus peak systolic velocity, while diastolic function parameters were not significantly improved. RV remodeling was attenuated in PAB rats with MRTF-A inhibition, displaying reduced fibrosis. This was accompanied with a reduction in PAB-induced upregulation of yes-associated protein (YAP) and its paralog transcriptional co-activator with PDZ-binding motif (TAZ). We also confirmed using a second-generation MRTF-A inhibitor CCG-203971 that MRTF-A is critical in driving RV fibroblast expression of TAZ and markers of myofibroblast transition in response to TGF-β1 stress and RhoA activation. These studies identify RhoA, MRTF-A, and YAP/TAZ as interconnected regulators of pro-fibrotic signaling in RV pressure-loading, and as potential targets to improve RV pro-fibrotic remodeling.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Role for γδ T Cells in Protection Against Severe Melioidosis. γδT细胞在预防重症梅毒中的新作用
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-19 DOI: 10.1165/rcmb.2024-0363ED
Daniel Hoft
{"title":"A Novel Role for γδ T Cells in Protection Against Severe Melioidosis.","authors":"Daniel Hoft","doi":"10.1165/rcmb.2024-0363ED","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0363ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Airway Epithelium-derived CXCL14 Promotes Eosinophil Accumulation in Allergic Airway Inflammation. 气道上皮源性 CXCL14 促进过敏性气道炎症中嗜酸性粒细胞的聚集
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-14 DOI: 10.1165/rcmb.2024-0142OC
Takunori Ogawa, Yohei Maki, Shusaku Takahashi, Takeshi Ono, Kimiya Sato, Akihiko Kawana, Yoshifumi Kimizuka

C-X-C motif chemokine ligand 14 (CXCL14) is expressed in the airway epithelial cells of patients with asthma. However, the mechanisms of CXCL14 secretion and its effects on asthma pathogenesis remain unclear. Here, we investigated the role of CXCL14 in allergic airway inflammation and its effects on eosinophil infiltration. Our findings showed that Alternaria alternata, a major environmental allergen, stimulated CXCL14 secretion from airway epithelial cells via reactive oxygen species (ROS) generated in mitochondrial oxidative phosphorylation (OXPHOS) complexes, especially in OXPHOS complex II. In vivo, in a mouse model of allergic airway inflammation, intranasal administration of anti-CXCL14 antibody suppressed eosinophil and dendritic cell infiltration into the airways and goblet cell hyperplasia. In vitro, in human eosinophil-like cells, CXCL14 promoted cell migration through C-X-C chemokine receptor type 4 (CXCR4) binding. Eosinophil CXCR4 expression was upregulated by Alternaria stimulation via ROS production. These findings suggest that the crosstalk between Alternaria-stimulated airway epithelial CXCL14 secretion and eosinophil CXCR4 upregulation plays an important role in eosinophil infiltration into the lungs during allergic airway inflammation. In summary, this study demonstrates that CXCL14 could be a therapeutic target for allergic airway inflammation.

C-X-C motif趋化因子配体 14(CXCL14)在哮喘患者的气道上皮细胞中表达。然而,CXCL14 的分泌机制及其对哮喘发病机制的影响仍不清楚。在此,我们研究了 CXCL14 在过敏性气道炎症中的作用及其对嗜酸性粒细胞浸润的影响。我们的研究结果表明,一种主要的环境过敏原--交替孢霉(Alternaria alternata)通过线粒体氧化磷酸化(OXPHOS)复合物,尤其是 OXPHOS 复合物 II 中产生的活性氧(ROS)刺激气道上皮细胞分泌 CXCL14。在体内,在过敏性气道炎症的小鼠模型中,鼻内注射抗 CXCL14 抗体可抑制嗜酸性粒细胞和树突状细胞向气道的浸润以及鹅口疮细胞的增生。在体外,在人嗜酸性粒细胞样细胞中,CXCL14 通过与 C-X-C 趋化因子受体 4 型(CXCR4)结合促进细胞迁移。嗜酸性粒细胞的 CXCR4 表达在 Alternaria 的刺激下通过产生 ROS 而上调。这些发现表明,在过敏性气道炎症过程中,Alternaria 刺激的气道上皮细胞 CXCL14 分泌与嗜酸性粒细胞 CXCR4 上调之间的相互影响在嗜酸性粒细胞向肺部浸润的过程中发挥了重要作用。总之,本研究表明,CXCL14 可作为过敏性气道炎症的治疗靶点。
{"title":"Airway Epithelium-derived CXCL14 Promotes Eosinophil Accumulation in Allergic Airway Inflammation.","authors":"Takunori Ogawa, Yohei Maki, Shusaku Takahashi, Takeshi Ono, Kimiya Sato, Akihiko Kawana, Yoshifumi Kimizuka","doi":"10.1165/rcmb.2024-0142OC","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0142OC","url":null,"abstract":"<p><p>C-X-C motif chemokine ligand 14 (CXCL14) is expressed in the airway epithelial cells of patients with asthma. However, the mechanisms of CXCL14 secretion and its effects on asthma pathogenesis remain unclear. Here, we investigated the role of CXCL14 in allergic airway inflammation and its effects on eosinophil infiltration. Our findings showed that <i>Alternaria alternata</i>, a major environmental allergen, stimulated CXCL14 secretion from airway epithelial cells via reactive oxygen species (ROS) generated in mitochondrial oxidative phosphorylation (OXPHOS) complexes, especially in OXPHOS complex II. <i>In vivo</i>, in a mouse model of allergic airway inflammation, intranasal administration of anti-CXCL14 antibody suppressed eosinophil and dendritic cell infiltration into the airways and goblet cell hyperplasia. <i>In vitro</i>, in human eosinophil-like cells, CXCL14 promoted cell migration through C-X-C chemokine receptor type 4 (CXCR4) binding. Eosinophil CXCR4 expression was upregulated by <i>Alternaria</i> stimulation via ROS production. These findings suggest that the crosstalk between <i>Alternaria</i>-stimulated airway epithelial CXCL14 secretion and eosinophil CXCR4 upregulation plays an important role in eosinophil infiltration into the lungs during allergic airway inflammation. In summary, this study demonstrates that CXCL14 could be a therapeutic target for allergic airway inflammation.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American Journal of Respiratory Cell and Molecular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1