Pub Date : 2017-09-26DOI: 10.11648/J.AJMP.S.2017060401.19
J. Dunning-Davies, R. Norman, R. Santilli
In this work we propose, apparently for the first time, a possible angular quantization as a complement for the conventional radial quantization with the intent of initiating quantitative studies regarding the capability of liquid water to acquire and propagate information. We articulate the proposed angular quantization via the absorption of thermal energy by the hydrogen atom in the ground state at absolute zero degree temperature prior to the transition to the first excited state. We extend the proposed angular quantization to the hydrogen and water molecules; and conclude that if our model of angular quantization is confirmed, the liquid state of water has the capability of acquiring and propagating a truly vast quantity of information, explaining demonstrated chemo-analogous biological effects apart from chemical exposure.
{"title":"A Possible Angular Quantization as a Complement to the Conventional Radial Quantization in the Hydrogen Atom and Aqueous Systems","authors":"J. Dunning-Davies, R. Norman, R. Santilli","doi":"10.11648/J.AJMP.S.2017060401.19","DOIUrl":"https://doi.org/10.11648/J.AJMP.S.2017060401.19","url":null,"abstract":"In this work we propose, apparently for the first time, a possible angular quantization as a complement for the conventional radial quantization with the intent of initiating quantitative studies regarding the capability of liquid water to acquire and propagate information. We articulate the proposed angular quantization via the absorption of thermal energy by the hydrogen atom in the ground state at absolute zero degree temperature prior to the transition to the first excited state. We extend the proposed angular quantization to the hydrogen and water molecules; and conclude that if our model of angular quantization is confirmed, the liquid state of water has the capability of acquiring and propagating a truly vast quantity of information, explaining demonstrated chemo-analogous biological effects apart from chemical exposure.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"105 1","pages":"105"},"PeriodicalIF":0.0,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85885066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-09-26DOI: 10.11648/J.AJMP.S.2017060401.16
C. Pandhurnekar, S. Zodape
Since the beginning of the industrial revolutions across the different parts of the globe, scientists are constantly trying to get access to clean; affordable and reliable energy which thus has been a cornerstone of the world’s increasing prosperity and economic growth. Our use of energy in the twenty-first century must also be sustainable. Energy efficiency and conservation, as well as decarbonizing our energy sources are essential to this revolution. Reducing carbon emissions on the timescale needed to mitigate the worst risks of climate change will not be driven by our inability to find cost-effective sources of fossil fuels. Here, we are reviewing the work done by Prof. R. M. Santilli on his new chemical species of “Magnecules” which primarily consists of bonds of magnetic types enabling pollution free and environmentally benign emission of exhaust. Also, different applications have also been discussed here.
自从工业革命在全球各地开始以来,科学家们一直在努力获得清洁的;负担得起和可靠的能源,因此已成为世界日益繁荣和经济增长的基石。我们在21世纪对能源的利用也必须是可持续的。能源效率和节约,以及使能源脱碳对这场革命至关重要。在缓解气候变化最严重风险所需的时间尺度上减少碳排放,不会因为我们无法找到具有成本效益的化石燃料来源而受到影响。在这里,我们回顾了R. M. Santilli教授在他的新化学物种“Magnecules”上所做的工作,该物种主要由磁性类型的键组成,可以实现无污染和环保的废气排放。此外,这里还讨论了不同的应用程序。
{"title":"Santilli’s Magnecules and Their Applications","authors":"C. Pandhurnekar, S. Zodape","doi":"10.11648/J.AJMP.S.2017060401.16","DOIUrl":"https://doi.org/10.11648/J.AJMP.S.2017060401.16","url":null,"abstract":"Since the beginning of the industrial revolutions across the different parts of the globe, scientists are constantly trying to get access to clean; affordable and reliable energy which thus has been a cornerstone of the world’s increasing prosperity and economic growth. Our use of energy in the twenty-first century must also be sustainable. Energy efficiency and conservation, as well as decarbonizing our energy sources are essential to this revolution. Reducing carbon emissions on the timescale needed to mitigate the worst risks of climate change will not be driven by our inability to find cost-effective sources of fossil fuels. Here, we are reviewing the work done by Prof. R. M. Santilli on his new chemical species of “Magnecules” which primarily consists of bonds of magnetic types enabling pollution free and environmentally benign emission of exhaust. Also, different applications have also been discussed here.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"18 1","pages":"64"},"PeriodicalIF":0.0,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78721199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-09-26DOI: 10.11648/j.ajmp.s.2017060401.13
A. Bhalekar, R. Santilli
In preceding works, one of us (R. M. Santilli) has shown that, according to quantum chemistry, identical electrons cannot create the strong bond occurring in molecular structures due to their strongly repulsive Coulomb interaction; has constructed hadronic chemistry as a non-unitary covering of quantum chemistry solely valid at mutual distances of 10-13cm; has introduced contact non-Hamiltonian interactions in the deep penetration of the wavepackets of valence electrons that overcomes said Coulomb repulsion, resulting in a strongly attractive bond of valence electron pairs in singlet called ’isoelectronium’ and shown that the new valence bond allows an exact and time invariant representation of the binding energy of the hydrogen and water molecules. By using these advances and our inference that (from the fact that an atomic lone pair of electrons form a coordinate covalent bond identified by G. N. Lewis) the lone pairs of electrons are indeed isoelectronium, in this paper we present, apparently for the first time, a new structure model of the Helium atom under the name of Iso-Helium, in which the two electrons of a given orbital are strongly coupled into the isoelectronium that provided a quantitative description of Pauli exclusion principle. In particular, as a result of the strongly bound state of Santilli isoelectronium, the iso-Helium reduces to be a two-body system, thus admitting exact analytic solution. The presented analytic solution is applicable to all Helium-like systems. Using it we have calculated effective charge on the nuclei of Helium-like systems that are in excellent agreement with the literature values.
在之前的工作中,我们中的一个人(R. M. Santilli)已经证明,根据量子化学,相同的电子不能产生发生在分子结构中的强键,因为它们具有强烈的排斥库仑相互作用;将强子化学构建为量子化学的非统一覆盖,仅在相互距离为10-13cm时有效;在价电子波包的深度穿透中引入了接触式非哈密顿相互作用,克服了库仑斥力,形成了单线态价电子对的强吸引力键,称为“等电子”,并表明新的价电子键可以精确地、时不变地表示氢和水分子的结合能。利用这些进展和我们的推论(根据原子的孤对电子形成由G. N. Lewis确定的座标共价键的事实),孤对电子确实是等电子,在这篇论文中,我们显然是第一次提出了一个新的氦原子结构模型,命名为“等氦”。其中,给定轨道的两个电子强耦合成等电子,提供了泡利不相容原理的定量描述。特别地,由于Santilli等电子的强束缚态,使等氦化约为两体系统,从而允许精确解析解。所提出的解析解适用于所有类氦系。用它计算了类氦系原子核上的有效电荷,与文献值非常吻合。
{"title":"Two Body IsoElectronium Model of the Heliumic Systems","authors":"A. Bhalekar, R. Santilli","doi":"10.11648/j.ajmp.s.2017060401.13","DOIUrl":"https://doi.org/10.11648/j.ajmp.s.2017060401.13","url":null,"abstract":"In preceding works, one of us (R. M. Santilli) has shown that, according to quantum chemistry, identical electrons cannot create the strong bond occurring in molecular structures due to their strongly repulsive Coulomb interaction; has constructed hadronic chemistry as a non-unitary covering of quantum chemistry solely valid at mutual distances of 10-13cm; has introduced contact non-Hamiltonian interactions in the deep penetration of the wavepackets of valence electrons that overcomes said Coulomb repulsion, resulting in a strongly attractive bond of valence electron pairs in singlet called ’isoelectronium’ and shown that the new valence bond allows an exact and time invariant representation of the binding energy of the hydrogen and water molecules. By using these advances and our inference that (from the fact that an atomic lone pair of electrons form a coordinate covalent bond identified by G. N. Lewis) the lone pairs of electrons are indeed isoelectronium, in this paper we present, apparently for the first time, a new structure model of the Helium atom under the name of Iso-Helium, in which the two electrons of a given orbital are strongly coupled into the isoelectronium that provided a quantitative description of Pauli exclusion principle. In particular, as a result of the strongly bound state of Santilli isoelectronium, the iso-Helium reduces to be a two-body system, thus admitting exact analytic solution. The presented analytic solution is applicable to all Helium-like systems. Using it we have calculated effective charge on the nuclei of Helium-like systems that are in excellent agreement with the literature values.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"6 1","pages":"29"},"PeriodicalIF":0.0,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90197309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-09-26DOI: 10.11648/J.AJMP.S.2017060401.15
V. Tangde, Sachin S. Wazalwar
In the process of Hydraulic fracturing millions of gallons of water, sand and chemicals are pumped underground to break apart the rock to release the gas. In Hydraulic fracturing certain fluids and materials are used to create small fractures in order to stimulate production from new and existing oil and gas wells. This creates paths that increase the rate at which fluids can be produced from the reservoir formations, in some cases by many hundreds of percent. Although it helped in triggering this year almost 42% of decline in crude prices, on the other hand the completion of drilling process leaves behind pits with waste of the overall process. As the sludge or waste of the process is water based liquid with chemicals and hydrocarbon oil remains of the mineral stock, it is a potentially hazardous material for environment. In this view the Plasma Arc Flow Technique to convert this liquid waste into useful MAGNEGAS TM (MG) proposed by Professor Ruggero Maria Santilli is much beneficial in reducing the oil waste as well as in minimizing the environmental problems. In the present paper, origin of the concept of a new Magnecular Fuel via Hadronic Chemistry, its composition, technique, characterization and its applications in the diversified Industries are discussed.
在水力压裂的过程中,数百万加仑的水、沙子和化学物质被泵入地下,以破坏岩石,释放出天然气。在水力压裂中,某些流体和材料被用来制造小裂缝,以提高新建和现有油气井的产量。这就创造了增加流体从储层中产生的速率的路径,在某些情况下可以提高几百倍。尽管它帮助引发了今年近42%的原油价格下跌,但另一方面,钻井过程的完成留下了整个过程的浪费。由于该工艺产生的污泥或废液为水基液体,含有矿物原料的化学物质和烃类油残留物,对环境具有潜在的危害。从这个角度来看,Ruggero Maria Santilli教授提出的将这种液体废物转化为有用的maggas TM (MG)的等离子弧流技术在减少石油废物和最大限度地减少环境问题方面非常有益。本文从强子化学的角度讨论了新型磁性燃料概念的起源、组成、工艺、表征及其在工业上的应用。
{"title":"Magnegas - An Alternative Technology for Clean Energy","authors":"V. Tangde, Sachin S. Wazalwar","doi":"10.11648/J.AJMP.S.2017060401.15","DOIUrl":"https://doi.org/10.11648/J.AJMP.S.2017060401.15","url":null,"abstract":"In the process of Hydraulic fracturing millions of gallons of water, sand and chemicals are pumped underground to break apart the rock to release the gas. In Hydraulic fracturing certain fluids and materials are used to create small fractures in order to stimulate production from new and existing oil and gas wells. This creates paths that increase the rate at which fluids can be produced from the reservoir formations, in some cases by many hundreds of percent. Although it helped in triggering this year almost 42% of decline in crude prices, on the other hand the completion of drilling process leaves behind pits with waste of the overall process. As the sludge or waste of the process is water based liquid with chemicals and hydrocarbon oil remains of the mineral stock, it is a potentially hazardous material for environment. In this view the Plasma Arc Flow Technique to convert this liquid waste into useful MAGNEGAS TM (MG) proposed by Professor Ruggero Maria Santilli is much beneficial in reducing the oil waste as well as in minimizing the environmental problems. In the present paper, origin of the concept of a new Magnecular Fuel via Hadronic Chemistry, its composition, technique, characterization and its applications in the diversified Industries are discussed.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"20 1","pages":"53"},"PeriodicalIF":0.0,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88391097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-09-26DOI: 10.11648/j.ajmp.s.2017060401.12
R. Norman, J. Dunning-Davies
Biological systems are dependent upon and intertwined with aqueous systems. We will present empirically derived evidence of the unique properties of water and demonstrate the efficacious role of molecular electromagnetic informational encoding as mediated through aqueous dynamics and mnemic properties. Working theory will then be articulated from quantum, thermodynamic and Hadronic aspects. An aqueous molecular species of dynamic magnecule will then be defined. Implications are drawn which point to a possible nontoxic, purely informational potential for future medical and pharmacological science. Magnecules and aqueous informational magnecular dynamics may one day redefine energy storage and production, as well as medical practice.
{"title":"The Informational Magnecule: The Role of Aqueous Coherence and Information in Biological Dynamics and Morphology","authors":"R. Norman, J. Dunning-Davies","doi":"10.11648/j.ajmp.s.2017060401.12","DOIUrl":"https://doi.org/10.11648/j.ajmp.s.2017060401.12","url":null,"abstract":"Biological systems are dependent upon and intertwined with aqueous systems. We will present empirically derived evidence of the unique properties of water and demonstrate the efficacious role of molecular electromagnetic informational encoding as mediated through aqueous dynamics and mnemic properties. Working theory will then be articulated from quantum, thermodynamic and Hadronic aspects. An aqueous molecular species of dynamic magnecule will then be defined. Implications are drawn which point to a possible nontoxic, purely informational potential for future medical and pharmacological science. Magnecules and aqueous informational magnecular dynamics may one day redefine energy storage and production, as well as medical practice.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"14 1","pages":"17"},"PeriodicalIF":0.0,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75381178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-09-26DOI: 10.11648/J.AJMP.S.2017060401.18
R. Norman, A. Bhalekar, S. B. Bartoli, B. Buckley, J. Dunning-Davies, J. Rak, R. Santilli
In this paper, we outline preceding mathematical, theoretical and experimental studies on the synthesis of neutrons from a hydrogen gas, and present additional systematic experimental confirmations via the use of three different neutron detectors. We also present experimental evidence of the existence of an intermediate bound state of a proton and an electron with spin zero known as the neutroid. A number of industrial applications currently under development by Thunder Energies Corporation are pointed out.
{"title":"Experimental Confirmation of the Synthesis of Neutrons and Neutroids from a Hydrogen Gas","authors":"R. Norman, A. Bhalekar, S. B. Bartoli, B. Buckley, J. Dunning-Davies, J. Rak, R. Santilli","doi":"10.11648/J.AJMP.S.2017060401.18","DOIUrl":"https://doi.org/10.11648/J.AJMP.S.2017060401.18","url":null,"abstract":"In this paper, we outline preceding mathematical, theoretical and experimental studies on the synthesis of neutrons from a hydrogen gas, and present additional systematic experimental confirmations via the use of three different neutron detectors. We also present experimental evidence of the existence of an intermediate bound state of a proton and an electron with spin zero known as the neutroid. A number of industrial applications currently under development by Thunder Energies Corporation are pointed out.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"134 1","pages":"85"},"PeriodicalIF":0.0,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77517761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-09-26DOI: 10.11648/j.ajmp.s.2017060401.17
Sachin S. Wazalwar, V. Tangde
Fossil fuels are contributing the largest share in meeting up energy demands of urban lifestyle across the globe. May it be gasoline or coal, all sort of fossil fuels are drilled out of earth crust to burn on the earth surface creating huge burden on air quality. Incomplete combustion of fossil fuels causes pollution of carbon monoxide and other gases. It also eats away the breathable oxygen from atmosphere. Rampant use of coal in power sector causes above problems adding to the global warming phenomenon. Magnecules and magnehydrogen are seen to be best additives to fossil fuels which can effectively enhance the combustion efficiency of fossil fuels. Present paper discusses the enhancement in combustion efficiency of fossil fuels in terms of increased utility of carbon and improved quality of emission reducing the amount of obnoxious gases.
{"title":"Magnecular Cleaning Coal Combustion Via Magne Gas Additive","authors":"Sachin S. Wazalwar, V. Tangde","doi":"10.11648/j.ajmp.s.2017060401.17","DOIUrl":"https://doi.org/10.11648/j.ajmp.s.2017060401.17","url":null,"abstract":"Fossil fuels are contributing the largest share in meeting up energy demands of urban lifestyle across the globe. May it be gasoline or coal, all sort of fossil fuels are drilled out of earth crust to burn on the earth surface creating huge burden on air quality. Incomplete combustion of fossil fuels causes pollution of carbon monoxide and other gases. It also eats away the breathable oxygen from atmosphere. Rampant use of coal in power sector causes above problems adding to the global warming phenomenon. Magnecules and magnehydrogen are seen to be best additives to fossil fuels which can effectively enhance the combustion efficiency of fossil fuels. Present paper discusses the enhancement in combustion efficiency of fossil fuels in terms of increased utility of carbon and improved quality of emission reducing the amount of obnoxious gases.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"18 1","pages":"78"},"PeriodicalIF":0.0,"publicationDate":"2017-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74456346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-09-25DOI: 10.11648/J.AJMP.20170606.14
F. Bhadala, V. Jha, L. Suthar, M. Roy
The ceramic sample of ScFeO3 (SFO) has been prepared by standard high temperature solid state reaction method using high purity oxides. The formation of the compound as well as structural analysis has been carried out by X-ray diffraction method which confirmed the rhombohedral symmetry with polar space group R3c. The average grain size obtained by the Scherrer formula is of the order of 560 A. The surface morphology of SFO has been investigated by Atomic Force Microscopy (AFM). The average roughness obtained by two dimensional surface morphology ranges from 5.80 nm to 20.2 nm for surface area 5×5μm2 to 10×10μm2 respectively. The dielectric constant and dielectric loss as a function of frequency (100Hz-1MHz) and temperature (RT-650K) have been measured. At RT and 1kHz frequency the material shows high dielectric constant value (around 1800) with lossy nature. The transport properties such as I-V characteristics, ac and dc conductivities have been measured and activation energy was calculated using the Arrhenius relation. The I-V characteristic along with ac and dc conductivity studies show semiconducting behaviour with dc activation energy of 0.81eV. The Magnetic measurement indicates weak ferromagnetic behaviour. The Enthalpy change (ΔH), Specific heat (Cp) and % Weight-loss of the compound have been measured using DTA/TGA technique. The DTA curve shows transition around 1088K with Cp =2.3Jg-1K-1 and ΔH=18.4Jg-1. The low weight loss (around 2%) from RT -1200K suggest that the material is thermally stable. The results are discussed in detail.
{"title":"Synthesis, Structural, Electrical and Thermal Properties of ScFeO 3 Ceramic","authors":"F. Bhadala, V. Jha, L. Suthar, M. Roy","doi":"10.11648/J.AJMP.20170606.14","DOIUrl":"https://doi.org/10.11648/J.AJMP.20170606.14","url":null,"abstract":"The ceramic sample of ScFeO3 (SFO) has been prepared by standard high temperature solid state reaction method using high purity oxides. The formation of the compound as well as structural analysis has been carried out by X-ray diffraction method which confirmed the rhombohedral symmetry with polar space group R3c. The average grain size obtained by the Scherrer formula is of the order of 560 A. The surface morphology of SFO has been investigated by Atomic Force Microscopy (AFM). The average roughness obtained by two dimensional surface morphology ranges from 5.80 nm to 20.2 nm for surface area 5×5μm2 to 10×10μm2 respectively. The dielectric constant and dielectric loss as a function of frequency (100Hz-1MHz) and temperature (RT-650K) have been measured. At RT and 1kHz frequency the material shows high dielectric constant value (around 1800) with lossy nature. The transport properties such as I-V characteristics, ac and dc conductivities have been measured and activation energy was calculated using the Arrhenius relation. The I-V characteristic along with ac and dc conductivity studies show semiconducting behaviour with dc activation energy of 0.81eV. The Magnetic measurement indicates weak ferromagnetic behaviour. The Enthalpy change (ΔH), Specific heat (Cp) and % Weight-loss of the compound have been measured using DTA/TGA technique. The DTA curve shows transition around 1088K with Cp =2.3Jg-1K-1 and ΔH=18.4Jg-1. The low weight loss (around 2%) from RT -1200K suggest that the material is thermally stable. The results are discussed in detail.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"1 1","pages":"132"},"PeriodicalIF":0.0,"publicationDate":"2017-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90191072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-09-22DOI: 10.11648/J.AJMP.20170606.13
N. Yakubu, S. Howusu, N. Ibrahim, Ado Musa, Abba Babakura
In this paper, we used Howusu’s planetary equation. The general equation of motion is derived for particle of non-zero rest mass in a gravitational field based upon Riemannian geometry and the golden metric tensor which is thereby opens the way for further studies or to pave the way for applications such as planetary theory.
{"title":"The General Equation of Motion in a Gravitational Field Based Upon the Golden Metric Tensor","authors":"N. Yakubu, S. Howusu, N. Ibrahim, Ado Musa, Abba Babakura","doi":"10.11648/J.AJMP.20170606.13","DOIUrl":"https://doi.org/10.11648/J.AJMP.20170606.13","url":null,"abstract":"In this paper, we used Howusu’s planetary equation. The general equation of motion is derived for particle of non-zero rest mass in a gravitational field based upon Riemannian geometry and the golden metric tensor which is thereby opens the way for further studies or to pave the way for applications such as planetary theory.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"16 1","pages":"127"},"PeriodicalIF":0.0,"publicationDate":"2017-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82105770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-09-21DOI: 10.11648/J.AJMP.20170606.12
Hua Ma
It is a basic, ancient and mysterious issue: why our space is three dimensional? This issue is related to philosophy, mathematics, physics and even religion, and thus aroused great research interests. The author makes an in-depth analysis of the problem, and finally comes to a conclusion: For any vector space with symmetry, orthogonality, homogeneity and completeness, the space dimension must be three on condition that: the energy obeys the law of conservation, the dynamics law is governed by the covariance principle, and thus the cross-product must can be defined in the space. Our space just meets and requires the above constraints, so its dimension is three.
{"title":"A Physical Explanation on Why Our Space Is Three Dimensional","authors":"Hua Ma","doi":"10.11648/J.AJMP.20170606.12","DOIUrl":"https://doi.org/10.11648/J.AJMP.20170606.12","url":null,"abstract":"It is a basic, ancient and mysterious issue: why our space is three dimensional? This issue is related to philosophy, mathematics, physics and even religion, and thus aroused great research interests. The author makes an in-depth analysis of the problem, and finally comes to a conclusion: For any vector space with symmetry, orthogonality, homogeneity and completeness, the space dimension must be three on condition that: the energy obeys the law of conservation, the dynamics law is governed by the covariance principle, and thus the cross-product must can be defined in the space. Our space just meets and requires the above constraints, so its dimension is three.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"32 1","pages":"122"},"PeriodicalIF":0.0,"publicationDate":"2017-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80009839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}