Pub Date : 2024-11-18DOI: 10.1165/rcmb.2024-0256OC
Nicholaus L DeCuzzi, Daniel Oberbauer, Kenneth J Chmiel, Michael Pargett, Justa M Ferguson, Devan Murphy, Marion Hardy, Abhineet Ram, Amir A Zeki, John G Albeck
Spatially coordinated ERK signaling events ("SPREADs") transmit radially from a central point to adjacent cells via secreted ligands for EGFR and other receptors. SPREADs maintain homeostasis in non-pulmonary epithelia, but it is unknown whether they play a role in the airway epithelium or are dysregulated in inflammatory disease. To address these questions, we measured SPREAD activity with live-cell ERK biosensors in human bronchial epithelial cell lines (HBE1 and 16HBE) and primary human bronchial epithelial (pHBE) cells, in both submerged and biphasic Air-Liquid Interface (ALI) culture conditions (i.e., differentiated cells). Airway epithelial cells were exposed to pro-inflammatory cytokines relevant to asthma and chronic obstructive pulmonary disease (COPD). Type 1 pro-inflammatory cytokines significantly increased the frequency of SPREADs, which coincided with epithelial barrier breakdown in differentiated pHBE cells. Furthermore, SPREADs correlated with IL-6 peptide secretion and the appearance of localized clusters of phospho-STAT3 immunofluorescence. To probe the mechanism of SPREADs, cells were co-treated with pharmacological treatments (gefitinib, tocilizumab, hydrocortisone) or metabolic modulators (insulin, 2-deoxyglucose). Hydrocortisone, inhibitors of receptor signaling, and suppression of metabolic function decreased SPREAD occurrence, implying that pro-inflammatory cytokines and glucose metabolism modulate SPREADs in human airway epithelial cells via secreted EGFR and IL6R ligands. We conclude that spatiotemporal ERK signaling plays a role in barrier homeostasis and dysfunction during inflammation of the airway epithelium. This novel signaling mechanism could be exploited clinically to supplement corticosteroid treatment for asthma and COPD. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).
{"title":"Spatiotemporal Clusters of ERK Activity Coordinate Cytokine-induced Inflammatory Responses in Human Airway Epithelial Cells.","authors":"Nicholaus L DeCuzzi, Daniel Oberbauer, Kenneth J Chmiel, Michael Pargett, Justa M Ferguson, Devan Murphy, Marion Hardy, Abhineet Ram, Amir A Zeki, John G Albeck","doi":"10.1165/rcmb.2024-0256OC","DOIUrl":"10.1165/rcmb.2024-0256OC","url":null,"abstract":"<p><p>Spatially coordinated ERK signaling events (\"SPREADs\") transmit radially from a central point to adjacent cells via secreted ligands for EGFR and other receptors. SPREADs maintain homeostasis in non-pulmonary epithelia, but it is unknown whether they play a role in the airway epithelium or are dysregulated in inflammatory disease. To address these questions, we measured SPREAD activity with live-cell ERK biosensors in human bronchial epithelial cell lines (HBE1 and 16HBE) and primary human bronchial epithelial (pHBE) cells, in both submerged and biphasic Air-Liquid Interface (ALI) culture conditions (i.e., differentiated cells). Airway epithelial cells were exposed to pro-inflammatory cytokines relevant to asthma and chronic obstructive pulmonary disease (COPD). Type 1 pro-inflammatory cytokines significantly increased the frequency of SPREADs, which coincided with epithelial barrier breakdown in differentiated pHBE cells. Furthermore, SPREADs correlated with IL-6 peptide secretion and the appearance of localized clusters of phospho-STAT3 immunofluorescence. To probe the mechanism of SPREADs, cells were co-treated with pharmacological treatments (gefitinib, tocilizumab, hydrocortisone) or metabolic modulators (insulin, 2-deoxyglucose). Hydrocortisone, inhibitors of receptor signaling, and suppression of metabolic function decreased SPREAD occurrence, implying that pro-inflammatory cytokines and glucose metabolism modulate SPREADs in human airway epithelial cells via secreted EGFR and IL6R ligands. We conclude that spatiotemporal ERK signaling plays a role in barrier homeostasis and dysfunction during inflammation of the airway epithelium. This novel signaling mechanism could be exploited clinically to supplement corticosteroid treatment for asthma and COPD. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1165/rcmb.2024-0292OC
Christina Sul, Caitlin V Lewis, Janelle Posey, Mariah Jordan, Daniel Colon Hidalgo, Timothy Porfilio, Hanan Elajaili, Genevieve McCormack, Samuel Burciaga, Cassidy Delaney, Eva S Nozik
Acute respiratory distress syndrome (ARDS) is a serious illness accounting for 10% of ICU admissions and high mortality of 31-45% with a paucity of pharmacologic treatment options. Dysregulated inflammation and oxidative stress are hallmark features of ARDS. We previously showed that transgenic mice expressing a naturally occurring polymorphism of the antioxidant enzyme extracellular superoxide dismutase (EC-SOD), are protected against Staphylococcus aureus (S. aureus) pneumonia, acute lung injury, and pulmonary neutrophilia. In this mouse strain, an R213G amino acid substitution leads to lower tissue binding affinity and elevated alveolar and plasma EC-SOD levels, though the redox-regulated mechanisms responsible for protection against S. aureus are not yet elucidated. Neutrophils are recruited to the areas of injury and inflammation, in part by activated platelets, which contain multiple redox-sensitive targets. Thus, we hypothesize that increased circulating EC-SOD due to the EC-SOD R213G variant protects against S. aureus pneumonia by reducing platelet activation and subsequent neutrophil recruitment to the lung. We demonstrate that, compared to WT mice with S. aureus pneumonia, platelet activation, formation of platelet-neutrophil aggregates (PNAs), and influx of neutrophils and PNAs into the lung are decreased in the infected R213G mice. Furthermore, pre-treatment with a MnTE-2-PyP SOD mimetic protects against S. aureus-induced platelet activation, pulmonary neutrophilia, and acute lung injury. Our data highlight the redox regulation of platelet activation as a driver of S. aureus-induced acute lung injury.
{"title":"Increased Circulating Extracellular Superoxide Dismutase Attenuates Platelet-Neutrophil Interactions.","authors":"Christina Sul, Caitlin V Lewis, Janelle Posey, Mariah Jordan, Daniel Colon Hidalgo, Timothy Porfilio, Hanan Elajaili, Genevieve McCormack, Samuel Burciaga, Cassidy Delaney, Eva S Nozik","doi":"10.1165/rcmb.2024-0292OC","DOIUrl":"10.1165/rcmb.2024-0292OC","url":null,"abstract":"<p><p>Acute respiratory distress syndrome (ARDS) is a serious illness accounting for 10% of ICU admissions and high mortality of 31-45% with a paucity of pharmacologic treatment options. Dysregulated inflammation and oxidative stress are hallmark features of ARDS. We previously showed that transgenic mice expressing a naturally occurring polymorphism of the antioxidant enzyme extracellular superoxide dismutase (EC-SOD), are protected against <i>Staphylococcus aureus (S. aureus)</i> pneumonia, acute lung injury, and pulmonary neutrophilia. In this mouse strain, an R213G amino acid substitution leads to lower tissue binding affinity and elevated alveolar and plasma EC-SOD levels, though the redox-regulated mechanisms responsible for protection against S. aureus are not yet elucidated. Neutrophils are recruited to the areas of injury and inflammation, in part by activated platelets, which contain multiple redox-sensitive targets. Thus, we hypothesize that increased circulating EC-SOD due to the EC-SOD R213G variant protects against <i>S. aureus</i> pneumonia by reducing platelet activation and subsequent neutrophil recruitment to the lung. We demonstrate that, compared to WT mice with <i>S. aureus</i> pneumonia, platelet activation, formation of platelet-neutrophil aggregates (PNAs), and influx of neutrophils and PNAs into the lung are decreased in the infected R213G mice. Furthermore, pre-treatment with a MnTE-2-PyP SOD mimetic protects against S. aureus-induced platelet activation, pulmonary neutrophilia, and acute lung injury. Our data highlight the redox regulation of platelet activation as a driver of <i>S. aureus</i>-induced acute lung injury.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1165/rcmb.2024-0242OC
Jilly F Evans, Owen A Ledwell, Yan Tang, Ryan Rue, Alexander R Mukhitov, Rémi Diesler, Susan M Lin, Swaroop V Kanth, Maria C Basil, Edward Cantu, Elizabeth P Henske, Vera P Krymskaya
Mutations in the Tuberous Sclerosis Complex (TSC) genes result in the hyperactivation of the mechanistic/mammalian target of rapamycin 1 (mTORC1) growth pathway in mesenchymal pulmonary cells. Rapamycin (SirolimusTM), a naturally occurring macrolide, is the only therapeutic approved for women with lymphangioleiomyomatosis (LAM), a progressive, destructive lung disease caused by TSC gene mutations and mTORC1 hyperactivation. However, on cessation of the drug, lung function decline continues. We demonstrated here that pulmonary LAM cancer stem-like cells (SLS) most highly expressed the eukaryotic translation initiation factor 4E (eIF4E)-dependent translation initiation genes. We also showed that the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) gene has the lowest expression in these cells, indicating that the 4E-BP1/eIF4E ratio in LAM SLS cells favors unrestrained eIF4E oncogenic mRNA translation. The bi-steric mTORC1-selective compound RMC-5552 prevented growth of LAM-associated fibroblasts (LAFs) and phosphorylation of proteins in the ribosomal protein S6K1/ribosomal protein S6 (S6K1/S6) and 4E-BP1/eIF4E translation mTORC1-driven pathways, whereas rapamycin only blocked the S6K/S6 axis. Rapamycin inhibition of LAF growth was rapidly reversed, but RMC-5552 inhibition was more durable. RMC-5552, through its potential to eradicate LAM cancer SLS cells, may have therapeutic benefit in LAM and other diseases with mTORC1 hyperactivity.
{"title":"The Bi-Steric Inhibitor RMC-5552 Reduces mTORC1 Signaling and Growth in Lymphangioleiomyomatosis.","authors":"Jilly F Evans, Owen A Ledwell, Yan Tang, Ryan Rue, Alexander R Mukhitov, Rémi Diesler, Susan M Lin, Swaroop V Kanth, Maria C Basil, Edward Cantu, Elizabeth P Henske, Vera P Krymskaya","doi":"10.1165/rcmb.2024-0242OC","DOIUrl":"10.1165/rcmb.2024-0242OC","url":null,"abstract":"<p><p>Mutations in the Tuberous Sclerosis Complex (TSC) genes result in the hyperactivation of the mechanistic/mammalian target of rapamycin 1 (mTORC1) growth pathway in mesenchymal pulmonary cells. Rapamycin (Sirolimus<sup>TM</sup>), a naturally occurring macrolide, is the only therapeutic approved for women with lymphangioleiomyomatosis (LAM), a progressive, destructive lung disease caused by TSC gene mutations and mTORC1 hyperactivation. However, on cessation of the drug, lung function decline continues. We demonstrated here that pulmonary LAM cancer stem-like cells (SLS) most highly expressed the eukaryotic translation initiation factor 4E (eIF4E)-dependent translation initiation genes. We also showed that the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) gene has the lowest expression in these cells, indicating that the 4E-BP1/eIF4E ratio in LAM SLS cells favors unrestrained eIF4E oncogenic mRNA translation. The bi-steric mTORC1-selective compound RMC-5552 prevented growth of LAM-associated fibroblasts (LAFs) and phosphorylation of proteins in the ribosomal protein S6K1/ribosomal protein S6 (S6K1/S6) and 4E-BP1/eIF4E translation mTORC1-driven pathways, whereas rapamycin only blocked the S6K/S6 axis. Rapamycin inhibition of LAF growth was rapidly reversed, but RMC-5552 inhibition was more durable. RMC-5552, through its potential to eradicate LAM cancer SLS cells, may have therapeutic benefit in LAM and other diseases with mTORC1 hyperactivity.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1165/rcmb.2024-0486ED
Alison W Ha, Eleftheria Letsiou, Steven M Dudek
{"title":"Can ENaC \"TIP\" the Scales to Reduce Endothelial ROS and Vascular Leak During Pneumococcal Lung Injury?","authors":"Alison W Ha, Eleftheria Letsiou, Steven M Dudek","doi":"10.1165/rcmb.2024-0486ED","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0486ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cardiopulmonary bypass (CPB) increases the risk of acute respiratory distress syndrome (ARDS) due to endothelial cell (EC) barrier dysfunction. However, the specific role of mitochondrial N-formyl peptides (mtNFPs) in ARDS following CPB remains unexplored. Here, we investigated the differential expression of circulating mtNFPs in patients after CPB, focusing on the novel role of FPR2 in ECs. Levels of circulating mtNFPs were assessed using enzyme-linked immunosorbent assay (ELISA). Several mtNFPs (ND4, ND5, ND6, and Cox1) were significantly upregulated in patients with ARDS at day 1 post-CPB compared to patients without ARDS. Higher levels of ND6 were correlated with worst PaO2/FiO2 (r=-0.2219 and P<0.0001) and cardiac Troponin T (r=2.107 and P<0.0001). Utilizing patient-derived serum and a rat lung ischemia reperfusion injury (LIRI) model, we observed a positive correlation between serum ND6 concentration and ARDS, which is also associated with EC barrier dysfunction. In vitro experiments, using trans-endothelial electric resistance (TEER) measurements and fluorescence microscopy with FITC-labeled VE-cadherin, demonstrated that ND6 disrupts the EC barrier through FPR2. Furthermore, FPR2 controls the release of ND6 out of mitochondria and cytoplasm under hypoxia reoxygenation (HR). Activated FPR2 leads to upregulation of nuclear transcription factor-kappa B (NF-κB) by inducing IκBα phosphorylation, promoting ICAM1 and VCAM1 expression, thereby compromising EC barrier integrity. Circulating pro-inflammatory and barrier-disruptive mtNFPs, particularly ND6, are associated with ARDS in patients undergoing CPB. The novel ND6-FPR2 axis regulates inflammation and EC permeability through the NF-κB pathway.
{"title":"Circulating mtNFPs Are Associated with ARDS after CPB and Regulate Endothelial Barrier through FPR2.","authors":"Peng Lu, Xiaopei Li, Jinqiang Wang, Xiangyu Li, Zihao Shen, Yuanpu Qi, Mingyu Chu, Xin Yao, Xiao Zhang, Yu Zheng, Faliang Zhan, Meijuan Song, Xiaowei Wang","doi":"10.1165/rcmb.2024-0076OC","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0076OC","url":null,"abstract":"<p><p>Cardiopulmonary bypass (CPB) increases the risk of acute respiratory distress syndrome (ARDS) due to endothelial cell (EC) barrier dysfunction. However, the specific role of mitochondrial N-formyl peptides (mtNFPs) in ARDS following CPB remains unexplored. Here, we investigated the differential expression of circulating mtNFPs in patients after CPB, focusing on the novel role of FPR2 in ECs. Levels of circulating mtNFPs were assessed using enzyme-linked immunosorbent assay (ELISA). Several mtNFPs (ND4, ND5, ND6, and Cox1) were significantly upregulated in patients with ARDS at day 1 post-CPB compared to patients without ARDS. Higher levels of ND6 were correlated with worst PaO<sub>2</sub>/FiO<sub>2</sub> (r=-0.2219 and P<0.0001) and cardiac Troponin T (r=2.107 and P<0.0001). Utilizing patient-derived serum and a rat lung ischemia reperfusion injury (LIRI) model, we observed a positive correlation between serum ND6 concentration and ARDS, which is also associated with EC barrier dysfunction. In vitro experiments, using trans-endothelial electric resistance (TEER) measurements and fluorescence microscopy with FITC-labeled VE-cadherin, demonstrated that ND6 disrupts the EC barrier through FPR2. Furthermore, FPR2 controls the release of ND6 out of mitochondria and cytoplasm under hypoxia reoxygenation (HR). Activated FPR2 leads to upregulation of nuclear transcription factor-kappa B (NF-κB) by inducing IκBα phosphorylation, promoting ICAM1 and VCAM1 expression, thereby compromising EC barrier integrity. Circulating pro-inflammatory and barrier-disruptive mtNFPs, particularly ND6, are associated with ARDS in patients undergoing CPB. The novel ND6-FPR2 axis regulates inflammation and EC permeability through the NF-κB pathway.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1165/rcmb.2024-0413MA
Abdul S Qadir, Sukanta Das, Swathi Nedunchezian, Kaori Masuhara, Tushar J Desai, Jalees Rehman, Preetish Kadur Murthy, Yoshikazu Tsukasaki, Lijian Shao, Asrar B Malik
Studies using human lung organoids (hLO) have focused on differentiation of lung epithelial subtypes into distal alveolar unit. A major question has been whether introducing endothelial cells (EC) and resultant vascularization alter development of hLO. We describe herein a method for vessel infiltration of hLO in which we determined differences of these hLOs with standard avascular hLOs. hLO are generated by combining hiPSC-derived lung progenitor cells (LP) with EC at different LP:EC ratios. This results in vascularization of hLO and enables comparisons with hLO generated without EC. We observe red blood-filled vessels in hLOs generated post-implantation into the kidney capsule of NOD/SCID mice. Both human and mouse EC conjoin in the capsule to form chimeric vessels in hLOs. Vessel-infiltrating hLOs show robust generation of alveolar type II epithelial cells (ATII) and alveolar type I cells (ATI), although there was no difference in the observed 1:1 ATII/ATI cell ratio. Electron microscopy revealed better-developed surfactant production apparatus in ATII of vascularized hLOs compared to avascular hLOs. We observed prominent primitive airway sacs with alveolar epithelial cells lining lumen in vascularized vs. avascular hLOs. The vessel-infiltrating hLOs also mounted a robust inflammatory response characterized by mouse PMN influx after challenging host mice with lipopolysaccharide. Thus, interaction of EC with LP generated vascularized hLOs and drive ATII and ATI differentiation and hLOs also mount a robust inflammatory response upon LPS challenge of hLO-transplanted recipient mice. Our results show usefulness of generating hLOs in studying human lung development and mechanisms underlying inflammatory lung injury.
{"title":"Physiological Modeling of the Vascularized Human Lung Organoid.","authors":"Abdul S Qadir, Sukanta Das, Swathi Nedunchezian, Kaori Masuhara, Tushar J Desai, Jalees Rehman, Preetish Kadur Murthy, Yoshikazu Tsukasaki, Lijian Shao, Asrar B Malik","doi":"10.1165/rcmb.2024-0413MA","DOIUrl":"10.1165/rcmb.2024-0413MA","url":null,"abstract":"<p><p>Studies using human lung organoids (hLO) have focused on differentiation of lung epithelial subtypes into distal alveolar unit. A major question has been whether introducing endothelial cells (EC) and resultant vascularization alter development of hLO. We describe herein a method for vessel infiltration of hLO in which we determined differences of these hLOs with standard avascular hLOs. hLO are generated by combining hiPSC-derived lung progenitor cells (LP) with EC at different LP:EC ratios. This results in vascularization of hLO and enables comparisons with hLO generated without EC. We observe red blood-filled vessels in hLOs generated post-implantation into the kidney capsule of NOD/SCID mice. Both human and mouse EC conjoin in the capsule to form chimeric vessels in hLOs. Vessel-infiltrating hLOs show robust generation of alveolar type II epithelial cells (ATII) and alveolar type I cells (ATI), although there was no difference in the observed 1:1 ATII/ATI cell ratio. Electron microscopy revealed better-developed surfactant production apparatus in ATII of vascularized hLOs compared to avascular hLOs. We observed prominent primitive airway sacs with alveolar epithelial cells lining lumen in vascularized vs. avascular hLOs. The vessel-infiltrating hLOs also mounted a robust inflammatory response characterized by mouse PMN influx after challenging host mice with lipopolysaccharide. Thus, interaction of EC with LP generated vascularized hLOs and drive ATII and ATI differentiation and hLOs also mount a robust inflammatory response upon LPS challenge of hLO-transplanted recipient mice. Our results show usefulness of generating hLOs in studying human lung development and mechanisms underlying inflammatory lung injury.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1165/rcmb.2024-0111OC
Aurélie Tréfier, Nihad Tousson-Abouelazm, Lama Yamani, Sajida Ibrahim, Kwang-Bo Joung, Adam Pietrobon, Julien Yockell-Lelievre, Terence E Hébert, Reese J Ladak, Tomoko Takano, Mark Nellist, Yoon Namkung, David Chatenet, William L Stanford, Stephane A Laporte, Arnold S Kristof
Inherited or sporadic loss of the TSC2 gene can lead to pulmonary lymphangioleiomyomatosis (LAM), a rare cystic lung disease caused by protease-secreting interstitial tumor nodules. The nodules arise by metastasis of cells that exhibit features of neural crest and smooth muscle lineage ('LAM cells'). Their aberrant growth is attributed to increased activity of 'mechanistic target of rapamycin complex 1' (mTORC1), an anabolic protein kinase that is normally suppressed by the TSC1-TSC2 protein complex. The mTORC1 inhibitor rapamycin slows the progression of LAM, but fails to eradicate disease, indicating a role for mTORC1-independent mechanisms in LAM pathogenesis. Our previous studies revealed G-protein coupled urotensin-II receptor (UT) signaling as a candidate mechanism, but how it promotes oncogenic signaling in TSC2-deficient cells remained unknown. Using a human pluripotent stem cell-derived in vitro model of LAM, we now show hyperactivation of UT, which was required for their enhanced migration and pro-neoplastic signaling in a rapamycin-insensitive mechanism that required heterotrimeric Gαq/11 (Gαq). Bioluminescence resonance energy transfer assays in HEK 293T cells lacking TSC2 demonstrated selective and enhanced activation of Gαq and its RhoA-associated effectors compared to wild-type control cells. By immunoprecipitation, recombinant UT was physically associated with Gαq and TSC2. The augmented Gαq signaling in TSC2-deleted cells was independent of mTOR activity, and associated with increased endosomal targeting of p63RhoGEF, a known RhoA-activating effector of Gαq. These studies identify potential mTORC1-independent pro-neoplastic mechanisms that can be targeted for prevention or eradication of pulmonary and extrapulmonary LAM tumors.
{"title":"Enhanced Gαq Signaling in <i>TSC2</i>-deficient Cells Is Required for Their Neoplastic Behavior.","authors":"Aurélie Tréfier, Nihad Tousson-Abouelazm, Lama Yamani, Sajida Ibrahim, Kwang-Bo Joung, Adam Pietrobon, Julien Yockell-Lelievre, Terence E Hébert, Reese J Ladak, Tomoko Takano, Mark Nellist, Yoon Namkung, David Chatenet, William L Stanford, Stephane A Laporte, Arnold S Kristof","doi":"10.1165/rcmb.2024-0111OC","DOIUrl":"10.1165/rcmb.2024-0111OC","url":null,"abstract":"<p><p>Inherited or sporadic loss of the <i>TSC2</i> gene can lead to pulmonary lymphangioleiomyomatosis (LAM), a rare cystic lung disease caused by protease-secreting interstitial tumor nodules. The nodules arise by metastasis of cells that exhibit features of neural crest and smooth muscle lineage ('LAM cells'). Their aberrant growth is attributed to increased activity of 'mechanistic target of rapamycin complex 1' (mTORC1), an anabolic protein kinase that is normally suppressed by the TSC1-TSC2 protein complex. The mTORC1 inhibitor rapamycin slows the progression of LAM, but fails to eradicate disease, indicating a role for mTORC1-independent mechanisms in LAM pathogenesis. Our previous studies revealed G-protein coupled urotensin-II receptor (UT) signaling as a candidate mechanism, but how it promotes oncogenic signaling in <i>TSC2</i>-deficient cells remained unknown. Using a human pluripotent stem cell-derived <i>in vitro</i> model of LAM, we now show hyperactivation of UT, which was required for their enhanced migration and pro-neoplastic signaling in a rapamycin-insensitive mechanism that required heterotrimeric Gαq/11 (Gαq). Bioluminescence resonance energy transfer assays in HEK 293T cells lacking <i>TSC2</i> demonstrated selective and enhanced activation of Gαq and its RhoA-associated effectors compared to wild-type control cells. By immunoprecipitation, recombinant UT was physically associated with Gαq and TSC2. The augmented Gαq signaling in <i>TSC2</i>-deleted cells was independent of mTOR activity, and associated with increased endosomal targeting of p63RhoGEF, a known RhoA-activating effector of Gαq. These studies identify potential mTORC1-independent pro-neoplastic mechanisms that can be targeted for prevention or eradication of pulmonary and extrapulmonary LAM tumors.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1165/rcmb.2024-0479ST
Mareike Lehmann, Ramaswamy Krishnan, Jennifer Sucre, Hrishikesh S Kulkarni, Ricardo H Pineda, Christopher Anderson, Nicholas E Banovich, Holger P Behrsing, Charlotte H Dean, Andrew Haak, Reinoud Gosens, Naftali Kaminski, Anna Zagorska, Cynthia Koziol-White, Jordan P Metcalf, Yong Ho Kim, Claudia Loebel, Enid Neptune, Alexandra Noel, Ganesh Raghu, Katherina Sewald, Ashish Sharma, Bela Suki, Anne Sperling, Amanda Tatler, Scott Turner, Ivan O Rosas, Pam van Ry, Timo Wille, Scott H Randell, Gloria Pryhuber, Mauricio Rojas, Jane Bourke, Melanie Königshoff
The urgent need for effective treatments for acute and chronic lung diseases underscores the significance of developing innovative preclinical human research tools. The 2023 ATS Workshop on Precision Cut Lung Slices (PCLS) brought together 35 experts to discuss and address the role of human tissue-derived PCLS as a unique tool for target and drug discovery and validation in pulmonary medicine. With increasing interest and usage, along with advancements in methods and technology, there is a growing need for consensus on PCLS methodology and readouts. The current document recommends standard reporting criteria and emphasizes the requirement for careful collection and integration of clinical metadata. We further discuss current clinically relevant readouts that can be applied to PCLS and highlight recent developments and future steps for implementing novel technologies for PCLS modeling and analysis. The collection and correlation of clinical metadata and multiomic analysis will further advent the integration of this preclinical platform into patient endotyping and the development of tailored therapies for lung disease patients.
{"title":"Precision Cut Lung Slices: Emerging Tools for Preclinical and Translational Lung Research. An Official American Thoracic Society Workshop Report.","authors":"Mareike Lehmann, Ramaswamy Krishnan, Jennifer Sucre, Hrishikesh S Kulkarni, Ricardo H Pineda, Christopher Anderson, Nicholas E Banovich, Holger P Behrsing, Charlotte H Dean, Andrew Haak, Reinoud Gosens, Naftali Kaminski, Anna Zagorska, Cynthia Koziol-White, Jordan P Metcalf, Yong Ho Kim, Claudia Loebel, Enid Neptune, Alexandra Noel, Ganesh Raghu, Katherina Sewald, Ashish Sharma, Bela Suki, Anne Sperling, Amanda Tatler, Scott Turner, Ivan O Rosas, Pam van Ry, Timo Wille, Scott H Randell, Gloria Pryhuber, Mauricio Rojas, Jane Bourke, Melanie Königshoff","doi":"10.1165/rcmb.2024-0479ST","DOIUrl":"10.1165/rcmb.2024-0479ST","url":null,"abstract":"<p><p>The urgent need for effective treatments for acute and chronic lung diseases underscores the significance of developing innovative preclinical human research tools. The 2023 ATS Workshop on Precision Cut Lung Slices (PCLS) brought together 35 experts to discuss and address the role of human tissue-derived PCLS as a unique tool for target and drug discovery and validation in pulmonary medicine. With increasing interest and usage, along with advancements in methods and technology, there is a growing need for consensus on PCLS methodology and readouts. The current document recommends standard reporting criteria and emphasizes the requirement for careful collection and integration of clinical metadata. We further discuss current clinically relevant readouts that can be applied to PCLS and highlight recent developments and future steps for implementing novel technologies for PCLS modeling and analysis. The collection and correlation of clinical metadata and multiomic analysis will further advent the integration of this preclinical platform into patient endotyping and the development of tailored therapies for lung disease patients.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707673/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1165/rcmb.2024-0040OC
Kathryn M Polkoff, Ross Lampe, Nithin K Gupta, Yanet Murphy, Jaewook Chung, Amber Carter, Jeremy M Simon, Katherine Gleason, Adele Moatti, Preetish K Murthy, Laura Edwards, Alon Greenbaum, Aleksandra Tata, Purushothama Rao Tata, Jorge A Piedrahita
Cells expressing LGR5 play a pivotal role in homeostasis, repair, and regeneration in multiple organs including skin and gastrointestinal tract, yet little is known about their role in the lung. Findings from mice, a widely used animal model, suggest that lung LGR5 expression differs from that of humans. In this work, using a new transgenic pig model, we identify two main populations of LGR5+ cells in the lung that are conserved in human, but not mouse lungs. Using RNA sequencing, 3D imaging and organoid models, we determine that in the fetal lung, epithelial LGR5 expression is transient in a subpopulation of SOX9+/ETV+/SFTPC+ progenitor lung tip cells. In contrast, epithelial LGR5 expression is absent from postnatal lung, but is reactivated in bronchioalveolar organoids derived from basal airway cells. We also describe a separate population of mesenchymal LGR5+ cells that surrounds developing and mature airways, lies adjacent to airway basal cells, and is closely associated with nerve fibers. Transcriptionally, mesenchymal LGR5+ cells include a subset of peribronchial fibroblasts (PBF) that express unique patterns of SHH, FGF, WNT and TGF-β signaling pathway genes. These results support distinct roles for LGR5+ cells in the lung and describe a physiologically relevant animal model for further studies on the function of these cells in repair and regeneration.
{"title":"Novel Porcine Model Reveals Two Distinct LGR5 Cell Types During Lung Development and Homeostasis.","authors":"Kathryn M Polkoff, Ross Lampe, Nithin K Gupta, Yanet Murphy, Jaewook Chung, Amber Carter, Jeremy M Simon, Katherine Gleason, Adele Moatti, Preetish K Murthy, Laura Edwards, Alon Greenbaum, Aleksandra Tata, Purushothama Rao Tata, Jorge A Piedrahita","doi":"10.1165/rcmb.2024-0040OC","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0040OC","url":null,"abstract":"<p><p>Cells expressing LGR5 play a pivotal role in homeostasis, repair, and regeneration in multiple organs including skin and gastrointestinal tract, yet little is known about their role in the lung. Findings from mice, a widely used animal model, suggest that lung LGR5 expression differs from that of humans. In this work, using a new transgenic pig model, we identify two main populations of LGR5<sup>+</sup> cells in the lung that are conserved in human, but not mouse lungs. Using RNA sequencing, 3D imaging and organoid models, we determine that in the fetal lung, epithelial LGR5 expression is transient in a subpopulation of SOX9<sup>+</sup>/ETV<sup>+</sup>/SFTPC<sup>+</sup> progenitor lung tip cells. In contrast, epithelial LGR5 expression is absent from postnatal lung, but is reactivated in bronchioalveolar organoids derived from basal airway cells. We also describe a separate population of mesenchymal LGR5<sup>+</sup> cells that surrounds developing and mature airways, lies adjacent to airway basal cells, and is closely associated with nerve fibers. Transcriptionally, mesenchymal LGR5<sup>+</sup> cells include a subset of peribronchial fibroblasts (PBF) that express unique patterns of <i>SHH, FGF, WNT</i> and <i>TGF-β</i> signaling pathway genes. These results support distinct roles for LGR5<sup>+</sup> cells in the lung and describe a physiologically relevant animal model for further studies on the function of these cells in repair and regeneration.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1165/rcmb.2023-0249OC
Christine L Vigeland, Jordan D Link, Henry S Beggs, Yazan Alwarawrah, Brandie M Ehrmann, Hong Dang, Claire M Doerschuk
Changes in metabolic activity are key regulators of macrophage activity. Pro-inflammatory macrophages upregulate glycolysis, which promotes an inflammatory phenotype, whereas pro-repair macrophages rely upon oxidative metabolism and glutaminolysis to support their activity. Work to understand how metabolism regulates macrophage phenotype has been done primarily in macrophage cell lines and bone marrow-derived macrophages (BMDM). Our study sought to understand changes in metabolic activity of murine tissue-resident alveolar macrophages (AM) in response to LPS stimulation and to contrast them to BMDM. These studies also determined the contribution of glutamine metabolism using the glutamine inhibitor, DON. We found that compared to BMDM, AM have higher rates of oxygen consumption and contain a higher concentration of intracellular metabolites involved in fatty acid oxidation. In response to LPS, BMDM but not AM increased rates of glycolysis. Inhibition of glutamine metabolism using DON altered the metabolic activity of AM but not BMDM. Within AM, glutamine inhibition led to increases in intracellular metabolites involved in glycolysis, the TCA cycle, fatty acid oxidation, and amino acid metabolism. Glutamine inhibition also altered the metabolic response to LPS within AM but not BMDM. Our data reveal striking differences in the metabolic activity of AM and BMDM.
新陈代谢活动的变化是巨噬细胞活动的关键调节因素。促炎症巨噬细胞上调糖酵解,从而促进炎症表型,而促修复巨噬细胞则依靠氧化代谢和谷氨酰胺酵解来支持其活动。了解新陈代谢如何调节巨噬细胞表型的工作主要是在巨噬细胞系和骨髓源性巨噬细胞(BMDM)中进行的。我们的研究试图了解小鼠组织驻留肺泡巨噬细胞(AM)的代谢活动在 LPS 刺激下的变化,并将其与 BMDM 进行对比。这些研究还使用谷氨酰胺抑制剂 DON 确定了谷氨酰胺代谢的贡献。我们发现,与 BMDM 相比,AM 的耗氧量更高,细胞内参与脂肪酸氧化的代谢物浓度更高。在对 LPS 作出反应时,BMDM 增加了糖酵解率,而 AM 却没有。使用 DON 抑制谷氨酰胺代谢会改变 AM 的代谢活动,但不会改变 BMDM 的代谢活动。在 AM 中,谷氨酰胺抑制导致细胞内参与糖酵解、TCA 循环、脂肪酸氧化和氨基酸代谢的代谢物增加。谷氨酰胺抑制还改变了 AM 而非 BMDM 对 LPS 的代谢反应。我们的数据揭示了 AM 和 BMDM 代谢活动的显著差异。
{"title":"Alveolar and Bone Marrow-derived Macrophages Differ in Metabolism and Glutamine Utilization.","authors":"Christine L Vigeland, Jordan D Link, Henry S Beggs, Yazan Alwarawrah, Brandie M Ehrmann, Hong Dang, Claire M Doerschuk","doi":"10.1165/rcmb.2023-0249OC","DOIUrl":"10.1165/rcmb.2023-0249OC","url":null,"abstract":"<p><p>Changes in metabolic activity are key regulators of macrophage activity. Pro-inflammatory macrophages upregulate glycolysis, which promotes an inflammatory phenotype, whereas pro-repair macrophages rely upon oxidative metabolism and glutaminolysis to support their activity. Work to understand how metabolism regulates macrophage phenotype has been done primarily in macrophage cell lines and bone marrow-derived macrophages (BMDM). Our study sought to understand changes in metabolic activity of murine tissue-resident alveolar macrophages (AM) in response to LPS stimulation and to contrast them to BMDM. These studies also determined the contribution of glutamine metabolism using the glutamine inhibitor, DON. We found that compared to BMDM, AM have higher rates of oxygen consumption and contain a higher concentration of intracellular metabolites involved in fatty acid oxidation. In response to LPS, BMDM but not AM increased rates of glycolysis. Inhibition of glutamine metabolism using DON altered the metabolic activity of AM but not BMDM. Within AM, glutamine inhibition led to increases in intracellular metabolites involved in glycolysis, the TCA cycle, fatty acid oxidation, and amino acid metabolism. Glutamine inhibition also altered the metabolic response to LPS within AM but not BMDM. Our data reveal striking differences in the metabolic activity of AM and BMDM.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}