Pub Date : 2024-09-01DOI: 10.1165/rcmb.2023-0308OC
Lin Deng, Chengrui Cao, Zongye Cai, Ziping Wang, Bin Leng, Zhen Chen, Fanhao Kong, Zhiyue Zhou, Jun He, Xiaowei Nie, Jin-Song Bian
Pulmonary hypertension (PH) is an incurable disease characterized by pulmonary vascular remodeling. Endothelial injury and inflammation are the key triggers of disease initiation. Recent findings suggest that STING (stimulator of IFN genes) activation plays a critical role in endothelial dysfunction and IFN signaling. Here, we investigated the involvement of STING in the pathogenesis of PH. Patients with PH and rodent PH model samples, a Sugen 5416/hypoxia PH model, and pulmonary artery endothelial cells (PAECs) were used to evaluate the hypothesis. We found that the cyclic guanosine monophosphate-AMP synthase-STING signaling pathway was activated in lung tissues from rodent PH models and patients with PH and in TNF-α-induced PAECs in vitro. Specifically, STING expression was significantly elevated in the endothelial cells in PH disease settings. In the Sugen 5416/hypoxia mouse model, genetic knockout or pharmacological inhibition of STING prevented the progression of PH. Functionally, knockdown of STING reduced the proliferation and migration of PAECs. Mechanistically, STING transcriptionally regulates its binding partner F2RL3 (F2R-like thrombin or trypsin receptor 3) through the STING-NF-κB axis, which activated IFN signaling and repressed BMPR2 (bone morphogenetic protein receptor 2) signaling both in vitro and in vivo. Further analysis revealed that F2RL3 expression was increased in PH settings and identified negative feedback regulation of F2RL3/BMPR2 signaling. Accordingly, a positive correlation of expression amounts between STING and F2RL3/IFN-stimulated genes was observed in vivo. Our findings suggest that STING activation in PAECs plays a critical role in the pathobiology of PH. Targeting STING may be a promising therapeutic strategy for preventing the development of PH.
{"title":"STING Contributes to Pulmonary Hypertension by Targeting IFN and BMPR2 Signaling through Regulating of F2RL3.","authors":"Lin Deng, Chengrui Cao, Zongye Cai, Ziping Wang, Bin Leng, Zhen Chen, Fanhao Kong, Zhiyue Zhou, Jun He, Xiaowei Nie, Jin-Song Bian","doi":"10.1165/rcmb.2023-0308OC","DOIUrl":"10.1165/rcmb.2023-0308OC","url":null,"abstract":"<p><p>Pulmonary hypertension (PH) is an incurable disease characterized by pulmonary vascular remodeling. Endothelial injury and inflammation are the key triggers of disease initiation. Recent findings suggest that STING (stimulator of IFN genes) activation plays a critical role in endothelial dysfunction and IFN signaling. Here, we investigated the involvement of STING in the pathogenesis of PH. Patients with PH and rodent PH model samples, a Sugen 5416/hypoxia PH model, and pulmonary artery endothelial cells (PAECs) were used to evaluate the hypothesis. We found that the cyclic guanosine monophosphate-AMP synthase-STING signaling pathway was activated in lung tissues from rodent PH models and patients with PH and in TNF-α-induced PAECs <i>in vitro</i>. Specifically, STING expression was significantly elevated in the endothelial cells in PH disease settings. In the Sugen 5416/hypoxia mouse model, genetic knockout or pharmacological inhibition of STING prevented the progression of PH. Functionally, knockdown of STING reduced the proliferation and migration of PAECs. Mechanistically, STING transcriptionally regulates its binding partner F2RL3 (F2R-like thrombin or trypsin receptor 3) through the STING-NF-κB axis, which activated IFN signaling and repressed BMPR2 (bone morphogenetic protein receptor 2) signaling both <i>in vitro</i> and <i>in vivo</i>. Further analysis revealed that F2RL3 expression was increased in PH settings and identified negative feedback regulation of F2RL3/BMPR2 signaling. Accordingly, a positive correlation of expression amounts between STING and F2RL3/IFN-stimulated genes was observed <i>in vivo</i>. Our findings suggest that STING activation in PAECs plays a critical role in the pathobiology of PH. Targeting STING may be a promising therapeutic strategy for preventing the development of PH.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":"356-371"},"PeriodicalIF":5.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1165/rcmb.2024-0377ED
Jessie van Wezenbeek, Frances S de Man
{"title":"Targeting Fibrosis in Right Ventricular Pressure-Overload: Balancing on a Tightrope?","authors":"Jessie van Wezenbeek, Frances S de Man","doi":"10.1165/rcmb.2024-0377ED","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0377ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1165/rcmb.2024-0374ED
Anthony N Gerber
{"title":"Airway Smooth Muscle Dysfunction in Asthma: Releasing the Anchor.","authors":"Anthony N Gerber","doi":"10.1165/rcmb.2024-0374ED","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0374ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1165/rcmb.2023-0465OC
Mark F Rzepka, Sonja Raschzok, Xavier A Lee, Kana Yazaki, John Dauz, Mei Sun, Theo Meister, Linda Nghiem, Golam Kabir, Jean-Francois Desjardins, Wolfgang M Kuebler, Andras Kapus, Kim A Connelly, Mark K Friedberg
Right ventricular (RV) fibrosis is associated with RV dysfunction in a variety of RV pressure-loading conditions where RV mechanical stress is increased, but the underlying mechanisms driving RV fibrosis are incompletely understood. In pulmonary and cardiovascular diseases characterized by elevated mechanical stress and transforming growth factor - beta-1 (TGF-β1) signaling, myocardin-related transcription factor A (MRTF-A) is a mechanosensitive protein critical to driving myofibroblast transition and fibrosis. Here we investigated whether MRTF-A inhibition improves RV pro-fibrotic remodeling and function in response to a pulmonary artery banding (PAB) model of RV pressure-loading. Rats were assigned into either 1) sham or 2) PAB groups. MRTF-A inhibitor CCG-1423 was administered daily at 0.75mg/kg in a subset of PAB animals. Echocardiography and pressure-volume hemodynamics were obtained at a terminal experiment 6-weeks later. RV myocardial samples were analyzed for fibrosis, cardiomyocyte hypertrophy, and pro-fibrotic signaling. MRTF-A inhibition slightly reduced systolic dysfunction in PAB rats reflected by increased lateral tricuspid annulus peak systolic velocity, while diastolic function parameters were not significantly improved. RV remodeling was attenuated in PAB rats with MRTF-A inhibition, displaying reduced fibrosis. This was accompanied with a reduction in PAB-induced upregulation of yes-associated protein (YAP) and its paralog transcriptional co-activator with PDZ-binding motif (TAZ). We also confirmed using a second-generation MRTF-A inhibitor CCG-203971 that MRTF-A is critical in driving RV fibroblast expression of TAZ and markers of myofibroblast transition in response to TGF-β1 stress and RhoA activation. These studies identify RhoA, MRTF-A, and YAP/TAZ as interconnected regulators of pro-fibrotic signaling in RV pressure-loading, and as potential targets to improve RV pro-fibrotic remodeling.
{"title":"Inhibition of MRTF-A Ameliorates Pathological Remodeling of the Pressure-loaded Right Ventricle.","authors":"Mark F Rzepka, Sonja Raschzok, Xavier A Lee, Kana Yazaki, John Dauz, Mei Sun, Theo Meister, Linda Nghiem, Golam Kabir, Jean-Francois Desjardins, Wolfgang M Kuebler, Andras Kapus, Kim A Connelly, Mark K Friedberg","doi":"10.1165/rcmb.2023-0465OC","DOIUrl":"https://doi.org/10.1165/rcmb.2023-0465OC","url":null,"abstract":"<p><p>Right ventricular (RV) fibrosis is associated with RV dysfunction in a variety of RV pressure-loading conditions where RV mechanical stress is increased, but the underlying mechanisms driving RV fibrosis are incompletely understood. In pulmonary and cardiovascular diseases characterized by elevated mechanical stress and transforming growth factor - beta-1 (TGF-β1) signaling, myocardin-related transcription factor A (MRTF-A) is a mechanosensitive protein critical to driving myofibroblast transition and fibrosis. Here we investigated whether MRTF-A inhibition improves RV pro-fibrotic remodeling and function in response to a pulmonary artery banding (PAB) model of RV pressure-loading. Rats were assigned into either 1) sham or 2) PAB groups. MRTF-A inhibitor CCG-1423 was administered daily at 0.75mg/kg in a subset of PAB animals. Echocardiography and pressure-volume hemodynamics were obtained at a terminal experiment 6-weeks later. RV myocardial samples were analyzed for fibrosis, cardiomyocyte hypertrophy, and pro-fibrotic signaling. MRTF-A inhibition slightly reduced systolic dysfunction in PAB rats reflected by increased lateral tricuspid annulus peak systolic velocity, while diastolic function parameters were not significantly improved. RV remodeling was attenuated in PAB rats with MRTF-A inhibition, displaying reduced fibrosis. This was accompanied with a reduction in PAB-induced upregulation of yes-associated protein (YAP) and its paralog transcriptional co-activator with PDZ-binding motif (TAZ). We also confirmed using a second-generation MRTF-A inhibitor CCG-203971 that MRTF-A is critical in driving RV fibroblast expression of TAZ and markers of myofibroblast transition in response to TGF-β1 stress and RhoA activation. These studies identify RhoA, MRTF-A, and YAP/TAZ as interconnected regulators of pro-fibrotic signaling in RV pressure-loading, and as potential targets to improve RV pro-fibrotic remodeling.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C-X-C motif chemokine ligand 14 (CXCL14) is expressed in the airway epithelial cells of patients with asthma. However, the mechanisms of CXCL14 secretion and its effects on asthma pathogenesis remain unclear. Here, we investigated the role of CXCL14 in allergic airway inflammation and its effects on eosinophil infiltration. Our findings showed that Alternaria alternata, a major environmental allergen, stimulated CXCL14 secretion from airway epithelial cells via reactive oxygen species (ROS) generated in mitochondrial oxidative phosphorylation (OXPHOS) complexes, especially in OXPHOS complex II. In vivo, in a mouse model of allergic airway inflammation, intranasal administration of anti-CXCL14 antibody suppressed eosinophil and dendritic cell infiltration into the airways and goblet cell hyperplasia. In vitro, in human eosinophil-like cells, CXCL14 promoted cell migration through C-X-C chemokine receptor type 4 (CXCR4) binding. Eosinophil CXCR4 expression was upregulated by Alternaria stimulation via ROS production. These findings suggest that the crosstalk between Alternaria-stimulated airway epithelial CXCL14 secretion and eosinophil CXCR4 upregulation plays an important role in eosinophil infiltration into the lungs during allergic airway inflammation. In summary, this study demonstrates that CXCL14 could be a therapeutic target for allergic airway inflammation.
{"title":"Airway Epithelium-derived CXCL14 Promotes Eosinophil Accumulation in Allergic Airway Inflammation.","authors":"Takunori Ogawa, Yohei Maki, Shusaku Takahashi, Takeshi Ono, Kimiya Sato, Akihiko Kawana, Yoshifumi Kimizuka","doi":"10.1165/rcmb.2024-0142OC","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0142OC","url":null,"abstract":"<p><p>C-X-C motif chemokine ligand 14 (CXCL14) is expressed in the airway epithelial cells of patients with asthma. However, the mechanisms of CXCL14 secretion and its effects on asthma pathogenesis remain unclear. Here, we investigated the role of CXCL14 in allergic airway inflammation and its effects on eosinophil infiltration. Our findings showed that <i>Alternaria alternata</i>, a major environmental allergen, stimulated CXCL14 secretion from airway epithelial cells via reactive oxygen species (ROS) generated in mitochondrial oxidative phosphorylation (OXPHOS) complexes, especially in OXPHOS complex II. <i>In vivo</i>, in a mouse model of allergic airway inflammation, intranasal administration of anti-CXCL14 antibody suppressed eosinophil and dendritic cell infiltration into the airways and goblet cell hyperplasia. <i>In vitro</i>, in human eosinophil-like cells, CXCL14 promoted cell migration through C-X-C chemokine receptor type 4 (CXCR4) binding. Eosinophil CXCR4 expression was upregulated by <i>Alternaria</i> stimulation via ROS production. These findings suggest that the crosstalk between <i>Alternaria</i>-stimulated airway epithelial CXCL14 secretion and eosinophil CXCR4 upregulation plays an important role in eosinophil infiltration into the lungs during allergic airway inflammation. In summary, this study demonstrates that CXCL14 could be a therapeutic target for allergic airway inflammation.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1165/rcmb.2023-0358OC
Elham Javed, Ajay P Nayak, Arun K Jannu, Aaron H Cohen, Isabella Dewes, Ruping Wang, Dale D Tang, Deepak A Deshpande, Raymond B Penn
A-kinase-anchoring proteins (AKAPs) act as scaffold proteins that anchor the regulatory subunits of the cAMP-dependent protein kinase A (PKA) to coordinate and compartmentalize signaling elements and signals downstream of Gs-coupled G protein-coupled receptors (GPCRs). The beta-2-adrenoceptor (β2AR), as well as the Gs-coupled EP2 and EP4 receptor subtypes of the E-prostanoid (EP) receptor subfamily, are effective regulators of multiple airway smooth muscle (ASM) cell functions whose dysregulation contributes of asthma pathobiology. Here, we identify specific roles of the AKAPs Ezrin and Gravin, in differentially regulating PKA substrates downstream of the β2AR, EP2 receptor (EP2R) and EP4 receptor (EP4R). Knockdown of Ezrin, Gravin, or both in primary human ASM cells caused differential phosphorylation of the PKA substrates vasodilator-stimulated phosphoprotein (VASP) and heat shock protein 20 (HSP20). Ezrin knockdown, as well as combined Ezrin + Gravin knockdown significantly reduced the induction of phospho-VASP and phospho-HSP20 by β2AR, EP2R, and EP4R agonists. Gravin knockdown inhibited the induction of phospho-HSP20 by β2AR, EP2R, and EP4R agonists. Knockdown of Ezrin, Gravin, or both also attenuated histamine-induced phosphorylation of MLC20. Moreover, knockdown of Ezrin, Gravin or both suppressed the inhibitory effects of Gs-coupled receptor agonists on cell migration in ASM cells. These findings demonstrate the role of AKAPs in regulating Gs-coupled GPCR signaling and function in ASM, and suggest the therapeutic utility of targeting specific AKAP family members in the management of asthma.
{"title":"A-Kinase-Anchoring-Protein Subtypes Differentially Regulate GPCR Signaling and Function in Human Airway Smooth Muscle.","authors":"Elham Javed, Ajay P Nayak, Arun K Jannu, Aaron H Cohen, Isabella Dewes, Ruping Wang, Dale D Tang, Deepak A Deshpande, Raymond B Penn","doi":"10.1165/rcmb.2023-0358OC","DOIUrl":"10.1165/rcmb.2023-0358OC","url":null,"abstract":"<p><p>A-kinase-anchoring proteins (AKAPs) act as scaffold proteins that anchor the regulatory subunits of the cAMP-dependent protein kinase A (PKA) to coordinate and compartmentalize signaling elements and signals downstream of Gs-coupled G protein-coupled receptors (GPCRs). The beta-2-adrenoceptor (β<sub>2</sub>AR), as well as the Gs-coupled EP2 and EP4 receptor subtypes of the E-prostanoid (EP) receptor subfamily, are effective regulators of multiple airway smooth muscle (ASM) cell functions whose dysregulation contributes of asthma pathobiology. Here, we identify specific roles of the AKAPs Ezrin and Gravin, in differentially regulating PKA substrates downstream of the β<sub>2</sub>AR, EP2 receptor (EP2R) and EP4 receptor (EP4R). Knockdown of Ezrin, Gravin, or both in primary human ASM cells caused differential phosphorylation of the PKA substrates vasodilator-stimulated phosphoprotein (VASP) and heat shock protein 20 (HSP20). Ezrin knockdown, as well as combined Ezrin + Gravin knockdown significantly reduced the induction of phospho-VASP and phospho-HSP20 by β<sub>2</sub>AR, EP2R, and EP4R agonists. Gravin knockdown inhibited the induction of phospho-HSP20 by β<sub>2</sub>AR, EP2R, and EP4R agonists. Knockdown of Ezrin, Gravin, or both also attenuated histamine-induced phosphorylation of MLC20. Moreover, knockdown of Ezrin, Gravin or both suppressed the inhibitory effects of Gs-coupled receptor agonists on cell migration in ASM cells. These findings demonstrate the role of AKAPs in regulating Gs-coupled GPCR signaling and function in ASM, and suggest the therapeutic utility of targeting specific AKAP family members in the management of asthma.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1165/rcmb.2024-0145PS
Ruslan Rafikov, Vinicio de Jesus Perez, Aleksandr Dekan, Tatiana V Kudryashova, Olga Rafikova
Expanding upon the critical advancements brought forth by single-cell omics in pulmonary hypertension (PH) research, this review delves deep into how these technologies have been piloted in a new era of understanding this complex disease. By leveraging the power of single cell transcriptomics (scRNA-seq), researchers can now dissect the complicated cellular ecosystem of the lungs, examining the key players such as endothelial cells, smooth muscle cells, pericytes, and immune cells, and their unique roles in the pathogenesis of PH. This more granular view is beyond the limitations of traditional bulk analysis, allowing for the identification of novel therapeutic targets previously obscured in the aggregated data. Connectome analysis based on single-cell omics of the cells involved in pathological changes can reveal a clearer picture of the cellular interactions and transitions in the cellular subtypes. Furthermore, the review acknowledges the challenges that lie ahead, including the need for enhancing the resolution of scRNA-seq to capture even finer details of cellular changes, overcoming logistical barriers in processing human tissue samples, and the necessity of integrating diverse omics approaches to fully comprehend the molecular underpinnings of PH. The promise of these single-cell technologies is immense, offering the potential for targeted drug development and the discovery of biomarkers for early diagnosis and disease monitoring. Through these advancements, the field moves closer to realizing the goal of precision medicine for patients with PH.
{"title":"Deciphering the Complexities of Pulmonary Hypertension: The Emergent Role of Single-Cell Omics.","authors":"Ruslan Rafikov, Vinicio de Jesus Perez, Aleksandr Dekan, Tatiana V Kudryashova, Olga Rafikova","doi":"10.1165/rcmb.2024-0145PS","DOIUrl":"10.1165/rcmb.2024-0145PS","url":null,"abstract":"<p><p>Expanding upon the critical advancements brought forth by single-cell omics in pulmonary hypertension (PH) research, this review delves deep into how these technologies have been piloted in a new era of understanding this complex disease. By leveraging the power of single cell transcriptomics (scRNA-seq), researchers can now dissect the complicated cellular ecosystem of the lungs, examining the key players such as endothelial cells, smooth muscle cells, pericytes, and immune cells, and their unique roles in the pathogenesis of PH. This more granular view is beyond the limitations of traditional bulk analysis, allowing for the identification of novel therapeutic targets previously obscured in the aggregated data. Connectome analysis based on single-cell omics of the cells involved in pathological changes can reveal a clearer picture of the cellular interactions and transitions in the cellular subtypes. Furthermore, the review acknowledges the challenges that lie ahead, including the need for enhancing the resolution of scRNA-seq to capture even finer details of cellular changes, overcoming logistical barriers in processing human tissue samples, and the necessity of integrating diverse omics approaches to fully comprehend the molecular underpinnings of PH. The promise of these single-cell technologies is immense, offering the potential for targeted drug development and the discovery of biomarkers for early diagnosis and disease monitoring. Through these advancements, the field moves closer to realizing the goal of precision medicine for patients with PH.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1165/rcmb.2024-0326ED
Elizabeth F Redente
{"title":"The Hidden Link Between Chronic Kidney Disease and Lung Injury.","authors":"Elizabeth F Redente","doi":"10.1165/rcmb.2024-0326ED","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0326ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1165/rcmb.2024-0325ED
Akshat Sharma, Amali E Samarasinghe
{"title":"\"It's A Trap!\": Eosinophils Caught Between Pro- and Anti-inflammatory Responses.","authors":"Akshat Sharma, Amali E Samarasinghe","doi":"10.1165/rcmb.2024-0325ED","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0325ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-13DOI: 10.1165/rcmb.2024-0346ED
Hong-Long James Ji, Gang Liu
{"title":"Mapping Host-Microbe Omics Interactions in Severe Community-acquired Pneumonia.","authors":"Hong-Long James Ji, Gang Liu","doi":"10.1165/rcmb.2024-0346ED","DOIUrl":"10.1165/rcmb.2024-0346ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}