首页 > 最新文献

AIMS Materials Science最新文献

英文 中文
Enhanced structural, thermal, mechanical and electrical properties of nano ZTA/epoxy composites 纳米ZTA/环氧复合材料的结构、热学、力学和电学性能增强
IF 1.8 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.3934/matersci.2022013
C. Srikanth, G. Madhu, Shrey Kashyap
Epoxy composites were prepared by doping nano Zirconia Toughened Alumina (ZTA) which were synthesized by solution combustion method into epoxy resin and hardener. Initially ZTA nanopowder was characterized to check its purity, morphology and to confirm its metal-oxide bonding using XRD, SEM and FTIR respectively. The thermal properties such as TGA and DTG were also analysed. The polymer composites were obtained by uniformly dispersing ZTA nanopowder into epoxy using an ultrasonicator. Polymer composites of various concentrations viz, 0.5, 1, 1.5, 2 and 2.5 wt% were synthesized, all concentrations were prepared on weight basis. All the polymer composites were tested for compression properties, flexural properties and tensile properties. Best results for all the mechanical properties were obtained for epoxy with 1.5 wt% ZTA composites. Electrical properties such as breakdown voltage and breakdown strength were analysed and outstanding results were observed for epoxy with 2.5 wt% ZTA composite.
将溶液燃烧法合成的纳米氧化锆增韧氧化铝(ZTA)掺入环氧树脂和固化剂中制备环氧复合材料。首先用XRD、SEM和FTIR对纳米ZTA粉体进行了纯度、形貌表征和金属-氧化物结合表征。对其热性能进行了热重分析和热重分析。利用超声机将纳米ZTA粉末均匀分散到环氧树脂中,得到聚合物复合材料。合成了不同浓度的聚合物复合材料,即0.5、1、1.5、2和2.5 wt%,所有浓度均按重量制得。测试了所有聚合物复合材料的压缩性能、弯曲性能和拉伸性能。ZTA含量为1.5%的环氧树脂的力学性能最好。分析了ZTA含量为2.5 wt%的环氧树脂的击穿电压和击穿强度等电学性能。
{"title":"Enhanced structural, thermal, mechanical and electrical properties of nano ZTA/epoxy composites","authors":"C. Srikanth, G. Madhu, Shrey Kashyap","doi":"10.3934/matersci.2022013","DOIUrl":"https://doi.org/10.3934/matersci.2022013","url":null,"abstract":"Epoxy composites were prepared by doping nano Zirconia Toughened Alumina (ZTA) which were synthesized by solution combustion method into epoxy resin and hardener. Initially ZTA nanopowder was characterized to check its purity, morphology and to confirm its metal-oxide bonding using XRD, SEM and FTIR respectively. The thermal properties such as TGA and DTG were also analysed. The polymer composites were obtained by uniformly dispersing ZTA nanopowder into epoxy using an ultrasonicator. Polymer composites of various concentrations viz, 0.5, 1, 1.5, 2 and 2.5 wt% were synthesized, all concentrations were prepared on weight basis. All the polymer composites were tested for compression properties, flexural properties and tensile properties. Best results for all the mechanical properties were obtained for epoxy with 1.5 wt% ZTA composites. Electrical properties such as breakdown voltage and breakdown strength were analysed and outstanding results were observed for epoxy with 2.5 wt% ZTA composite.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70088311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Circular self-cleaning building materials and fabrics using dual doped TiO2 nanomaterials 使用双掺杂TiO2纳米材料的圆形自清洁建筑材料和织物
IF 1.8 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.3934/matersci.2022032
E. Karagiannis, Dimitra Papadaki, M. Assimakopoulos
Nanostructured titanium dioxide (TiO2) among other oxides can be used as a prominent photocatalytic nanomaterial with self-cleaning properties. TiO2 is selected in this research, due to its high photocatalytic activity, high stability and low cost. Metal doping has proved to be a successful approach for enhancing the photocatalytic efficiency of photocatalysts. Photocatalytic products can be applied in the building sector, using both building materials as a matrix, but also in fabrics. In this study undoped and Mn-In, Mn-Cu, In-Ni, Mn-Ni bimetallic doped TiO2 nanostructures were synthesized using the microwave-assisted hydrothermal method. Decolorization efficiency of applied nanocoatings on fabrics and 3-D printed sustainable blocks made from recycled building materials was studied, both under UV as well as visible light for Methylene Blue (MB), using a self-made depollution and self-cleaning apparatus. Nanocoated samples showed high MB decolorization and great potential in self-cleaning applications. Results showed that the highest MB decolorization for both applications were observed for 0.25 at% Mn-In doped TiO2. For the application of 3-D printed blocks Mn-In and In-Ni doped TiO2 showed the highest net MB decolorization, 25.1 and 22.6%, respectively. For the application of nanocoated fabrics, three samples (Mn-In, In-Ni and Mn-Cu doped TiO2) showed high MB decolorization (58.1, 52.7 and 47.6%, respectively) under indirect sunlight, while under UV light the fabric coated with Mn-In and In-Ni doped TiO2 showed the highest MB decolorization rate 26.1 and 24.0%, respectively.
纳米二氧化钛(TiO2)是一种具有自清洁特性的纳米光催化材料。本研究选择TiO2,是因为其光催化活性高、稳定性高、成本低。金属掺杂已被证明是提高光催化剂光催化效率的有效途径。光催化产品可以应用于建筑领域,既可以使用建筑材料作为基质,也可以应用于织物。本研究采用微波辅助水热法合成了未掺杂和Mn-In、Mn-Cu、In- ni、Mn-Ni双金属掺杂的TiO2纳米结构。利用自制的去污自清洁装置,研究了纳米涂层在UV和可见光下对亚甲基蓝(MB)的脱色效果。纳米包覆样品表现出较高的MB脱色率和自清洁应用潜力。结果表明,当Mn-In掺杂的TiO2浓度为0.25时,两种应用的MB脱色率均最高。对于3d打印块体的应用,Mn-In和In-Ni掺杂TiO2的净MB脱色率最高,分别为25.1%和22.6%。对于纳米涂层织物的应用,3种样品(Mn-In, In-Ni和Mn-Cu掺杂TiO2)在间接阳光下的MB脱色率分别为58.1%,52.7和47.6%,而在紫外光下,Mn-In和In-Ni掺杂TiO2涂层织物的MB脱色率最高,分别为26.1%和24.0%。
{"title":"Circular self-cleaning building materials and fabrics using dual doped TiO2 nanomaterials","authors":"E. Karagiannis, Dimitra Papadaki, M. Assimakopoulos","doi":"10.3934/matersci.2022032","DOIUrl":"https://doi.org/10.3934/matersci.2022032","url":null,"abstract":"Nanostructured titanium dioxide (TiO2) among other oxides can be used as a prominent photocatalytic nanomaterial with self-cleaning properties. TiO2 is selected in this research, due to its high photocatalytic activity, high stability and low cost. Metal doping has proved to be a successful approach for enhancing the photocatalytic efficiency of photocatalysts. Photocatalytic products can be applied in the building sector, using both building materials as a matrix, but also in fabrics. In this study undoped and Mn-In, Mn-Cu, In-Ni, Mn-Ni bimetallic doped TiO2 nanostructures were synthesized using the microwave-assisted hydrothermal method. Decolorization efficiency of applied nanocoatings on fabrics and 3-D printed sustainable blocks made from recycled building materials was studied, both under UV as well as visible light for Methylene Blue (MB), using a self-made depollution and self-cleaning apparatus. Nanocoated samples showed high MB decolorization and great potential in self-cleaning applications. Results showed that the highest MB decolorization for both applications were observed for 0.25 at% Mn-In doped TiO2. For the application of 3-D printed blocks Mn-In and In-Ni doped TiO2 showed the highest net MB decolorization, 25.1 and 22.6%, respectively. For the application of nanocoated fabrics, three samples (Mn-In, In-Ni and Mn-Cu doped TiO2) showed high MB decolorization (58.1, 52.7 and 47.6%, respectively) under indirect sunlight, while under UV light the fabric coated with Mn-In and In-Ni doped TiO2 showed the highest MB decolorization rate 26.1 and 24.0%, respectively.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70088934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of thickness on photovoltaic properties of amorphous carbon/fullerene junction 厚度对非晶碳/富勒烯结光电性能的影响
IF 1.8 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.3934/matersci.2022026
Takuto Eguchi, S. Kato, N. Kishi, T. Soga
All-carbon photovoltaic devices have attracted attention in terms of resources and environment. However, the device application is very limited because of poor performance. In this work, we studied the solar cell characteristics of amorphous carbon (a–C)/fullerene (C60) junction when the thickness of the a–C layer was varied. When the thickness of the a–C layer was varied, the short-circuit current density and open-circuit voltage increased with increasing film thickness and then decreased after a certain value. Also, the spectral response measurement results suggest that most of the power generation is due to the light absorbed by the C60 layer, and that the light absorbed by the a–C layer may contribute little to power generation. This study suggests that the improvement in the electronic properties of a–C is necessary to make a photovoltaic device with high performance.
全碳光伏器件在资源和环境方面备受关注。然而,由于性能不佳,该器件的应用非常有限。在本工作中,我们研究了非晶碳(a-C)/富勒烯(C60)结在a-C层厚度变化时的太阳能电池特性。改变a -c层厚度时,短路电流密度和开路电压随膜厚度的增加而增大,达到一定厚度后减小。此外,光谱响应测量结果表明,大部分的发电是由于C60层吸收的光,而a-C层吸收的光对发电的贡献可能很小。本研究表明,提高a - c的电子性能是制造高性能光伏器件的必要条件。
{"title":"Effect of thickness on photovoltaic properties of amorphous carbon/fullerene junction","authors":"Takuto Eguchi, S. Kato, N. Kishi, T. Soga","doi":"10.3934/matersci.2022026","DOIUrl":"https://doi.org/10.3934/matersci.2022026","url":null,"abstract":"All-carbon photovoltaic devices have attracted attention in terms of resources and environment. However, the device application is very limited because of poor performance. In this work, we studied the solar cell characteristics of amorphous carbon (a–C)/fullerene (C60) junction when the thickness of the a–C layer was varied. When the thickness of the a–C layer was varied, the short-circuit current density and open-circuit voltage increased with increasing film thickness and then decreased after a certain value. Also, the spectral response measurement results suggest that most of the power generation is due to the light absorbed by the C60 layer, and that the light absorbed by the a–C layer may contribute little to power generation. This study suggests that the improvement in the electronic properties of a–C is necessary to make a photovoltaic device with high performance.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70088613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Obtaining preforms by additive fused deposition modelling (FDM) extrusion technology for the manufacture of high-performance composites 采用增材熔融沉积(FDM)挤压技术制备高性能复合材料预制体
IF 1.8 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.3934/matersci.2022028
M. Mendizabal, M. Garcia, Luis Palenzuela, Enrique Hernández
The composites industry is present in practically all industrial sectors with an annual growth rate of 5%. Its contribution to the priority "light-weighting" driver in the transport sector is key. The efficiency of the industry is made possible by the evolution of manufacturing processes that also improve the performance of the products obtained. For example, out-of-autoclave (OOA) processes can obtain high-performance composites such as those obtained by the autoclave process at lower costs. A key aspect in the development of this type of process is the preforming of continuous fibre reinforcements, which can achieve high fibre percentages while facilitating processing. Manufacturing these preforms currently requires multiple steps, equipment and tooling. TECNALIA's work developing the ADDICOMP technology, an alternative preform manufacturing method using an additive process based on Fused Deposition Modelling (FDM) is detailed in this article. This development is patented by Tecnalia and was conducted in 2 phases: (a) development of continuous fibre filaments coated with polymeric material and printable by FDM and (b) fine-tuning of FDM technology to print filaments with a very high content of continuous fibre.
复合材料工业几乎存在于所有工业部门,年增长率为5%。它对交通运输领域优先“轻量化”驱动的贡献是关键。工业的效率是通过制造工艺的发展而实现的,制造工艺也提高了所获得产品的性能。例如,非高压灭菌器(OOA)工艺可以以较低的成本获得高性能复合材料,例如通过高压灭菌器工艺获得的复合材料。这类工艺发展的一个关键方面是连续纤维增强的预成型,它可以在促进加工的同时实现高纤维百分比。目前,制造这些预成形件需要多个步骤、设备和工具。本文详细介绍了TECNALIA开发的ADDICOMP技术,这是一种使用基于熔融沉积建模(FDM)的添加剂工艺的预制体制造方法。这项开发由Tecnalia获得专利,分两个阶段进行:(a)开发涂有聚合物材料并可通过FDM打印的连续纤维长丝;(b)微调FDM技术以打印具有非常高含量连续纤维的长丝。
{"title":"Obtaining preforms by additive fused deposition modelling (FDM) extrusion technology for the manufacture of high-performance composites","authors":"M. Mendizabal, M. Garcia, Luis Palenzuela, Enrique Hernández","doi":"10.3934/matersci.2022028","DOIUrl":"https://doi.org/10.3934/matersci.2022028","url":null,"abstract":"The composites industry is present in practically all industrial sectors with an annual growth rate of 5%. Its contribution to the priority \"light-weighting\" driver in the transport sector is key. The efficiency of the industry is made possible by the evolution of manufacturing processes that also improve the performance of the products obtained. For example, out-of-autoclave (OOA) processes can obtain high-performance composites such as those obtained by the autoclave process at lower costs. A key aspect in the development of this type of process is the preforming of continuous fibre reinforcements, which can achieve high fibre percentages while facilitating processing. Manufacturing these preforms currently requires multiple steps, equipment and tooling. TECNALIA's work developing the ADDICOMP technology, an alternative preform manufacturing method using an additive process based on Fused Deposition Modelling (FDM) is detailed in this article. This development is patented by Tecnalia and was conducted in 2 phases: (a) development of continuous fibre filaments coated with polymeric material and printable by FDM and (b) fine-tuning of FDM technology to print filaments with a very high content of continuous fibre.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70088729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Seismic performance of ductile corrosion-free reinforced concrete frames 延性无腐蚀钢筋混凝土框架的抗震性能
IF 1.8 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.3934/matersci.2022046
M. Meshaly, M. Youssef, Ahmed A. Elansary
Corrosion of steel bars is the main cause of the deterioration of reinforced concrete (RC) structures. To avoid this problem, steel rebars can be replaced with glass-fiber-reinforced-polymer (GFRP). However, the brittle behaviour of GFRP RC elements has limited their use in many applications. The use of shape memory alloy (SMA) and/or stainless steel (SS) rebars can solve this problem, because of their ductile behaviour and corrosion resistance. However, their high price is a major obstacle. To address issues of ductility, corrosion, and cost, this paper examines the hybrid use of GFRP, SS, and SMA in RC frames. The use of SMA provides an additional advantage as it reduces seismic residual deformations. Three frames were designed. A steel RC frame, SS-GFRP RC frame, and SMA-SS-GFRP RC frame. The design criteria for the two GFRP RC frames followed previous research by the authors, which aimed at having approximately equal lateral resistance, stiffness, and ductility for GFRP and steel RC frames. The three frames were then analyzed using twenty seismic records. Their seismic performance confirmed the success of the adopted design methodology in achieving corrosion-free frames that provide adequate seismic performance.
钢筋锈蚀是钢筋混凝土结构劣化的主要原因。为了避免这个问题,钢筋可以用玻璃纤维增强聚合物(GFRP)代替。然而,GFRP构件的脆性特性限制了其在许多应用中的应用。形状记忆合金(SMA)和/或不锈钢(SS)钢筋的使用可以解决这个问题,因为它们具有延展性和耐腐蚀性。然而,它们的高价格是一个主要障碍。为了解决延性、腐蚀和成本问题,本文研究了GFRP、SS和SMA在RC框架中的混合使用。SMA的使用还有一个额外的优势,它可以减少地震残余变形。设计了三个框架。有钢钢筋混凝土框架、SS-GFRP钢筋混凝土框架和SMA-SS-GFRP钢筋混凝土框架。两个GFRP框架的设计标准遵循了作者之前的研究,旨在使GFRP框架和钢RC框架具有近似相等的侧阻力、刚度和延性。然后使用20个地震记录对这三个框架进行分析。它们的抗震性能证实了采用的设计方法在实现提供足够抗震性能的无腐蚀框架方面的成功。
{"title":"Seismic performance of ductile corrosion-free reinforced concrete frames","authors":"M. Meshaly, M. Youssef, Ahmed A. Elansary","doi":"10.3934/matersci.2022046","DOIUrl":"https://doi.org/10.3934/matersci.2022046","url":null,"abstract":"Corrosion of steel bars is the main cause of the deterioration of reinforced concrete (RC) structures. To avoid this problem, steel rebars can be replaced with glass-fiber-reinforced-polymer (GFRP). However, the brittle behaviour of GFRP RC elements has limited their use in many applications. The use of shape memory alloy (SMA) and/or stainless steel (SS) rebars can solve this problem, because of their ductile behaviour and corrosion resistance. However, their high price is a major obstacle. To address issues of ductility, corrosion, and cost, this paper examines the hybrid use of GFRP, SS, and SMA in RC frames. The use of SMA provides an additional advantage as it reduces seismic residual deformations. Three frames were designed. A steel RC frame, SS-GFRP RC frame, and SMA-SS-GFRP RC frame. The design criteria for the two GFRP RC frames followed previous research by the authors, which aimed at having approximately equal lateral resistance, stiffness, and ductility for GFRP and steel RC frames. The three frames were then analyzed using twenty seismic records. Their seismic performance confirmed the success of the adopted design methodology in achieving corrosion-free frames that provide adequate seismic performance.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70089030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of pitch length of perforation on the crease bending characteristics of a polypropylene sheet subjected to indentation of a perforation blade 穿孔间距长度对穿孔叶片压痕作用下聚丙烯薄板折痕弯曲特性的影响
IF 1.8 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.3934/matersci.2022050
S. Nagasawa, Tomoki Hosokawa
This study reveals the bending formability of a polypropylene (PP) sheet indented by a perforation blade when changing the pitch of the dashed-ruled line and the indentation depth. Creasing is a folding method of a carton sheet in which a score (called as a ruled line) is made at the bent portion. When making a creased line on a resin sheet, the scored sheet thickness decreases by applying half cutting or creasing (pressing) at the bent portion to make it easier to fold. To smoothly process a folding line on the resin sheet, a dashed line using a perforation blade is sometimes considered. The pitch length of the dashed line, and its nicked (uncut) length, affect the crease bending characteristics of the resin sheet scored by the perforation blade. However, only a limited number of studies have analyzed the dashed line bending moment response. In this study, to clarify the bending formability of a 0.5-mm-thick PP sheet indented by a developed perforation blade, first, the influence of the perforation pitch length on the crease bending characteristics of a scored PP sheet was investigated from a 0.5-mm fine pitch up to an 8-mm commercially sold pitch with a cutting-to-pitch length ratio of 50%. Second, the nicked zone depth against the cutting tip was set as 50% of the 0.5-mm thickness of the PP sheet. Furthermore, it was revealed that burrs (wedged bottom) in the cut part of the perforated (dashed) line affected the bending moment resistance in the folding process of the scored PP sheet, when changing the indentation depth of the perforation blade.
本文研究了在改变划线间距和压痕深度时,穿孔叶片压痕聚丙烯(PP)板材的弯曲成形性能。折痕是纸板纸的一种折叠方法,其中在弯曲部分做一个分数(称为直纹线)。当在树脂板上制作折痕线时,在弯曲部分应用半切割或压痕(压痕)以使其更容易折叠,从而减少划痕板的厚度。为了在树脂片上平滑地加工折叠线,有时考虑使用穿孔刀片的虚线。虚线的节距长度及其划痕(未划痕)长度影响穿孔刀划痕树脂片材的折痕弯曲特性。然而,对虚线弯矩响应进行分析的研究数量有限。在这项研究中,为了弄清0.5 mm厚PP板的弯曲成形性,首先,研究了穿孔间距长度对划痕PP板折痕弯曲特性的影响,从0.5 mm的细间距到8 mm的市售间距,切割与间距长度比为50%。其次,切割尖端的缺口区深度设置为PP板材0.5 mm厚度的50%。此外,当改变穿孔叶片的压痕深度时,穿孔(虚线)切割部分的毛刺(楔底)会影响划痕PP板折叠过程中的弯矩阻力。
{"title":"Effects of pitch length of perforation on the crease bending characteristics of a polypropylene sheet subjected to indentation of a perforation blade","authors":"S. Nagasawa, Tomoki Hosokawa","doi":"10.3934/matersci.2022050","DOIUrl":"https://doi.org/10.3934/matersci.2022050","url":null,"abstract":"This study reveals the bending formability of a polypropylene (PP) sheet indented by a perforation blade when changing the pitch of the dashed-ruled line and the indentation depth. Creasing is a folding method of a carton sheet in which a score (called as a ruled line) is made at the bent portion. When making a creased line on a resin sheet, the scored sheet thickness decreases by applying half cutting or creasing (pressing) at the bent portion to make it easier to fold. To smoothly process a folding line on the resin sheet, a dashed line using a perforation blade is sometimes considered. The pitch length of the dashed line, and its nicked (uncut) length, affect the crease bending characteristics of the resin sheet scored by the perforation blade. However, only a limited number of studies have analyzed the dashed line bending moment response. In this study, to clarify the bending formability of a 0.5-mm-thick PP sheet indented by a developed perforation blade, first, the influence of the perforation pitch length on the crease bending characteristics of a scored PP sheet was investigated from a 0.5-mm fine pitch up to an 8-mm commercially sold pitch with a cutting-to-pitch length ratio of 50%. Second, the nicked zone depth against the cutting tip was set as 50% of the 0.5-mm thickness of the PP sheet. Furthermore, it was revealed that burrs (wedged bottom) in the cut part of the perforated (dashed) line affected the bending moment resistance in the folding process of the scored PP sheet, when changing the indentation depth of the perforation blade.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"63 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70089127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Agglomeration and dissolution of iron oxide nanoparticles in simplest biological media 氧化铁纳米颗粒在最简单生物介质中的团聚和溶解
IF 1.8 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.3934/matersci.2022039
A. Godymchuk, Alexey Ilyashenko, Y. Konyukhov, P. Offor, G. Baisalova
Despite high medical and biological potential, the penetration of iron oxide nanoparticles (NPs) into a human body can cause their dissolution with subsequent accumulation of highly toxic iron compounds. The paper describes the agglomeration and dissolution behavior of differently sized α-Fe2O3 NPs in the simplest biological solutions. The average sizes of the initial NPs according to the BET analysis are 12, 32, and 115 nm. Within 30–60 min exposure, the particle size and concentration of iron released into the solutions increases in the suspensions, accompanied by an intensive change of NPs surface charge. After an hour of exposure, the colloidal properties do not change significantly, although the dissolution degree ambiguously fluctuates. It has been shown that the agglomeration of the particles in the simplest pulmonary fluid is lower than in the simplest sweat fluid, compared to the dissolution degree, which is much higher in the pulmonary fluid than in the sweat. The colloidal stability of suspensions reduces with a decrease of NPs' size, e.g., the average size of particles is 315,289, and 248 nm, while zeta potential is 2, 9, and 17 mV, respectively for 12, 32, and 115 nm NPs in 3-hour suspensions. It has been found that 24 h dissolution degree of α-Fe2O3 NPs reaches 2.3% and 0.4%, respectively, in the simplest pulmonary and sweat fluids. The mechanism of dissolution of hematite NPs in the slightly acidic and acidic mediums is proposed.
尽管具有很高的医学和生物学潜力,但氧化铁纳米颗粒(NPs)渗透到人体中会导致其溶解,随后积累剧毒的铁化合物。本文描述了不同尺寸α-Fe2O3纳米颗粒在最简单的生物溶液中的团聚和溶解行为。根据BET分析,初始NPs的平均尺寸分别为12、32和115 nm。在暴露30-60分钟内,释放到溶液中的铁的粒度和浓度在悬浮液中增加,同时伴随着NPs表面电荷的剧烈变化。暴露1小时后,胶体性质没有显著变化,但溶解度有模糊波动。研究表明,最简单的肺液中颗粒的团聚度低于最简单的汗液,而溶解度在肺液中比在汗液中高得多。随着NPs尺寸的减小,悬浮液的胶体稳定性降低,例如,在3小时的悬浮液中,12、32和115 nm的NPs的平均粒径分别为315,289和248 nm, zeta电位分别为2、9和17 mV。在最简单的肺液和汗液中,α-Fe2O3 NPs的24 h溶出度分别达到2.3%和0.4%。提出了赤铁矿NPs在微酸性和酸性介质中的溶解机理。
{"title":"Agglomeration and dissolution of iron oxide nanoparticles in simplest biological media","authors":"A. Godymchuk, Alexey Ilyashenko, Y. Konyukhov, P. Offor, G. Baisalova","doi":"10.3934/matersci.2022039","DOIUrl":"https://doi.org/10.3934/matersci.2022039","url":null,"abstract":"Despite high medical and biological potential, the penetration of iron oxide nanoparticles (NPs) into a human body can cause their dissolution with subsequent accumulation of highly toxic iron compounds. The paper describes the agglomeration and dissolution behavior of differently sized α-Fe2O3 NPs in the simplest biological solutions. The average sizes of the initial NPs according to the BET analysis are 12, 32, and 115 nm. Within 30–60 min exposure, the particle size and concentration of iron released into the solutions increases in the suspensions, accompanied by an intensive change of NPs surface charge. After an hour of exposure, the colloidal properties do not change significantly, although the dissolution degree ambiguously fluctuates. It has been shown that the agglomeration of the particles in the simplest pulmonary fluid is lower than in the simplest sweat fluid, compared to the dissolution degree, which is much higher in the pulmonary fluid than in the sweat. The colloidal stability of suspensions reduces with a decrease of NPs' size, e.g., the average size of particles is 315,289, and 248 nm, while zeta potential is 2, 9, and 17 mV, respectively for 12, 32, and 115 nm NPs in 3-hour suspensions. It has been found that 24 h dissolution degree of α-Fe2O3 NPs reaches 2.3% and 0.4%, respectively, in the simplest pulmonary and sweat fluids. The mechanism of dissolution of hematite NPs in the slightly acidic and acidic mediums is proposed.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70089185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A molecular dynamics study concerning the effect of high-temperature and high-pressure on the structure and phase transition of Fe2O3 material 高温高压对Fe2O3材料结构和相变影响的分子动力学研究
IF 1.8 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.3934/matersci.2022024
D. Trong, V. C. Long, Phu Nguyen Dang, Ș. Ţălu

This paper uses Molecular Dynamics (MD) method to study the influence of high temperature (T) and high pressure (P) on the structure and phase transition of Fe2O3 materials. The results show that, when increasing the temperature from T = 300 K to T = 7000 K, P = 0.0 GPa, the size (1) of the Fe2O3 materials increases, the energy (E) increases, the length link (r) decreased, the number of structural units FeO4, FeO5 increased, and FeO6 decreased. Similarly, as the pressure (P) is increased, from P = 0 GPa to P = 360 GPa at temperatures T, l decreases, E increases, r decreases, FeO4 decreases and disappears, FeO5 decreases, and FeO6 increases at high P with P ≥ 150 GPa, FeO5 disappeared at P ≥ 250 GPa and only FeO6 appeared at T = 2300, 7000 K. In addition, when increasing T, P, the bond angle of Fe–O–Fe, O–Fe–O decreases, E increases, r decreases, l increases when T increases and l decreases when P increases, leading to the number of structural units FeO4, FeO5 increasing and FeO6 decreasing when T increases and vice versa when P increases. In addition, the phase transition temperature (Tm), Tm = 2300 K was determined. All the obtained results will be the basis for future experimental studies of amorphous Fe2O3 materials.

本文采用分子动力学(MD)方法研究了高温(T)和高压(P)对Fe2O3材料结构和相变的影响。结果表明:当温度从T = 300 K升高到T = 7000 K, P = 0.0 GPa时,Fe2O3材料的尺寸(1)增加,能量(E)增加,长度链(r)减少,FeO4、FeO5的结构单元数量增加,FeO6的结构单元数量减少;同样,随着压力(P)的增加,温度为T时,从P = 0 GPa到P = 360 GPa, l减小,E增大,r减小,FeO4减小并消失,FeO5减小,FeO6在P≥150 GPa时高P时增加,P≥250 GPa时FeO5消失,在T = 2300, 7000 K时只出现FeO6。另外,随着T、P的增加,Fe-O-Fe、O-Fe-O的键角减小,E增大,r减小,l增大,P增大,l减小,导致FeO4、FeO5的结构单元数量随着T的增加而增加,FeO6的数量随着P的增加而减少。测定了相变温度(Tm), Tm = 2300 K。所得结果将为今后非晶Fe2O3材料的实验研究奠定基础。
{"title":"A molecular dynamics study concerning the effect of high-temperature and high-pressure on the structure and phase transition of Fe2O3 material","authors":"D. Trong, V. C. Long, Phu Nguyen Dang, Ș. Ţălu","doi":"10.3934/matersci.2022024","DOIUrl":"https://doi.org/10.3934/matersci.2022024","url":null,"abstract":"<abstract> <p>This paper uses Molecular Dynamics (MD) method to study the influence of high temperature (T) and high pressure (P) on the structure and phase transition of Fe<sub>2</sub>O<sub>3</sub> materials. The results show that, when increasing the temperature from T = 300 K to T = 7000 K, P = 0.0 GPa, the size (1) of the Fe<sub>2</sub>O<sub>3</sub> materials increases, the energy (E) increases, the length link (r) decreased, the number of structural units FeO<sub>4</sub>, FeO<sub>5</sub> increased, and FeO<sub>6</sub> decreased. Similarly, as the pressure (P) is increased, from P = 0 GPa to P = 360 GPa at temperatures T, l decreases, E increases, r decreases, FeO<sub>4</sub> decreases and disappears, FeO<sub>5</sub> decreases, and FeO<sub>6</sub> increases at high P with P ≥ 150 GPa, FeO<sub>5</sub> disappeared at P ≥ 250 GPa and only FeO<sub>6</sub> appeared at T = 2300, 7000 K. In addition, when increasing T, P, the bond angle of Fe–O–Fe, O–Fe–O decreases, E increases, r decreases, l increases when T increases and l decreases when P increases, leading to the number of structural units FeO<sub>4</sub>, FeO<sub>5</sub> increasing and FeO<sub>6</sub> decreasing when T increases and vice versa when P increases. In addition, the phase transition temperature (T<sub>m</sub>), T<sub>m</sub> = 2300 K was determined. All the obtained results will be the basis for future experimental studies of amorphous Fe<sub>2</sub>O<sub>3</sub> materials.</p> </abstract>","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70088953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Tuning the giant Magnetocaloric Effect and refrigerant capacity in Gd1–xYxCrO3 (0.0 ≤ x ≤ 0.9) perovskites nanoparticles 调节Gd1-xYxCrO3(0.0≤x≤0.9)钙钛矿纳米颗粒的巨磁热效应和制冷剂容量
IF 1.8 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.3934/matersci.2022018
I. Al-Omari, Muna Al-Mamari, D. Sellmyer
Different compounds of rare-earth orthochromites Gd1–xYxCrO3 (where x is 0.0–0.9) powder nanoparticles, were synthesized by the auto-combustion method followed by annealing at 700 ℃. All the compounds showed single-phase and crystallized into a distorted orthorhombic structure with the space group (Pbnm). The average particle size for all the samples were in the range 53–110 nm. The detailed and systematic magnetic measurements and analysis showed that all the samples up to x = 0.9 have large magnetization and large values of the change in the magnetic entropy. The magnitude of the change in the magnetic entropy (at 4.5 K and for all the values of the change in the applied magnetic field between 1 and 9 T) is found to increase with increasing x reaching a maximum value at x = 0.3 then it decreases as we increase the yttrium concentration. The nanoparticle compounds with low yttrium concentrations showed a giant change in the magnetic entropy and a giant relative cooling power. Based on the slopes of Arrott plots curves the order parameter of the magnetic transition has been estimated and found to be second order. The giant change in the magnetic entropy and the relative cooling power were tuned in the rages (-45.6 to -8.7 J/kg·K at a change in the applied magnetic field of 9 T; and 136–746 J/kg), around the helium liquefaction temperature. The magnitude of the change in the magnetic entropy is significantly larger for large range of temperatures, up to the nitrogen liquefaction temperature. The giant change in the magnetic entropy and the giant relative cooling power at low temperatures (in the range about 4 to 20 K.) make these samples candidate materials for the low temperature magnetic refrigerant applications, based on the magnetocaloric effect.
采用自燃烧法合成了不同种类的稀土正铬铁矿Gd1-xYxCrO3 (x为0 ~ 0.9)粉末纳米颗粒,并在700℃下进行退火。所有化合物均为单相,结晶成具有空间基团(Pbnm)的畸变正交结构。所有样品的平均粒径在53 ~ 110 nm之间。详细而系统的磁测量和分析表明,x = 0.9以下的样品都具有较大的磁化强度和较大的磁熵变化值。磁熵的变化幅度(在4.5 K时,外加磁场在1到9 T之间的所有变化值)随着x的增加而增加,在x = 0.3时达到最大值,然后随着钇浓度的增加而减小。低钇纳米颗粒化合物表现出巨大的磁熵变化和巨大的相对冷却能力。根据Arrott曲线的斜率估计了磁跃迁的阶参量,发现其阶参量为二阶。当外加磁场为9 T时,磁熵和相对冷却功率的巨大变化范围为-45.6 ~ -8.7 J/kg·K;和136 ~ 746 J/kg),在氦液化温度附近。在较大的温度范围内,直至氮气液化温度,磁熵的变化幅度明显更大。磁熵的巨大变化和低温下的巨大相对冷却功率(在4到20 k的范围内)使这些样品成为基于磁热效应的低温磁性制冷剂应用的候选材料。
{"title":"Tuning the giant Magnetocaloric Effect and refrigerant capacity in Gd1–xYxCrO3 (0.0 ≤ x ≤ 0.9) perovskites nanoparticles","authors":"I. Al-Omari, Muna Al-Mamari, D. Sellmyer","doi":"10.3934/matersci.2022018","DOIUrl":"https://doi.org/10.3934/matersci.2022018","url":null,"abstract":"Different compounds of rare-earth orthochromites Gd1–xYxCrO3 (where x is 0.0–0.9) powder nanoparticles, were synthesized by the auto-combustion method followed by annealing at 700 ℃. All the compounds showed single-phase and crystallized into a distorted orthorhombic structure with the space group (Pbnm). The average particle size for all the samples were in the range 53–110 nm. The detailed and systematic magnetic measurements and analysis showed that all the samples up to x = 0.9 have large magnetization and large values of the change in the magnetic entropy. The magnitude of the change in the magnetic entropy (at 4.5 K and for all the values of the change in the applied magnetic field between 1 and 9 T) is found to increase with increasing x reaching a maximum value at x = 0.3 then it decreases as we increase the yttrium concentration. The nanoparticle compounds with low yttrium concentrations showed a giant change in the magnetic entropy and a giant relative cooling power. Based on the slopes of Arrott plots curves the order parameter of the magnetic transition has been estimated and found to be second order. The giant change in the magnetic entropy and the relative cooling power were tuned in the rages (-45.6 to -8.7 J/kg·K at a change in the applied magnetic field of 9 T; and 136–746 J/kg), around the helium liquefaction temperature. The magnitude of the change in the magnetic entropy is significantly larger for large range of temperatures, up to the nitrogen liquefaction temperature. The giant change in the magnetic entropy and the giant relative cooling power at low temperatures (in the range about 4 to 20 K.) make these samples candidate materials for the low temperature magnetic refrigerant applications, based on the magnetocaloric effect.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70088065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Composite scaffolds of chitosan/polycaprolactone functionalized with protein of Mytilus californiensis for bone tissue regeneration 壳聚糖/聚己内酯加利福尼亚贻贝蛋白功能化复合支架用于骨组织再生
IF 1.8 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2022-01-01 DOI: 10.3934/matersci.2022021
Miguel-Angel Rojas-Yañez, C. Rodríguez-González, S. Martel-Estrada, L. Valencia-Gómez, C. Vargas-Requena, J. Hernández-Paz, M. Chavarría-Gaytán, I. Olivas-Armendáriz
Nowadays, the treatment for bone damage remains a significant challenge. As a result, the development of bioactive three-dimensional scaffolds for bone regeneration has become a key area of study within tissue engineering. This research is focused on the evaluation of the properties of Chitosan (Ch)/Polycaprolactone (PCL) scaffolds with the Mytilus californiensis protein by Thermally Induced Phase Separation (TIPS). This study used the extrapalleal fluid protein from Mytilus californiensis because it increases biological processes that support bone regeneration. Two methodologies were used for the scaffolds functionalization: (I) an immersion process in a solution with the protein and (II) the protein direct addition during the scaffold synthesis. The scaffolds were analyzed by Fourier Transformed Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), and Mechanical Compression test to determine the composition, morphology, and mechanical properties of each material. In vitro analysis of biodegradation, bioactivity, and biocompatibility were also performed. The scaffolds with the protein added directly presented superior properties in the tests of bioactivity and cellular proliferation, making these composites attractive for the area of bone regeneration.
目前,骨损伤的治疗仍然是一个重大的挑战。因此,开发具有生物活性的三维骨再生支架已成为组织工程研究的一个关键领域。采用热诱导相分离(TIPS)技术对壳聚糖(Ch)/聚己内酯(PCL)与加利福尼亚贻贝(Mytilus californiensis)蛋白复合支架的性能进行了研究。本研究使用来自加利福尼亚贻贝的鳃外液蛋白,因为它增加了支持骨再生的生物过程。支架功能化使用了两种方法:(I)在蛋白质溶液中浸泡过程和(II)在支架合成过程中直接添加蛋白质。通过傅里叶变换红外光谱(FT-IR)、扫描电镜(SEM)和力学压缩测试对支架进行分析,确定每种材料的组成、形貌和力学性能。体外生物降解、生物活性和生物相容性分析也进行了。直接添加蛋白质的支架在生物活性和细胞增殖试验中表现出优异的性能,使这些复合材料在骨再生领域具有吸引力。
{"title":"Composite scaffolds of chitosan/polycaprolactone functionalized with protein of Mytilus californiensis for bone tissue regeneration","authors":"Miguel-Angel Rojas-Yañez, C. Rodríguez-González, S. Martel-Estrada, L. Valencia-Gómez, C. Vargas-Requena, J. Hernández-Paz, M. Chavarría-Gaytán, I. Olivas-Armendáriz","doi":"10.3934/matersci.2022021","DOIUrl":"https://doi.org/10.3934/matersci.2022021","url":null,"abstract":"Nowadays, the treatment for bone damage remains a significant challenge. As a result, the development of bioactive three-dimensional scaffolds for bone regeneration has become a key area of study within tissue engineering. This research is focused on the evaluation of the properties of Chitosan (Ch)/Polycaprolactone (PCL) scaffolds with the Mytilus californiensis protein by Thermally Induced Phase Separation (TIPS). This study used the extrapalleal fluid protein from Mytilus californiensis because it increases biological processes that support bone regeneration. Two methodologies were used for the scaffolds functionalization: (I) an immersion process in a solution with the protein and (II) the protein direct addition during the scaffold synthesis. The scaffolds were analyzed by Fourier Transformed Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), and Mechanical Compression test to determine the composition, morphology, and mechanical properties of each material. In vitro analysis of biodegradation, bioactivity, and biocompatibility were also performed. The scaffolds with the protein added directly presented superior properties in the tests of bioactivity and cellular proliferation, making these composites attractive for the area of bone regeneration.","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70088169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
AIMS Materials Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1