Pub Date : 2025-10-02Epub Date: 2025-09-17DOI: 10.1016/j.ajhg.2025.08.020
Marcy E Richardson, Megan F H Bishop, Megan A Holdren, Miguel de la Hoya, Amanda B Spurdle, Sean V Tavtigian, Terra Brannan, Colin C Young, Lauren Zec, Susan Hiraki, Clare Turnbull, Marc Tischkowitz, Kara A Bernstein, Jean-Yves Masson, Shannon M McNulty, Tina Pesaran, Alvaro N Monteiro, Logan C Walker, William D Foulkes, Fergus J Couch
Interpretation of genetic variants is most accurate when gene- and disease-specific considerations are considered. The 2015 ACMG/AMP guidelines form the basis for the application of variant interpretation criteria for Mendelian disorders. The Hereditary Breast, Ovarian, and Pancreatic Cancer Variant Curation Expert Panel (HBOP VCEP) has undertaken the process for creating gene- and disease-specific specifications for the interpretation of PALB2 germline sequence variants. The HBOP VCEP is comprised of experts in the fields of clinical and molecular genetics, epidemiology, functional assays, and variant interpretation. The group met regularly to consider each of the codes from the 2015 ACMG/AMP guidelines to determine their relevance for PALB2. After criteria were created using database analysis, literature review, and expert opinion, they were vetted against a diverse set of pilot variants and ultimately finalized. The HBOP VCEP advised against using 13 codes, limited the use of six codes, and tailored nine codes to create the final PALB2 variant interpretation guidelines. Among the 39 pilot variants, 37 were in ClinVar, and using the new specifications concordant classifications resulted for 31 of the variants (84%). Of the 14 variants of uncertain significance/conflicting variants in ClinVar, four were classified by the VCEP, likely due to code combination modifications and refined population frequency cutoffs. The PALB2-specific guidelines put forward by the HBOP VCEP represent a conservative approach to classifying variants in PALB2 and lead to improved classifications relative to current ClinVar entries. Adoption of these specifications will help to harmonize classifications deposited in the public domain.
{"title":"Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline PALB2 sequence variants.","authors":"Marcy E Richardson, Megan F H Bishop, Megan A Holdren, Miguel de la Hoya, Amanda B Spurdle, Sean V Tavtigian, Terra Brannan, Colin C Young, Lauren Zec, Susan Hiraki, Clare Turnbull, Marc Tischkowitz, Kara A Bernstein, Jean-Yves Masson, Shannon M McNulty, Tina Pesaran, Alvaro N Monteiro, Logan C Walker, William D Foulkes, Fergus J Couch","doi":"10.1016/j.ajhg.2025.08.020","DOIUrl":"10.1016/j.ajhg.2025.08.020","url":null,"abstract":"<p><p>Interpretation of genetic variants is most accurate when gene- and disease-specific considerations are considered. The 2015 ACMG/AMP guidelines form the basis for the application of variant interpretation criteria for Mendelian disorders. The Hereditary Breast, Ovarian, and Pancreatic Cancer Variant Curation Expert Panel (HBOP VCEP) has undertaken the process for creating gene- and disease-specific specifications for the interpretation of PALB2 germline sequence variants. The HBOP VCEP is comprised of experts in the fields of clinical and molecular genetics, epidemiology, functional assays, and variant interpretation. The group met regularly to consider each of the codes from the 2015 ACMG/AMP guidelines to determine their relevance for PALB2. After criteria were created using database analysis, literature review, and expert opinion, they were vetted against a diverse set of pilot variants and ultimately finalized. The HBOP VCEP advised against using 13 codes, limited the use of six codes, and tailored nine codes to create the final PALB2 variant interpretation guidelines. Among the 39 pilot variants, 37 were in ClinVar, and using the new specifications concordant classifications resulted for 31 of the variants (84%). Of the 14 variants of uncertain significance/conflicting variants in ClinVar, four were classified by the VCEP, likely due to code combination modifications and refined population frequency cutoffs. The PALB2-specific guidelines put forward by the HBOP VCEP represent a conservative approach to classifying variants in PALB2 and lead to improved classifications relative to current ClinVar entries. Adoption of these specifications will help to harmonize classifications deposited in the public domain.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"2266-2280"},"PeriodicalIF":8.1,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12520758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145084590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-02Epub Date: 2025-09-02DOI: 10.1016/j.ajhg.2025.08.006
Julie-Alexia Dias, Tony Chen, Hua Xing, Xiaoyu Wang, Alex A Rodriguez, Ravi K Madduri, Peter Kraft, Haoyu Zhang
The increasing availability of diverse biobanks has enabled multi-ancestry genome-wide association studies (GWASs) to enhance the discovery of genetic variants across traits and diseases. However, the choice of an optimal method remains debated, due to challenges in statistical power differences across ancestral groups and approaches to account for population structure. Two primary strategies exist: (1) pooled analysis, which combines individuals from all genetic backgrounds into a single dataset while adjusting for population stratification using principal components, increasing the sample size and statistical power but requiring careful control of population stratification; and (2) meta-analysis, which performs ancestry-group-specific GWASs and subsequently combines summary statistics, potentially capturing fine-scale population structure but facing limitations in handling admixed individuals. Using large-scale simulations with varying sample sizes and ancestry compositions, we compare these methods alongside real data analyses of eight continuous and five binary traits from the UK Biobank (N ≈ 324,000) and the All of Us Research Program (N ≈ 207,000). Our results demonstrate that pooled analysis generally exhibits better statistical power while effectively adjusting for population stratification. We further present a theoretical framework linking power differences to allele-frequency variations across populations. These findings, validated across both biobanks, highlight pooled analysis as a powerful and scalable strategy for multi-ancestry GWASs, improving genetic discovery while maintaining rigorous population structure control.
越来越多的生物库的可用性使得多祖先全基因组关联研究(GWASs)能够加强对性状和疾病遗传变异的发现。然而,由于不同祖先群体之间的统计能力差异和考虑人口结构的方法存在挑战,对最佳方法的选择仍然存在争议。存在两种主要策略:(1)混合分析,将所有遗传背景的个体合并为一个数据集,同时使用主成分调整种群分层,增加样本量和统计能力,但需要仔细控制种群分层;(2)荟萃分析(meta-analysis),执行特定于祖先群体的GWASs,随后结合汇总统计,可能捕获精细尺度的种群结构,但在处理混合个体方面存在局限性。利用不同样本量和祖先组成的大规模模拟,我们将这些方法与来自UK Biobank (N≈324,000)和All of Us Research Program (N≈207,000)的8个连续特征和5个二元特征的真实数据分析进行了比较。我们的研究结果表明,在有效调整人口分层的同时,合并分析总体上显示出更好的统计能力。我们进一步提出了一个理论框架,将权力差异与人群中等位基因频率的变化联系起来。这些发现在两个生物库中得到了验证,强调了集合分析作为多祖先GWASs的强大且可扩展的策略,可以在保持严格的种群结构控制的同时改善遗传发现。
{"title":"Evaluating multi-ancestry genome-wide association methods: Statistical power, population structure, and practical implications.","authors":"Julie-Alexia Dias, Tony Chen, Hua Xing, Xiaoyu Wang, Alex A Rodriguez, Ravi K Madduri, Peter Kraft, Haoyu Zhang","doi":"10.1016/j.ajhg.2025.08.006","DOIUrl":"10.1016/j.ajhg.2025.08.006","url":null,"abstract":"<p><p>The increasing availability of diverse biobanks has enabled multi-ancestry genome-wide association studies (GWASs) to enhance the discovery of genetic variants across traits and diseases. However, the choice of an optimal method remains debated, due to challenges in statistical power differences across ancestral groups and approaches to account for population structure. Two primary strategies exist: (1) pooled analysis, which combines individuals from all genetic backgrounds into a single dataset while adjusting for population stratification using principal components, increasing the sample size and statistical power but requiring careful control of population stratification; and (2) meta-analysis, which performs ancestry-group-specific GWASs and subsequently combines summary statistics, potentially capturing fine-scale population structure but facing limitations in handling admixed individuals. Using large-scale simulations with varying sample sizes and ancestry compositions, we compare these methods alongside real data analyses of eight continuous and five binary traits from the UK Biobank (N ≈ 324,000) and the All of Us Research Program (N ≈ 207,000). Our results demonstrate that pooled analysis generally exhibits better statistical power while effectively adjusting for population stratification. We further present a theoretical framework linking power differences to allele-frequency variations across populations. These findings, validated across both biobanks, highlight pooled analysis as a powerful and scalable strategy for multi-ancestry GWASs, improving genetic discovery while maintaining rigorous population structure control.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"2493-2508"},"PeriodicalIF":8.1,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416762/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144991258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-02Epub Date: 2025-08-28DOI: 10.1016/j.ajhg.2025.07.020
Yu-Ju Lee, Ya-Ting Chang, Yoobin Cho, Max Kowalczyk, Adrian Dragoiescu, Alain Pacis, Senthilkumar Kailasam, François Lefebvre, Qihuang Zhang, Xiaojing Gao, Wei-Hsiang Huang
Smith-Magenis syndrome (SMS) is a genomic disorder caused by the deletion of a chromosomal region at 17p11.2. Individuals with SMS are frequently diagnosed with autism and have profound cortical deficits, including reduced cortex volume, mild ventriculomegaly, and epilepsy. Here, we developed human induced pluripotent stem cell (hiPSC)-derived neuronal models to understand how del(17)p11.2 affects cortical development. Hi-C experiments identified local fusion and global reorganization of topological domains, as well as genome-wide miswiring of chromatin three-dimensional (3D) interactions in SMS hiPSCs and 3D cortical organoids. Single-nucleus RNA sequencing of SMS cortical organoids identified neuropsychiatric disease-enriched transcriptional signatures and dysregulation of genes involved in catabolic and biosynthetic pathways, cell-cycle processes, and neuronal signaling. SMS cortical organoids displayed reduced growth, enlarged ventricles, impaired cell-cycle progression, and accelerated neuronal maturation. Through the use of a complementary hiPSC-derived 2D cortical neuronal model, we report that SMS cortical neurons exhibited accelerated dendritic growth, followed by neuronal hyperexcitability associated with reduced potassium conductance. Our study demonstrates that del(17)p11.2 disrupts multiple steps of human cortical development, from chromatin wiring, transcriptional regulation, cell-cycle progression, and morphological maturation to neurophysiological properties, and hiPSC-derived models recapitulate key neuroanatomical and neurophysiological features of SMS.
{"title":"Molecular and developmental deficits in Smith-Magenis syndrome human stem cell-derived cortical neural models.","authors":"Yu-Ju Lee, Ya-Ting Chang, Yoobin Cho, Max Kowalczyk, Adrian Dragoiescu, Alain Pacis, Senthilkumar Kailasam, François Lefebvre, Qihuang Zhang, Xiaojing Gao, Wei-Hsiang Huang","doi":"10.1016/j.ajhg.2025.07.020","DOIUrl":"10.1016/j.ajhg.2025.07.020","url":null,"abstract":"<p><p>Smith-Magenis syndrome (SMS) is a genomic disorder caused by the deletion of a chromosomal region at 17p11.2. Individuals with SMS are frequently diagnosed with autism and have profound cortical deficits, including reduced cortex volume, mild ventriculomegaly, and epilepsy. Here, we developed human induced pluripotent stem cell (hiPSC)-derived neuronal models to understand how del(17)p11.2 affects cortical development. Hi-C experiments identified local fusion and global reorganization of topological domains, as well as genome-wide miswiring of chromatin three-dimensional (3D) interactions in SMS hiPSCs and 3D cortical organoids. Single-nucleus RNA sequencing of SMS cortical organoids identified neuropsychiatric disease-enriched transcriptional signatures and dysregulation of genes involved in catabolic and biosynthetic pathways, cell-cycle processes, and neuronal signaling. SMS cortical organoids displayed reduced growth, enlarged ventricles, impaired cell-cycle progression, and accelerated neuronal maturation. Through the use of a complementary hiPSC-derived 2D cortical neuronal model, we report that SMS cortical neurons exhibited accelerated dendritic growth, followed by neuronal hyperexcitability associated with reduced potassium conductance. Our study demonstrates that del(17)p11.2 disrupts multiple steps of human cortical development, from chromatin wiring, transcriptional regulation, cell-cycle progression, and morphological maturation to neurophysiological properties, and hiPSC-derived models recapitulate key neuroanatomical and neurophysiological features of SMS.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"2338-2362"},"PeriodicalIF":8.1,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12696504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144939191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-02Epub Date: 2025-09-04DOI: 10.1016/j.ajhg.2025.08.013
Nikolas A Baya, Ilknur Sur Erdem, Samvida S Venkatesh, Saskia Reibe, Philip D Charles, Elena Navarro-Guerrero, Barney Hill, Frederik H Lassen, Melina Claussnitzer, Duncan S Palmer, Cecilia M Lindgren
Overall adiposity and body fat distribution are heritable traits associated with altered risk of cardiometabolic disease and mortality. Performing rare-variant (minor allele frequency <1%) association testing using exome-sequencing data from 402,375 participants of European ancestry in the UK Biobank for nine overall and tissue-specific fat distribution traits, we identified 19 genes where putatively damaging rare variation associated with at least one trait (Bonferroni-adjusted p < 1.58 × 10-7) and 50 additional genes at false discovery rate (FDR) ≤1% (p ≤ 4.37 × 10-5). These 69 genes exhibited significantly higher (one-sided t test p = 3.58 × 10-18) common-variant prioritization scores for association with body mass index (BMI), waist-to-hip ratio adjusted for BMI, and body fat percentage than genes not significantly enriched for rare putatively damaging variation, with evidence of monotonic allelic series (dose-response relationships) among ultra-rare variants (minor allele count ≤10) in 22 genes. Combining rare and common variation evidence, allelic series and longitudinal analysis, we selected 14 genes for CRISPR knockdown in human white adipose tissue cell lines. In two target genes, knockdown significantly (two-sided t test p < 0.05/14) decreased lipid accumulation: PPARG (fold change [FC] = 0.25, p = 5.52 × 10-7) and SLTM (FC = 0.51, p = 1.91 × 10-4); knockdown of COL5A3 (FC = 1.72, p = 0.0028) resulted in significantly increased lipid accumulation. Integrating across population-based genetic and in vitro functional evidence, we highlight therapeutic avenues for altering obesity and body fat distribution by modulating lipid accumulation.
{"title":"Combining evidence from human genetic and functional screens to identify pathways altering obesity and fat distribution.","authors":"Nikolas A Baya, Ilknur Sur Erdem, Samvida S Venkatesh, Saskia Reibe, Philip D Charles, Elena Navarro-Guerrero, Barney Hill, Frederik H Lassen, Melina Claussnitzer, Duncan S Palmer, Cecilia M Lindgren","doi":"10.1016/j.ajhg.2025.08.013","DOIUrl":"10.1016/j.ajhg.2025.08.013","url":null,"abstract":"<p><p>Overall adiposity and body fat distribution are heritable traits associated with altered risk of cardiometabolic disease and mortality. Performing rare-variant (minor allele frequency <1%) association testing using exome-sequencing data from 402,375 participants of European ancestry in the UK Biobank for nine overall and tissue-specific fat distribution traits, we identified 19 genes where putatively damaging rare variation associated with at least one trait (Bonferroni-adjusted p < 1.58 × 10<sup>-7</sup>) and 50 additional genes at false discovery rate (FDR) ≤1% (p ≤ 4.37 × 10<sup>-5</sup>). These 69 genes exhibited significantly higher (one-sided t test p = 3.58 × 10<sup>-18</sup>) common-variant prioritization scores for association with body mass index (BMI), waist-to-hip ratio adjusted for BMI, and body fat percentage than genes not significantly enriched for rare putatively damaging variation, with evidence of monotonic allelic series (dose-response relationships) among ultra-rare variants (minor allele count ≤10) in 22 genes. Combining rare and common variation evidence, allelic series and longitudinal analysis, we selected 14 genes for CRISPR knockdown in human white adipose tissue cell lines. In two target genes, knockdown significantly (two-sided t test p < 0.05/14) decreased lipid accumulation: PPARG (fold change [FC] = 0.25, p = 5.52 × 10<sup>-7</sup>) and SLTM (FC = 0.51, p = 1.91 × 10<sup>-4</sup>); knockdown of COL5A3 (FC = 1.72, p = 0.0028) resulted in significantly increased lipid accumulation. Integrating across population-based genetic and in vitro functional evidence, we highlight therapeutic avenues for altering obesity and body fat distribution by modulating lipid accumulation.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"2316-2337"},"PeriodicalIF":8.1,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12696503/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145005788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-02Epub Date: 2025-08-29DOI: 10.1016/j.ajhg.2025.08.004
Kimberly A Chapman, Farid Ullah, Zachary A Yahiku, Sheraz Khan, Sri Varsha Kodiparthi, Georgios Kellaris, Hazel G White, Andrew T Powell, Sandrina P Correia, Tommy Stödberg, Christalena Sofocleous, Nikolaos M Marinakis, Helena Fryssira, Eirini Tsoutsou, Jan Traeger-Synodinos, Andrea Accogli, Vittorio Sciruicchio, Vincenzo Salpietro, Pasquale Striano, Candace Muss, Boris Keren, Delphine Heron, Seth I Berger, Kelvin W Pond, Suman Sirimulla, Erica E Davis, Martha R C Bhattacharya
Transmembrane protein 184B (TMEM184B) is an endosomal 7-pass transmembrane protein with evolutionarily conserved roles in synaptic structure and axon degeneration. We report six pediatric cases who have de novo heterozygous variants in TMEM184B; five individuals harbor a rare missense variant, and one individual has an mRNA splice site change. This cohort is unified by overlapping neurodevelopmental deficits including developmental delay, corpus callosum hypoplasia, seizures, and/or microcephaly. TMEM184B is predicted to contain a pore domain wherein four of five human disease-associated missense variants cluster. Structural modeling suggests that all missense variants alter TMEM184B protein stability. To understand the contribution of TMEM184B to neural development in vivo, we knocked down the TMEM184B ortholog in zebrafish and observed microcephaly and reduced anterior commissural axons, aligning with symptoms of affected individuals. Ectopic expression of TMEM184B c.550A>G (p.Lys184Glu) and c.484G>A (p.Gly162Arg) variants cause reduced head size and body length, indicating dominant effects, while three other variants show haploinsufficiency. None of the variants are able to rescue the knockdown phenotype. Human induced pluripotent stem cells with monoallelic production of p.Lys184Glu show mRNA disruptions in key metabolic pathways including those controlling mechanistic target of rapamycin activity. Expression of p.Lys184Glu and c.863G>C (p.Gly288Ala) increased apoptosis in cell lines, and p.Lys184Glu increased nuclear localization of transcription factor EB, consistent with a cellular starvation state. Together, our data indicate that TMEM184B variants cause cellular metabolic disruption and result in abnormal neural development.
{"title":"Pathogenic variants in TMEM184B cause a neurodevelopmental syndrome associated with alteration of metabolic signaling.","authors":"Kimberly A Chapman, Farid Ullah, Zachary A Yahiku, Sheraz Khan, Sri Varsha Kodiparthi, Georgios Kellaris, Hazel G White, Andrew T Powell, Sandrina P Correia, Tommy Stödberg, Christalena Sofocleous, Nikolaos M Marinakis, Helena Fryssira, Eirini Tsoutsou, Jan Traeger-Synodinos, Andrea Accogli, Vittorio Sciruicchio, Vincenzo Salpietro, Pasquale Striano, Candace Muss, Boris Keren, Delphine Heron, Seth I Berger, Kelvin W Pond, Suman Sirimulla, Erica E Davis, Martha R C Bhattacharya","doi":"10.1016/j.ajhg.2025.08.004","DOIUrl":"10.1016/j.ajhg.2025.08.004","url":null,"abstract":"<p><p>Transmembrane protein 184B (TMEM184B) is an endosomal 7-pass transmembrane protein with evolutionarily conserved roles in synaptic structure and axon degeneration. We report six pediatric cases who have de novo heterozygous variants in TMEM184B; five individuals harbor a rare missense variant, and one individual has an mRNA splice site change. This cohort is unified by overlapping neurodevelopmental deficits including developmental delay, corpus callosum hypoplasia, seizures, and/or microcephaly. TMEM184B is predicted to contain a pore domain wherein four of five human disease-associated missense variants cluster. Structural modeling suggests that all missense variants alter TMEM184B protein stability. To understand the contribution of TMEM184B to neural development in vivo, we knocked down the TMEM184B ortholog in zebrafish and observed microcephaly and reduced anterior commissural axons, aligning with symptoms of affected individuals. Ectopic expression of TMEM184B c.550A>G (p.Lys184Glu) and c.484G>A (p.Gly162Arg) variants cause reduced head size and body length, indicating dominant effects, while three other variants show haploinsufficiency. None of the variants are able to rescue the knockdown phenotype. Human induced pluripotent stem cells with monoallelic production of p.Lys184Glu show mRNA disruptions in key metabolic pathways including those controlling mechanistic target of rapamycin activity. Expression of p.Lys184Glu and c.863G>C (p.Gly288Ala) increased apoptosis in cell lines, and p.Lys184Glu increased nuclear localization of transcription factor EB, consistent with a cellular starvation state. Together, our data indicate that TMEM184B variants cause cellular metabolic disruption and result in abnormal neural development.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"2381-2401"},"PeriodicalIF":8.1,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12440709/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144939231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-10-02Epub Date: 2025-09-10DOI: 10.1016/j.ajhg.2025.08.005
Jasmin Rees, Sergi Castellano, Aida M Andrés
Micronutrients are essential components of the human diet, but dietary levels above or below their narrow, recommended range are harmful. Deficiencies increase the risk of stunted growth and metabolic, infectious, and respiratory disorders, and have likely been pervasive in human history, as local soils poor in micronutrients are widespread. Deficiencies are also common today, affecting approximately 2 billion people. Limited evidence exists for selenium, zinc, iodine, and iron deficiencies driving local adaptation in a few human populations, but the broader potential role of micronutrients in shaping modern human evolution remains unclear. Here, we investigate signatures of positive selection in 276 genes associated with 13 micronutrients and evaluate whether human adaptation across global populations has been driven by micronutrients. We identify known and previously undescribed instances of rapid local adaptation in micronutrient-associated genes in particular populations, including previously undescribed individual signatures of adaptation across most of the world. Further, we identify signatures of oligogenic-positive selection in multiple populations at different geographic and temporal scales, with some recapitulating known associations of geology and micronutrient deficiencies. We conclude that micronutrient deficiencies have likely shaped worldwide human evolution more directly than previously appreciated and, given the ongoing depletion of soil quality from over-farming and climate change, caution that some populations may be at higher risk of suffering from micronutrient-driven disorders going forward.
{"title":"Global impact of micronutrients in modern human evolution.","authors":"Jasmin Rees, Sergi Castellano, Aida M Andrés","doi":"10.1016/j.ajhg.2025.08.005","DOIUrl":"10.1016/j.ajhg.2025.08.005","url":null,"abstract":"<p><p>Micronutrients are essential components of the human diet, but dietary levels above or below their narrow, recommended range are harmful. Deficiencies increase the risk of stunted growth and metabolic, infectious, and respiratory disorders, and have likely been pervasive in human history, as local soils poor in micronutrients are widespread. Deficiencies are also common today, affecting approximately 2 billion people. Limited evidence exists for selenium, zinc, iodine, and iron deficiencies driving local adaptation in a few human populations, but the broader potential role of micronutrients in shaping modern human evolution remains unclear. Here, we investigate signatures of positive selection in 276 genes associated with 13 micronutrients and evaluate whether human adaptation across global populations has been driven by micronutrients. We identify known and previously undescribed instances of rapid local adaptation in micronutrient-associated genes in particular populations, including previously undescribed individual signatures of adaptation across most of the world. Further, we identify signatures of oligogenic-positive selection in multiple populations at different geographic and temporal scales, with some recapitulating known associations of geology and micronutrient deficiencies. We conclude that micronutrient deficiencies have likely shaped worldwide human evolution more directly than previously appreciated and, given the ongoing depletion of soil quality from over-farming and climate change, caution that some populations may be at higher risk of suffering from micronutrient-driven disorders going forward.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"2538-2561"},"PeriodicalIF":8.1,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12696500/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145038947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-30DOI: 10.1016/j.ajhg.2025.09.008
Esra Erkut,Cherith Somerville,Marci L B Schwartz,Laura McDonald,Qiliang Ding,Olivia M Moran,Xin Chen,Roozbeh Manshaei,Anne-Sophie Riedijk,Marie-Therese Schnürer,Daniel C Koboldt,Stylianos E Antonarakis,Emma C Bedoukian,Xavier Blanc,Laura K Conlin,Helen Cox,Karin E M Diderich,Bri Dingmann,Christèle Dubourg,Frances Elmslie,Luis F Escobar,Rachel Gosselin,Maria J Guillen Sacoto,Cynthia D Haag,Lisa Herzig,Ramanand Jeeneea,Priti Kenia,Konstantinos Kolokotronis,Anna M Kopps,Christin Kupper,Hayley Lees,Jacqueline Leonard,Jonathan Levy,Rebecca Littlejohn,Demian Mayer,Scott D McLean,Nikhil Pattani,Laurence Perrin,Véronique Pingault,Chloé Quelin,Emmanuelle Ranza,Anita Rauch,Sara L Reichert,Joana Rosmaninho-Salgado,Cara Skraban,Sérgio Sousa,Melissa Stuebben,Paolo Zanoni,Raymond H Kim,Ian C Scott,Rebekah K Jobling
Syndromic cardiac malformations can result in morbidity, yet their genetic etiology is only understood for a subset of individuals. Genome sequencing efforts in congenital anomaly cohorts may identify disease-associated variants in previously unrecognized genes. Through international matchmaking efforts, we identified eighteen individuals in total with de novo or loss-of-function variants in EIF3A (n = 4) or EIF3B (n = 14). The clinical phenotype varied but predominantly included cardiac defects, craniofacial dysmorphisms, mild developmental delays, and behavioral abnormalities. These genes encode core subunits of the eukaryotic initiation factor 3 (eIF3) complex, which plays a critical role in binding mRNA transcripts to the 40S ribosomal subunit during translation initiation. Both genes are highly constrained against loss of function, and animal models have demonstrated that disruptions in the eIF3 complex result in a range of developmental defects, including cardiovascular malformations. Additionally, EIF3B is located within the minimally overlapping region implicated in cardiac anomalies associated with 7p22.3 microdeletions. We sought to further study the role of these genes in syndromic congenital heart disease. To explore their functional impact, we generated zebrafish models with mutations in the orthologous eif3s10 and eif3ba genes, which resulted in developmental abnormalities, including thin heart tubes, lack of craniofacial cartilage, and embryonic lethality. We propose that pathogenic variants in EIF3A, as well as pathogenic variants or microdeletions involving EIF3B, cause a distinct autosomal-dominant neurodevelopmental syndrome characterized by cardiovascular and craniofacial manifestations.
{"title":"A cardiovascular, craniofacial, and neurodevelopmental disorder caused by loss-of-function variants in the eIF3 complex component genes EIF3A and EIF3B.","authors":"Esra Erkut,Cherith Somerville,Marci L B Schwartz,Laura McDonald,Qiliang Ding,Olivia M Moran,Xin Chen,Roozbeh Manshaei,Anne-Sophie Riedijk,Marie-Therese Schnürer,Daniel C Koboldt,Stylianos E Antonarakis,Emma C Bedoukian,Xavier Blanc,Laura K Conlin,Helen Cox,Karin E M Diderich,Bri Dingmann,Christèle Dubourg,Frances Elmslie,Luis F Escobar,Rachel Gosselin,Maria J Guillen Sacoto,Cynthia D Haag,Lisa Herzig,Ramanand Jeeneea,Priti Kenia,Konstantinos Kolokotronis,Anna M Kopps,Christin Kupper,Hayley Lees,Jacqueline Leonard,Jonathan Levy,Rebecca Littlejohn,Demian Mayer,Scott D McLean,Nikhil Pattani,Laurence Perrin,Véronique Pingault,Chloé Quelin,Emmanuelle Ranza,Anita Rauch,Sara L Reichert,Joana Rosmaninho-Salgado,Cara Skraban,Sérgio Sousa,Melissa Stuebben,Paolo Zanoni,Raymond H Kim,Ian C Scott,Rebekah K Jobling","doi":"10.1016/j.ajhg.2025.09.008","DOIUrl":"https://doi.org/10.1016/j.ajhg.2025.09.008","url":null,"abstract":"Syndromic cardiac malformations can result in morbidity, yet their genetic etiology is only understood for a subset of individuals. Genome sequencing efforts in congenital anomaly cohorts may identify disease-associated variants in previously unrecognized genes. Through international matchmaking efforts, we identified eighteen individuals in total with de novo or loss-of-function variants in EIF3A (n = 4) or EIF3B (n = 14). The clinical phenotype varied but predominantly included cardiac defects, craniofacial dysmorphisms, mild developmental delays, and behavioral abnormalities. These genes encode core subunits of the eukaryotic initiation factor 3 (eIF3) complex, which plays a critical role in binding mRNA transcripts to the 40S ribosomal subunit during translation initiation. Both genes are highly constrained against loss of function, and animal models have demonstrated that disruptions in the eIF3 complex result in a range of developmental defects, including cardiovascular malformations. Additionally, EIF3B is located within the minimally overlapping region implicated in cardiac anomalies associated with 7p22.3 microdeletions. We sought to further study the role of these genes in syndromic congenital heart disease. To explore their functional impact, we generated zebrafish models with mutations in the orthologous eif3s10 and eif3ba genes, which resulted in developmental abnormalities, including thin heart tubes, lack of craniofacial cartilage, and embryonic lethality. We propose that pathogenic variants in EIF3A, as well as pathogenic variants or microdeletions involving EIF3B, cause a distinct autosomal-dominant neurodevelopmental syndrome characterized by cardiovascular and craniofacial manifestations.","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"1 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145203857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-29DOI: 10.1016/j.ajhg.2025.09.006
Anmol Singh,Cristina Alarcon,Edith A Nutescu,Travis J O'Brien,Matthew Tuck,Li Gong,Teri E Klein,David O Meltzer,Julie A Johnson,Larisa H Cavallari,Minoli A Perera
African Americans (AAs) are underrepresented in pharmacogenomics research, which has led to a significant gap in knowledge. Through admixture, AAs can inherit specific loci from either their African or European ancestors, known as local ancestry (LA). A previous study in AAs identified SNPs located in the CYP2C cluster that are associated with warfarin dose. However, LA was not considered in that study. Here, we conducted an ancestry-adjusted genome-wide association study (GWAS) in the AA International Warfarin Pharmacogenomics Consortium (IWPC) cohort (n = 340). We replicated top associations in the independent ACCOuNT cohort of AAs (n= 309) and validated associations in a warfarin pharmacokinetic study in AAs (n = 63). We performed RNA sequencing (RNA-seq) of AA hepatocytes carrying each genotype to assess expression and splicing of CYP2C9 and CYP2C19. We identified 6 genome-wide significant SNPs (p < 5E-8) in the CYP2C locus (lead SNP, rs7906871 [p = 3.14E-8]). These associations were replicated (p ≤ 2.76E-5) and validated with a pharmacokinetic association for S-warfarin concentration in plasma (p = 0.048). rs7906871 explains 6.0% of the variability in warfarin dose in AAs. Multivariate regression demonstrated that rs7906871 and known genetic, clinical, and demographic factors explain 37% of dose variability, greater than previously reported in AAs. RNA-seq analysis identified a significant alternate exon inclusion event between exons 6 and 7 in CYP2C19 for carriers of rs7906871. In conclusion, we have found and replicated a CYP2C variant associated with warfarin dose requirement with functional consequences to CYP2C19. CYP2C19 is involved in the metabolism of 10%-15% of commonly prescribed drugs today. This finding could have broader impacts for drug response and pharmacogenomics.
{"title":"Local ancestry-informed GWAS of warfarin dose requirement in African Americans identifies a CYP2C19 splicing QTL.","authors":"Anmol Singh,Cristina Alarcon,Edith A Nutescu,Travis J O'Brien,Matthew Tuck,Li Gong,Teri E Klein,David O Meltzer,Julie A Johnson,Larisa H Cavallari,Minoli A Perera","doi":"10.1016/j.ajhg.2025.09.006","DOIUrl":"https://doi.org/10.1016/j.ajhg.2025.09.006","url":null,"abstract":"African Americans (AAs) are underrepresented in pharmacogenomics research, which has led to a significant gap in knowledge. Through admixture, AAs can inherit specific loci from either their African or European ancestors, known as local ancestry (LA). A previous study in AAs identified SNPs located in the CYP2C cluster that are associated with warfarin dose. However, LA was not considered in that study. Here, we conducted an ancestry-adjusted genome-wide association study (GWAS) in the AA International Warfarin Pharmacogenomics Consortium (IWPC) cohort (n = 340). We replicated top associations in the independent ACCOuNT cohort of AAs (n= 309) and validated associations in a warfarin pharmacokinetic study in AAs (n = 63). We performed RNA sequencing (RNA-seq) of AA hepatocytes carrying each genotype to assess expression and splicing of CYP2C9 and CYP2C19. We identified 6 genome-wide significant SNPs (p < 5E-8) in the CYP2C locus (lead SNP, rs7906871 [p = 3.14E-8]). These associations were replicated (p ≤ 2.76E-5) and validated with a pharmacokinetic association for S-warfarin concentration in plasma (p = 0.048). rs7906871 explains 6.0% of the variability in warfarin dose in AAs. Multivariate regression demonstrated that rs7906871 and known genetic, clinical, and demographic factors explain 37% of dose variability, greater than previously reported in AAs. RNA-seq analysis identified a significant alternate exon inclusion event between exons 6 and 7 in CYP2C19 for carriers of rs7906871. In conclusion, we have found and replicated a CYP2C variant associated with warfarin dose requirement with functional consequences to CYP2C19. CYP2C19 is involved in the metabolism of 10%-15% of commonly prescribed drugs today. This finding could have broader impacts for drug response and pharmacogenomics.","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"17 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145194735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study explores the impact of mutations in the exon 2 of the von Hippel-Lindau (VHL) gene, associated with erythrocytosis or von Hippel-Lindau disease. We analyzed 15 missense and synonymous genetic variants to assess their effects on splicing and VHL protein stability. Using in silico predictions and functional assays, we found that some specific mutations impact splicing and reduce protein stability, allowing their clinical classification as pathogenic. This study revealed exonic-splicing regulatory regions. Notably, by performing RNA-protein pull-down, we identified two RNA-binding proteins, hnRNPF and hnRNPAB, as key regulators of VHL splicing. Our findings reveal the limitations of current splicing-prediction tools in recognizing exonic-splicing enhancer (ESE) or silencer (ESS) sequences and suggest that mutations can differentially affect disease phenotypes by influencing both splicing and protein stability. These insights enhance our understanding of the molecular mechanisms underlying VHL-associated disorders and expand the landscape of regulatory elements and protein factors involved in VHL splicing regulation.
{"title":"Unraveling the impact of VHL exon 2 mutations in erythrocytosis or von Hippel-Lindau disease identified RNA-binding proteins involved in VHL splicing.","authors":"Valéna Karaghiannis,Loïc Schmitt,Franck Chesnel,Emilie-Fleur Gautier,Marjorie Leduc,Morgane Le Gall,Salam Idriss,Sophie Couvé,Anne Barlier,Guillaume Sarrabay,Nada Maaziz,Bruno Cassinat,Laurence Legros,Vincent Thibaud,Stéphane Richard,François Girodon,Julie Miro,Sylvie Tuffery-Giraud,Yannick Arlot,Betty Gardie","doi":"10.1016/j.ajhg.2025.09.002","DOIUrl":"https://doi.org/10.1016/j.ajhg.2025.09.002","url":null,"abstract":"This study explores the impact of mutations in the exon 2 of the von Hippel-Lindau (VHL) gene, associated with erythrocytosis or von Hippel-Lindau disease. We analyzed 15 missense and synonymous genetic variants to assess their effects on splicing and VHL protein stability. Using in silico predictions and functional assays, we found that some specific mutations impact splicing and reduce protein stability, allowing their clinical classification as pathogenic. This study revealed exonic-splicing regulatory regions. Notably, by performing RNA-protein pull-down, we identified two RNA-binding proteins, hnRNPF and hnRNPAB, as key regulators of VHL splicing. Our findings reveal the limitations of current splicing-prediction tools in recognizing exonic-splicing enhancer (ESE) or silencer (ESS) sequences and suggest that mutations can differentially affect disease phenotypes by influencing both splicing and protein stability. These insights enhance our understanding of the molecular mechanisms underlying VHL-associated disorders and expand the landscape of regulatory elements and protein factors involved in VHL splicing regulation.","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"73 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145140239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-09-23DOI: 10.1016/j.ajhg.2025.08.012
Austin W Reynolds,Haiko Schurz,Gillian Meeks,Simon Gravel,Justin W Myrick,Stacy Edington,Fernando L Mendez,Cedric J Werely,Paul D van Helden,Eileen G Hoal,G David Poznik,Minju Kim,Caitlin Uren,Peter A Underhill,Marlo Möller,Brenna M Henn
The colonial-period arrival of Europeans in southern Africa is associated with strong sex-biased migration by which male settlers displaced Indigenous Khoekhoe and San men. Concurrently, the importation of enslaved individuals from South Asia, Indonesia, and eastern Africa likely contributed to female-biased migration. Using genetic data from over 1,400 individuals, we examine the spatial and temporal spread of sex-biased migration from the Cape to the northern edges of the historic colonial frontier. In all regions, admixture patterns were sex biased, with evidence of a greater male contribution of European ancestry and greater female contribution of Khoe-San ancestry. While admixture among Khoe-San, European, equatorial African, and Asian groups has likely been continuous from the founding of Cape Town to the present day, we find that Khoe-San groups further north experienced a single pulse of European admixture 6-8 generations ago. European admixture was followed by additional Khoe-San gene flow, potentially reflecting an aggregation of Indigenous groups due to disruption by colonial interlopers. Male migration into the northern frontier territories was not a homogenous group of expanding Afrikaners and slaves. The Nama exhibit distinct founder effects and derive 15% of their Y chromosome haplogroups from Asian lineages, a pattern absent in the ≠Khomani San. Khoe-San ancestry from the paternal line is greatly diminished in populations from Cape Town, the Cederberg Mountains, and Upington but remains more frequent in self-identified Indigenous ethnic groups. Strikingly, we estimate that Khoe-San Y chromosomes were experiencing unprecedented population growth at the time of European arrival. Our findings shed light on the patterns of admixture and population history of South Africa as the colonial frontier expanded.
{"title":"The Indian Ocean slave trade and colonial expansion resulted in strong sex-biased admixture in South Africa.","authors":"Austin W Reynolds,Haiko Schurz,Gillian Meeks,Simon Gravel,Justin W Myrick,Stacy Edington,Fernando L Mendez,Cedric J Werely,Paul D van Helden,Eileen G Hoal,G David Poznik,Minju Kim,Caitlin Uren,Peter A Underhill,Marlo Möller,Brenna M Henn","doi":"10.1016/j.ajhg.2025.08.012","DOIUrl":"https://doi.org/10.1016/j.ajhg.2025.08.012","url":null,"abstract":"The colonial-period arrival of Europeans in southern Africa is associated with strong sex-biased migration by which male settlers displaced Indigenous Khoekhoe and San men. Concurrently, the importation of enslaved individuals from South Asia, Indonesia, and eastern Africa likely contributed to female-biased migration. Using genetic data from over 1,400 individuals, we examine the spatial and temporal spread of sex-biased migration from the Cape to the northern edges of the historic colonial frontier. In all regions, admixture patterns were sex biased, with evidence of a greater male contribution of European ancestry and greater female contribution of Khoe-San ancestry. While admixture among Khoe-San, European, equatorial African, and Asian groups has likely been continuous from the founding of Cape Town to the present day, we find that Khoe-San groups further north experienced a single pulse of European admixture 6-8 generations ago. European admixture was followed by additional Khoe-San gene flow, potentially reflecting an aggregation of Indigenous groups due to disruption by colonial interlopers. Male migration into the northern frontier territories was not a homogenous group of expanding Afrikaners and slaves. The Nama exhibit distinct founder effects and derive 15% of their Y chromosome haplogroups from Asian lineages, a pattern absent in the ≠Khomani San. Khoe-San ancestry from the paternal line is greatly diminished in populations from Cape Town, the Cederberg Mountains, and Upington but remains more frequent in self-identified Indigenous ethnic groups. Strikingly, we estimate that Khoe-San Y chromosomes were experiencing unprecedented population growth at the time of European arrival. Our findings shed light on the patterns of admixture and population history of South Africa as the colonial frontier expanded.","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":"28 1","pages":""},"PeriodicalIF":9.8,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145134341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}