首页 > 最新文献

American Journal of Respiratory Cell and Molecular Biology最新文献

英文 中文
Reviewers 2024.
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 DOI: 10.1165/rcmb.2024ReviewersList
{"title":"Reviewers 2024.","authors":"","doi":"10.1165/rcmb.2024ReviewersList","DOIUrl":"https://doi.org/10.1165/rcmb.2024ReviewersList","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":"72 3","pages":"340-342"},"PeriodicalIF":5.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sputum Metabolomic Signature and Dynamic Change of Cough Variant Asthma. 咳嗽变异性哮喘的痰代谢组特征和动态变化
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 DOI: 10.1165/rcmb.2024-0219OC
Zhe Chen, Kehan Jin, Kangping Huang, Zhiyin Chen, Hankun Lu, Mingtong Lin, Li Long, Jiaxing Xie, Mengzhao Wang, Kefang Lai, Yuxi Wei, Fang Yi

Cough variant asthma (CVA), a common reason for chronic cough, is a globally prevalent and burdensome condition. The heterogeneity of CVA and a lack of knowledge concerning the exact molecular pathogenesis has hampered its clinical management. This study presents the first sputum metabolome of patients with CVA, revealing the dynamic change during treatment and exploring biomarkers related to the occurrence and treatment response of CVA. We found that arginine biosynthesis, purine metabolism, and pyrimidine metabolism pathways were enriched in CVA compared with healthy controls. Part of the metabolic disturbances could be reversed by antiasthmatic medication. The levels of dipeptides/tripeptides (alanyl tyrosine, Gly-Tyr-Ala, Ala-Leu, and Thr-Leu) were significantly associated with sputum neutrophil or eosinophil percentages in patients with CVA. Differential metabolites before treatment between effective and ineffective treatment groups were enriched in purine metabolism, thiamine metabolism, and arginine metabolism. 2-Isopropylmalate was downregulated in CVA and increased after treatment, and the effective treatment group had a lower 2-isopropylmalate level before treatment. Random forest and logistic regression models identified glutathione, thiamine phosphate, alanyl tyrosine, and 2'-deoxyadenosine as markers for distinguishing CVA from healthy controls (all areas under the curve >0.8). Thiamine phosphate might also be promising for predicting therapy responsiveness (area under the curve, 0.684). These findings imply that disturbed mitochondrial energy metabolism and imbalanced oxidation-reduction homeostasis probably underlay the metabolic pathogenesis of CVA.

咳嗽变异性哮喘(CVA)是慢性咳嗽的常见病因,是一种全球流行且负担沉重的疾病。咳嗽变异性哮喘的异质性和对确切分子发病机制的缺乏了解阻碍了其临床治疗。本研究首次提出了 CVA 患者的痰代谢组,揭示了其在治疗过程中的动态变化,并探索了与 CVA 的发生和治疗反应相关的生物标志物。我们发现,与健康对照组相比,CVA 患者的精氨酸生物合成、嘌呤代谢和嘧啶代谢途径更为丰富。抗哮喘药物可逆转部分代谢紊乱。二肽/三肽(丙氨酰酪氨酸、Gly-Tyr-Ala、Ala-Leu 和 Thr-Leu)的水平与 CVA 患者的痰 Neu% 或 Eos% 显著相关。有效组和无效组治疗前的代谢物差异富含嘌呤代谢、硫胺素代谢和精氨酸代谢。2-isopropylmalate 在 CVA 患者中下调,在治疗后升高,有效组在治疗前的 2-isopropylmalate 水平较低。随机森林和逻辑回归模型确定谷胱甘肽、磷酸硫胺素、丙氨酰酪氨酸和 2'- 脱氧腺苷是区分 CVA 和健康对照组的标志物(所有 AUC 均大于 0.8)。磷酸硫胺素也有望预测治疗反应性(AUC = 0.684)。这些研究结果表明,线粒体能量代谢紊乱和氧化还原平衡失调可能是 CVA 代谢发病机制的基础。
{"title":"Sputum Metabolomic Signature and Dynamic Change of Cough Variant Asthma.","authors":"Zhe Chen, Kehan Jin, Kangping Huang, Zhiyin Chen, Hankun Lu, Mingtong Lin, Li Long, Jiaxing Xie, Mengzhao Wang, Kefang Lai, Yuxi Wei, Fang Yi","doi":"10.1165/rcmb.2024-0219OC","DOIUrl":"10.1165/rcmb.2024-0219OC","url":null,"abstract":"<p><p>Cough variant asthma (CVA), a common reason for chronic cough, is a globally prevalent and burdensome condition. The heterogeneity of CVA and a lack of knowledge concerning the exact molecular pathogenesis has hampered its clinical management. This study presents the first sputum metabolome of patients with CVA, revealing the dynamic change during treatment and exploring biomarkers related to the occurrence and treatment response of CVA. We found that arginine biosynthesis, purine metabolism, and pyrimidine metabolism pathways were enriched in CVA compared with healthy controls. Part of the metabolic disturbances could be reversed by antiasthmatic medication. The levels of dipeptides/tripeptides (alanyl tyrosine, Gly-Tyr-Ala, Ala-Leu, and Thr-Leu) were significantly associated with sputum neutrophil or eosinophil percentages in patients with CVA. Differential metabolites before treatment between effective and ineffective treatment groups were enriched in purine metabolism, thiamine metabolism, and arginine metabolism. 2-Isopropylmalate was downregulated in CVA and increased after treatment, and the effective treatment group had a lower 2-isopropylmalate level before treatment. Random forest and logistic regression models identified glutathione, thiamine phosphate, alanyl tyrosine, and 2'-deoxyadenosine as markers for distinguishing CVA from healthy controls (all areas under the curve >0.8). Thiamine phosphate might also be promising for predicting therapy responsiveness (area under the curve, 0.684). These findings imply that disturbed mitochondrial energy metabolism and imbalanced oxidation-reduction homeostasis probably underlay the metabolic pathogenesis of CVA.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":"285-296"},"PeriodicalIF":5.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Heterogeneity, Parallels, and Divergence of Alveolar Macrophages in Humans and Mice. 人类和小鼠肺泡巨噬细胞的异质性、平行性和分歧性
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 DOI: 10.1165/rcmb.2024-0315LE
Xin Li, Claudia V Jakubzick
{"title":"The Heterogeneity, Parallels, and Divergence of Alveolar Macrophages in Humans and Mice.","authors":"Xin Li, Claudia V Jakubzick","doi":"10.1165/rcmb.2024-0315LE","DOIUrl":"10.1165/rcmb.2024-0315LE","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":"335-337"},"PeriodicalIF":5.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinct Responses of Cystic Fibrosis Epithelial Cells to SARS-CoV-2 and Influenza A Virus. 囊性纤维化上皮细胞对 SARS-CoV-2 和甲型流感病毒的不同反应
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 DOI: 10.1165/rcmb.2024-0213OC
Isabel Pagani, Arianna Venturini, Valeria Capurro, Alessandro Nonis, Silvia Ghezzi, Mariateresa Lena, Beatriz Alcalá-Franco, Fabrizio Gianferro, Daniela Guidone, Carla Colombo, Nicoletta Pedemonte, Alessandra Bragonzi, Cristina Cigana, Luis J V Galietta, Elisa Vicenzi

The coronavirus disease (COVID-19) pandemic has underscored the impact of viral infections on individuals with cystic fibrosis (CF). Initial observations suggested lower COVID-19 rates among CF populations; however, subsequent clinical data have presented a more complex scenario. This study aimed to investigate how bronchial epithelial cells from individuals with and without CF, including various CFTR (CF transmembrane conductance regulator) mutations, respond to in vitro infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and SARS-CoV. Comparisons with the influenza A virus (IAV) were included based on evidence that patients with CF experience heightened morbidity from IAV infection. Our findings showed that CF epithelial cells exhibited reduced replication of SARS-CoV-2, regardless of the type of CFTR mutation or SARS-CoV-2 variant, as well as the original 2003 SARS-CoV. In contrast, these cells displayed more efficient IAV replication than non-CF cells. Interestingly, the reduced susceptibility to SARS-CoV-2 in CF was not linked to the expression of ACE2 (angiotensin-converting enzyme 2) receptor or to CFTR dysfunction, as pharmacological treatments to restore CFTR function did not normalize the viral response. Both SARS-CoV-2 infection and CFTR function influenced the concentrations of certain cytokines and chemokines, although these effects were not correlated. Overall, this study reveals a unique viral response in CF epithelial cells, characterized by reduced replication for some viruses like SARS-CoV-2, while showing increased susceptibility to others, such as IAV. This research offers a new perspective on CF and viral interactions, emphasizing the need for further investigation into the mechanisms underlying these differences.

COVID-19 大流行凸显了病毒感染对囊性纤维化(CF)患者的影响。最初的观察结果表明,CF人群的COVID-19感染率较低;然而,随后的临床数据表明情况更为复杂。本研究旨在调查囊性纤维化患者和非囊性纤维化患者的支气管上皮细胞(包括各种囊性纤维化跨膜传导调节器(CFTR)突变)对体外感染 SARS-CoV-2 变体和 SARS-CoV 的反应。我们将其与甲型流感病毒(IAV)进行了比较,因为有证据表明,CF 患者感染 IAV 后发病率会升高。我们的研究结果表明,无论 CFTR 突变类型或 SARS-CoV-2 变体,以及 2003 年 SARS-Cove 原型,CF 上皮细胞对 SARS-CoV-2 的复制都有所减少。相反,与非 CF 细胞相比,这些细胞的 IAV 复制效率更高。有趣的是,CF 细胞对 SARS-CoV-2 的易感性降低与血管紧张素转换酶 2(ACE2)受体的表达或 CFTR 功能障碍无关,因为恢复 CFTR 功能的药物治疗并不能使病毒反应正常化。SARS-CoV-2 感染和 CFTR 功能都会影响某些细胞因子和趋化因子的水平,尽管这些影响并不相关。总之,这项研究揭示了 CF 上皮细胞对病毒的独特反应,其特点是对 SARS-CoV-2 等病毒的复制减少,而对 IAV 等其他病毒的易感性增加。这项研究为研究 CF 与病毒的相互作用提供了一个新的视角,强调了进一步研究这些差异背后机制的必要性。本文根据知识共享署名非商业性无衍生品许可 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/) 条款公开发表。
{"title":"Distinct Responses of Cystic Fibrosis Epithelial Cells to SARS-CoV-2 and Influenza A Virus.","authors":"Isabel Pagani, Arianna Venturini, Valeria Capurro, Alessandro Nonis, Silvia Ghezzi, Mariateresa Lena, Beatriz Alcalá-Franco, Fabrizio Gianferro, Daniela Guidone, Carla Colombo, Nicoletta Pedemonte, Alessandra Bragonzi, Cristina Cigana, Luis J V Galietta, Elisa Vicenzi","doi":"10.1165/rcmb.2024-0213OC","DOIUrl":"10.1165/rcmb.2024-0213OC","url":null,"abstract":"<p><p>The coronavirus disease (COVID-19) pandemic has underscored the impact of viral infections on individuals with cystic fibrosis (CF). Initial observations suggested lower COVID-19 rates among CF populations; however, subsequent clinical data have presented a more complex scenario. This study aimed to investigate how bronchial epithelial cells from individuals with and without CF, including various <i>CFTR</i> (CF transmembrane conductance regulator) mutations, respond to <i>in vitro</i> infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and SARS-CoV. Comparisons with the influenza A virus (IAV) were included based on evidence that patients with CF experience heightened morbidity from IAV infection. Our findings showed that CF epithelial cells exhibited reduced replication of SARS-CoV-2, regardless of the type of <i>CFTR</i> mutation or SARS-CoV-2 variant, as well as the original 2003 SARS-CoV. In contrast, these cells displayed more efficient IAV replication than non-CF cells. Interestingly, the reduced susceptibility to SARS-CoV-2 in CF was not linked to the expression of ACE2 (angiotensin-converting enzyme 2) receptor or to CFTR dysfunction, as pharmacological treatments to restore CFTR function did not normalize the viral response. Both SARS-CoV-2 infection and CFTR function influenced the concentrations of certain cytokines and chemokines, although these effects were not correlated. Overall, this study reveals a unique viral response in CF epithelial cells, characterized by reduced replication for some viruses like SARS-CoV-2, while showing increased susceptibility to others, such as IAV. This research offers a new perspective on CF and viral interactions, emphasizing the need for further investigation into the mechanisms underlying these differences.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":"308-319"},"PeriodicalIF":5.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The RNA-Binding Protein Tristetraprolin Contributes to CFTR mRNA Stability in Cystic Fibrosis. RNA 结合蛋白 Tristetraprolin 有助于囊性纤维化中 CFTR mRNA 的稳定。
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 DOI: 10.1165/rcmb.2023-0209OC
Alexandra Pommier, Solenne Bleuse, Karine Deletang, Jessica Varilh, Marion Nadaud, Prisca Boisguerin, Arnaud Bourdin, Magali Taulan-Cadars

Cystic fibrosis (CF) is the most common inherited disorder and is characterized by an inflammatory phenotype. We found that in bronchial epithelium reconstituted form lung tissue biopsies from patients with CF, the RNA-binding protein tristetraprolin (TTP), a key regulator of inflammation, is dysregulated in cells that strongly express cytokines and ILs. TTP activity is regulated by extensive posttranslational modifications, particularly phosphorylation. We found that, in addition to mRNA downregulation, phosphorylated TTP (which cannot bind to mRNA) accumulated in CF cultures, suggesting that the imbalance in TTP phosphorylation status could contribute to the inflammatory phenotype in CF. We confirmed TTP's destabilizing role on IL8 mRNA through its 3' UTR sequence in CF cells. We next demonstrated that TTP phosphorylation is mainly regulated by MK2 through the activation of ERK, which also was hyperphosphorylated. TTP is considered a mRNA decay factor with some exception, and we present a new positive role of TTP in CF cultures. We determined that TTP binds to specific adenylate-uridylate-rich element motifs on the 3' UTR of mRNA sequences and also, for the first time to our knowledge, to the 3' UTR of the cystic fibrosis transmembrane conductance regulator (CFTR), where TTP binding stabilizes the mRNA level. This study identified new partners that can be targeted in CF and proposes a new way to control CFTR gene expression.

囊性纤维化(CF)是最常见的遗传性疾病,以炎症表型为特征。在这里,我们发现,在以 CF 患者肺组织活检物为形式重组的支气管上皮细胞中,RNA 结合蛋白 tristetraprolin(TTP)是炎症的一个关键调节因子,它在强烈表达细胞因子和白介素的细胞中失调。TTP 的活性受大量翻译后修饰(尤其是磷酸化)的调控。我们发现,除了 mRNA 下调外,磷酸化的 TTP(不能与 mRNA 结合)也在 CF 培养物中积累,这表明 TTP 磷酸化状态的失衡可能导致 CF 的炎症表型。我们通过TTP在CF细胞中的3'UTR序列证实了TTP对IL8 mRNA的不稳定作用。接下来,我们证明了 TTP 磷酸化主要是由 MK2 通过激活 ERK 来调控的,而 ERK 也被过度磷酸化。TTP被认为是一种mRNA衰变因子,但也有例外,我们提出了TTP在CF培养物中的新的积极作用。我们确定 TTP 与 mRNA 序列 3'UTR 上的特定 ARE 矩阵结合,还首次与囊性纤维化跨膜传导调节器(CFTR)的 3'UTR 结合,在该处 TTP 结合可稳定 mRNA 水平。这项研究发现了可作为 CF 靶点的新伙伴,并提出了一种控制 CFTR 基因表达的新方法。
{"title":"The RNA-Binding Protein Tristetraprolin Contributes to <i>CFTR</i> mRNA Stability in Cystic Fibrosis.","authors":"Alexandra Pommier, Solenne Bleuse, Karine Deletang, Jessica Varilh, Marion Nadaud, Prisca Boisguerin, Arnaud Bourdin, Magali Taulan-Cadars","doi":"10.1165/rcmb.2023-0209OC","DOIUrl":"10.1165/rcmb.2023-0209OC","url":null,"abstract":"<p><p>Cystic fibrosis (CF) is the most common inherited disorder and is characterized by an inflammatory phenotype. We found that in bronchial epithelium reconstituted form lung tissue biopsies from patients with CF, the RNA-binding protein tristetraprolin (TTP), a key regulator of inflammation, is dysregulated in cells that strongly express cytokines and ILs. TTP activity is regulated by extensive posttranslational modifications, particularly phosphorylation. We found that, in addition to mRNA downregulation, phosphorylated TTP (which cannot bind to mRNA) accumulated in CF cultures, suggesting that the imbalance in TTP phosphorylation status could contribute to the inflammatory phenotype in CF. We confirmed TTP's destabilizing role on <i>IL8</i> mRNA through its 3' UTR sequence in CF cells. We next demonstrated that TTP phosphorylation is mainly regulated by MK2 through the activation of ERK, which also was hyperphosphorylated. TTP is considered a mRNA decay factor with some exception, and we present a new positive role of TTP in CF cultures. We determined that TTP binds to specific adenylate-uridylate-rich element motifs on the 3' UTR of mRNA sequences and also, for the first time to our knowledge, to the 3' UTR of the cystic fibrosis transmembrane conductance regulator (<i>CFTR</i>), where TTP binding stabilizes the mRNA level. This study identified new partners that can be targeted in CF and proposes a new way to control <i>CFTR</i> gene expression.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":"320-331"},"PeriodicalIF":5.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cough-Variant Asthma: The Asthma Phenotype No One Coughs About. 咳嗽变异型哮喘:无人问津的哮喘表型。
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 DOI: 10.1165/rcmb.2024-0517ED
Elizabeth Corteselli, Neil Alexis
{"title":"Cough-Variant Asthma: The Asthma Phenotype No One Coughs About.","authors":"Elizabeth Corteselli, Neil Alexis","doi":"10.1165/rcmb.2024-0517ED","DOIUrl":"10.1165/rcmb.2024-0517ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":"231-232"},"PeriodicalIF":5.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
No Pain, No Gain (and No Cough)? Discrete Brainstem Nuclei Coordinate Reflexive Cough and Pain Responses. 没有痛苦就没有收获(也没有咳嗽)?离散脑干核协调反射性咳嗽和疼痛反应
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-01 DOI: 10.1165/rcmb.2024-0432ED
Ubaldo De La Torre, Matthew G Drake
{"title":"No Pain, No Gain (and No Cough)? Discrete Brainstem Nuclei Coordinate Reflexive Cough and Pain Responses.","authors":"Ubaldo De La Torre, Matthew G Drake","doi":"10.1165/rcmb.2024-0432ED","DOIUrl":"10.1165/rcmb.2024-0432ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":"229-230"},"PeriodicalIF":5.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elevated Senescence Markers in Developing Trisomy 21 Human Lungs.
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-28 DOI: 10.1165/rcmb.2024-0361OC
Randa Belgacemi, Caroline Cherry, Michael Thompson, Maunick Koloko Ngassie, Anika Rehan, Imad El Alam, Claude Jourdan Le Saux, Ian Glass, Rodney D Britt, Y S Prakash, Christina Pabelick, Soula Danopoulos, Denise Al Alam

Human chromosomal anomalies, notably trisomies, disrupt gene expression, leading to diverse cellular and organ phenotypes. Increased cellular senescence (SEN) and oxidative stress in trisomies have gained recent attention. We assessed SEN, senescence-associated secretory phenotype (SASP) and oxidative stress on trisomy 13, 18, and 21 (T13, T18, T21) human fetal lung tissues and isolated primary human fetal lung fibroblasts. Telomerase associated foci (TAF) staining showed DNA damage primarily within T21 and T18 lungs. These results were confirmed by RT-qPCR showing an increase of the SEN marker CDKN2B and SASP markers IL-6 and CXCL8. In contrast, lung tissues from T13 showed an upregulation of CDKN2A, while no significant changes in SASP marker genes were observed. γ-H2AX was upregulated in each genotype, particularly in T21. Isolated fibroblasts demonstrated a strong association between T21 and several SEN markers. An increase of γ-H2AX positive cells were observed in fibroblasts from T21, T18 and T13, but only T21 exhibited an elevation in P21 expression. Solely T21 fibroblasts displayed a significant increase in reactive oxygen species (ROS) levels, as indicated by MitoSOX and CellROX. This study provides the first evidence of a link between SEN and trisomy anomalies during prenatal human lung development, particularly in T21.

{"title":"Elevated Senescence Markers in Developing Trisomy 21 Human Lungs.","authors":"Randa Belgacemi, Caroline Cherry, Michael Thompson, Maunick Koloko Ngassie, Anika Rehan, Imad El Alam, Claude Jourdan Le Saux, Ian Glass, Rodney D Britt, Y S Prakash, Christina Pabelick, Soula Danopoulos, Denise Al Alam","doi":"10.1165/rcmb.2024-0361OC","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0361OC","url":null,"abstract":"<p><p>Human chromosomal anomalies, notably trisomies, disrupt gene expression, leading to diverse cellular and organ phenotypes. Increased cellular senescence (SEN) and oxidative stress in trisomies have gained recent attention. We assessed SEN, senescence-associated secretory phenotype (SASP) and oxidative stress on trisomy 13, 18, and 21 (T13, T18, T21) human fetal lung tissues and isolated primary human fetal lung fibroblasts. Telomerase associated foci (TAF) staining showed DNA damage primarily within T21 and T18 lungs. These results were confirmed by RT-qPCR showing an increase of the SEN marker <i>CDKN2B</i> and SASP markers <i>IL-6</i> and <i>CXCL8</i>. In contrast, lung tissues from T13 showed an upregulation of <i>CDKN2A</i>, while no significant changes in SASP marker genes were observed. γ-H2AX was upregulated in each genotype, particularly in T21. Isolated fibroblasts demonstrated a strong association between T21 and several SEN markers. An increase of γ-H2AX positive cells were observed in fibroblasts from T21, T18 and T13, but only T21 exhibited an elevation in P21 expression. Solely T21 fibroblasts displayed a significant increase in reactive oxygen species (ROS) levels, as indicated by MitoSOX and CellROX. This study provides the first evidence of a link between SEN and trisomy anomalies during prenatal human lung development, particularly in T21.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143527807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GP IIb/IIIa-ICAM-1 Mediated Platelet-Endothelial Adhesion Exacerbates Pulmonary Hypertension.
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-28 DOI: 10.1165/rcmb.2024-0438OC
Lingdan Chen, Qianwen Bai, Ruidi Tang, Chunxian Cen, Qiao Luo, Heying Li, Wenju Lu, Chunli Liu, Shangwei Ding, Jian Wang, Cheng Hong, Tao Wang

Pulmonary hypertension (PH) patients typically present with a diminished platelet count, but the role of platelets in the development and progression of PH remains unclear. Our research has uncovered that within animal models of PH, platelet depletion or transfusion of platelets from healthy donors reduced pulmonary vascular thickening. In contrast, the transfusion of platelets from PH-affected subjects into healthy animals led to an augmentation of pulmonary vascular thickening. Transcriptomic analysis revealed that platelets from PH patients exhibited an upregulation of genes associated with cellular adhesion, platelet activation, and adhesion. Notably, the hub genes, glycoprotein IIb/IIIa (GP IIb/IIIa), were implicated in mediating platelet-endothelium adhesion through their interaction with intercellular adhesion molecule-1 (ICAM-1) on pulmonary arterial endothelial cells, triggering platelet activation and the subsequent release of platelet-derived growth factor BB (PDGF-BB). This release increased the proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs). The pharmacological targeting of ICAM-1 has been shown to mitigate PH in a murine model under hypoxic conditions; however, this ameliorative effect was not observed in thrombocytopenic mice under analogous conditions. In summary, the adhesion of platelets to the endothelium, facilitated by GP IIb/IIIa and ICAM-1, exacerbates PH by intensifying the thickening of the pulmonary vascular wall through platelet activation and PDGF-BB secretion.

{"title":"GP IIb/IIIa-ICAM-1 Mediated Platelet-Endothelial Adhesion Exacerbates Pulmonary Hypertension.","authors":"Lingdan Chen, Qianwen Bai, Ruidi Tang, Chunxian Cen, Qiao Luo, Heying Li, Wenju Lu, Chunli Liu, Shangwei Ding, Jian Wang, Cheng Hong, Tao Wang","doi":"10.1165/rcmb.2024-0438OC","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0438OC","url":null,"abstract":"<p><p>Pulmonary hypertension (PH) patients typically present with a diminished platelet count, but the role of platelets in the development and progression of PH remains unclear. Our research has uncovered that within animal models of PH, platelet depletion or transfusion of platelets from healthy donors reduced pulmonary vascular thickening. In contrast, the transfusion of platelets from PH-affected subjects into healthy animals led to an augmentation of pulmonary vascular thickening. Transcriptomic analysis revealed that platelets from PH patients exhibited an upregulation of genes associated with cellular adhesion, platelet activation, and adhesion. Notably, the hub genes, glycoprotein IIb/IIIa (GP IIb/IIIa), were implicated in mediating platelet-endothelium adhesion through their interaction with intercellular adhesion molecule-1 (ICAM-1) on pulmonary arterial endothelial cells, triggering platelet activation and the subsequent release of platelet-derived growth factor BB (PDGF-BB). This release increased the proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs). The pharmacological targeting of ICAM-1 has been shown to mitigate PH in a murine model under hypoxic conditions; however, this ameliorative effect was not observed in thrombocytopenic mice under analogous conditions. In summary, the adhesion of platelets to the endothelium, facilitated by GP IIb/IIIa and ICAM-1, exacerbates PH by intensifying the thickening of the pulmonary vascular wall through platelet activation and PDGF-BB secretion.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143527810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stub1 Acetylation by CBP/p300 Attenuates Chronic Hypoxic-driven Pulmonary Hypertension by Suppressing HIF-2α.
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-28 DOI: 10.1165/rcmb.2024-0353OC
Amanda Czerwinski, Paul Sidlowski, Emily Mooers, Yong Liu, Ru-Jeng Teng, Kirkwood Pritchard, Xigang Jing, Suresh Kumar, Amy Y Pan, Pengyuan Liu, Girija G Konduri, Adeleye Afolayan

Hypoxia-inducible factors (HIF-1/2) are fundamental to the development of pulmonary hypertension (PH). Prolonged hypoxia can trigger the shift from HIF-1 to HIF-2 activity, which is critical in PH progression. Ubiquitin ligases regulate HIF activity through protein degradation. However, little is known about if or how these ligases control the HIF-1/2 switch associated with PH progression. We demonstrate that STIP1 homology and U-box containing protein1 (Stub1), an E3 ubiquitin ligase, influences HIF response to hypoxia by suppressing HIF-2 and enhancing HIF-1 mRNA, protein stability, and activity. Stub1 transgenic mice exposed to prolonged hypoxia exhibited significant decreases in pulmonary vessel and right ventricular remodeling, resulting from a failure of chronic hypoxia to trigger the transition from HIF-1α to HIF-2α and activate HIF-2α. Specifically, acute hypoxia-induced the acetylation of Stub1 at lysine-287, promoting its translocation into the nucleus and selectively suppressing HIF-2 activity. Despite the deceased total Stub1 expression, the marginal increase in Stub1K287Ac levels was sufficient for suppressing chronic hypoxia-induced HIF-2 activity in Stub1 transgenic mice. Our findings established that Stub1 acetylation regulates the putative HIF-1/2α switch driving PH progression in hypoxic and pseudohypoxic conditions.

{"title":"Stub1 Acetylation by CBP/p300 Attenuates Chronic Hypoxic-driven Pulmonary Hypertension by Suppressing HIF-2α.","authors":"Amanda Czerwinski, Paul Sidlowski, Emily Mooers, Yong Liu, Ru-Jeng Teng, Kirkwood Pritchard, Xigang Jing, Suresh Kumar, Amy Y Pan, Pengyuan Liu, Girija G Konduri, Adeleye Afolayan","doi":"10.1165/rcmb.2024-0353OC","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0353OC","url":null,"abstract":"<p><p>Hypoxia-inducible factors (HIF-1/2) are fundamental to the development of pulmonary hypertension (PH). Prolonged hypoxia can trigger the shift from HIF-1 to HIF-2 activity, which is critical in PH progression. Ubiquitin ligases regulate HIF activity through protein degradation. However, little is known about if or how these ligases control the HIF-1/2 switch associated with PH progression. We demonstrate that STIP1 homology and U-box containing protein1 (Stub1), an E3 ubiquitin ligase, influences HIF response to hypoxia by suppressing HIF-2 and enhancing HIF-1 mRNA, protein stability, and activity. Stub1 transgenic mice exposed to prolonged hypoxia exhibited significant decreases in pulmonary vessel and right ventricular remodeling, resulting from a failure of chronic hypoxia to trigger the transition from HIF-1α to HIF-2α and activate HIF-2α. Specifically, acute hypoxia-induced the acetylation of Stub1 at lysine-287, promoting its translocation into the nucleus and selectively suppressing HIF-2 activity. Despite the deceased total Stub1 expression, the marginal increase in Stub1<sup>K287Ac</sup> levels was sufficient for suppressing chronic hypoxia-induced HIF-2 activity in Stub1 transgenic mice. Our findings established that Stub1 acetylation regulates the putative HIF-1/2α switch driving PH progression in hypoxic and pseudohypoxic conditions.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143527814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American Journal of Respiratory Cell and Molecular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1