首页 > 最新文献

Science China Materials最新文献

英文 中文
Recent progress of bay-functionalization perylene diimide acceptors and cathode interface layers in organic solar cells 有机太阳能电池中海湾功能化苝酰二亚胺受体及阴极界面层研究进展
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-10-09 DOI: 10.1007/s40843-025-3594-2
Shuhua Wang  (, ), Dan Zhou  (, ), Zhentian Xu  (, ), Jiangang Ma  (, ), Wei Ding  (, ), Jun Mao  (, ), Jingyun Huang  (, ), Bin Hu  (, ), Fang Wang  (, ), Ruizhi Lv  (, ), Haitao Xu  (, ), Lie Chen  (, )

Recently, the power conversion efficiency (PCE) of organic solar cells (OSCs) has been substantially advanced by optimizing the acceptors and cathode interface layers (CILs). Perylene diimide (PDI) has been universally used in acceptors and CILs for OSCs owing to its chemical and photothermal stability, structural tunability, and high electron mobility. Nevertheless, the high planarity of PDI tends to result in excessive aggregation, which suppresses the PCE of the OSCs. Notably, the bay-functionalization strategy of PDI can optimize the light absorption properties, charge transfer (CT), and aggregation behavior, which dramatically boost the PCE of OSCs. Here, a systematic summary of acceptors and CILs based on the bay-substitution of PDI is reviewed. First, the progress history and working principle of OSCs are reviewed, and the mechanisms of the acceptors and CILs, as well as the functional properties of the disparate positions of PDI, are elaborated. Second, the relationship between the performance and structure of the bay-modified PDI acceptors and CILs was discussed in depth. Finally, the conclusions and outlooks of acceptors and CILs for bay-substituted PDI are presented. This review provides valuable insights for optimizing the performance of OSCs by modifying the PDI in bay regions.

近年来,有机太阳能电池(OSCs)的功率转换效率(PCE)通过优化受体和阴极界面层(CILs)得到了很大的提高。苝二酰亚胺(PDI)具有化学稳定性、光热稳定性、结构可调节性和高电子迁移率等优点,已被广泛应用于OSCs的受体和CILs中。然而,PDI的高平面性容易导致过度聚集,从而抑制了osc的PCE。值得注意的是,PDI的海湾功能化策略可以优化光吸收性能、电荷转移(CT)和聚集行为,从而显著提高OSCs的PCE。本文系统地综述了基于PDI海湾取代的受体和CILs的研究进展。首先,综述了OSCs的发展历史和工作原理,阐述了受体和CILs的作用机制,以及PDI不同位置的功能特性。其次,深入讨论了凹槽修饰PDI受体和CILs的性能和结构之间的关系。最后,对bay-取代PDI的受体和CILs进行了总结和展望。本综述为通过调整海湾地区的PDI来优化OSCs的性能提供了有价值的见解。
{"title":"Recent progress of bay-functionalization perylene diimide acceptors and cathode interface layers in organic solar cells","authors":"Shuhua Wang \u0000 (,&nbsp;),&nbsp;Dan Zhou \u0000 (,&nbsp;),&nbsp;Zhentian Xu \u0000 (,&nbsp;),&nbsp;Jiangang Ma \u0000 (,&nbsp;),&nbsp;Wei Ding \u0000 (,&nbsp;),&nbsp;Jun Mao \u0000 (,&nbsp;),&nbsp;Jingyun Huang \u0000 (,&nbsp;),&nbsp;Bin Hu \u0000 (,&nbsp;),&nbsp;Fang Wang \u0000 (,&nbsp;),&nbsp;Ruizhi Lv \u0000 (,&nbsp;),&nbsp;Haitao Xu \u0000 (,&nbsp;),&nbsp;Lie Chen \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3594-2","DOIUrl":"10.1007/s40843-025-3594-2","url":null,"abstract":"<div><p>Recently, the power conversion efficiency (PCE) of organic solar cells (OSCs) has been substantially advanced by optimizing the acceptors and cathode interface layers (CILs). Perylene diimide (PDI) has been universally used in acceptors and CILs for OSCs owing to its chemical and photothermal stability, structural tunability, and high electron mobility. Nevertheless, the high planarity of PDI tends to result in excessive aggregation, which suppresses the PCE of the OSCs. Notably, the <i>bay</i>-functionalization strategy of PDI can optimize the light absorption properties, charge transfer (CT), and aggregation behavior, which dramatically boost the PCE of OSCs. Here, a systematic summary of acceptors and CILs based on the <i>bay</i>-substitution of PDI is reviewed. First, the progress history and working principle of OSCs are reviewed, and the mechanisms of the acceptors and CILs, as well as the functional properties of the disparate positions of PDI, are elaborated. Second, the relationship between the performance and structure of the <i>bay</i>-modified PDI acceptors and CILs was discussed in depth. Finally, the conclusions and outlooks of acceptors and CILs for <i>bay</i>-substituted PDI are presented. This review provides valuable insights for optimizing the performance of OSCs by modifying the PDI in <i>bay</i> regions.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 11","pages":"3894 - 3924"},"PeriodicalIF":7.4,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145476324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward dendrite-free and fast-charging lithium metal batteries: interfacial engineering of 3D ZnO/ZnSe heterostructural lithium hosts 走向无枝晶快速充电的锂金属电池:三维ZnO/ZnSe异质结构锂基质的界面工程
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-10-09 DOI: 10.1007/s40843-025-3534-0
Jing Zhu  (, ), Yang Yang  (, ), Yuanfan Zhao  (, ), Jiaojuan Lin  (, ), Jie Zhang  (, ), Pengqian Guo  (, ), Xinghui Wang  (, )

Lithium (Li) metal anodes (LMAs) have garnered significant attention due to their exceptionally high theoretical capacity and low redox potentials. However, the uncontrolled growth of Li dendrites and substantial volume expansion severely undermine their cycling stability, particularly at elevated current densities. Herein, we develop a lithiophilic 3D Li host by incorporating ZnO/ZnSe heterostructures onto brass fibers (ZnO/ZnSe@Brass), designed to enhance the fast-charging capabilities of Li metal batteries. This hierarchical structure effectively mitigates volume expansion and reduces local current density during lithiation. The uniformly distributed ZnO/ZnSe functions as a lithiophilic skin for the Li anode, facilitating smooth and dense Li deposition. Notably, the in situ formed solid electrolyte interphase, enriched with Li2Se and Li2O, provides high ionic conductivity and superior mechanical strength, thereby accelerating ion transport and charge transfer kinetics. Benefiting from the synergistic effects of the ZnO/ZnSe@Brass host, the resulting Li symmetric cell exhibits robust cycling performance exceeding 10,000 cycles (20 mA cm−2/1 mA h cm−2) and supports fast charging rates at an ultra-high current density of 80 mA cm−2. When paired with LiFePO4, the full-cell demonstrates excellent cycle life (>500 cycles at 2 C) and outstanding rate performance. This finding of ZnO/ZnSe@Brass as a Li host sheds light on the design of advanced LMAs for fast-charging Li metal batteries.

锂金属阳极(LMAs)由于其极高的理论容量和较低的氧化还原电位而引起了广泛的关注。然而,锂枝晶的不受控制的生长和大量的体积膨胀严重破坏了它们的循环稳定性,特别是在高电流密度下。在此,我们通过在黄铜纤维(ZnO/ZnSe@Brass)上加入ZnO/ZnSe异质结构,开发了一种亲锂性3D Li载体,旨在增强Li金属电池的快速充电能力。这种分层结构有效地减缓了体积膨胀,降低了锂化过程中的局部电流密度。均匀分布的ZnO/ZnSe作为锂阳极的亲锂皮肤,促进了光滑致密的锂沉积。值得注意的是,原位形成的固体电解质界面,富含Li2Se和Li2O,提供了高离子电导率和优异的机械强度,从而加速了离子传输和电荷转移动力学。得益于ZnO/ZnSe@Brass基质的协同效应,所制备的锂对称电池具有超过10,000次循环(20 mA cm - 2/1 mA h cm - 2)的强大循环性能,并支持80 mA cm - 2的超高电流密度下的快速充电速率。当与LiFePO4配对时,整个电池具有优异的循环寿命(在2℃下循环500次)和出色的倍率性能。这一发现为快速充电锂金属电池的先进LMAs设计提供了新的思路。
{"title":"Toward dendrite-free and fast-charging lithium metal batteries: interfacial engineering of 3D ZnO/ZnSe heterostructural lithium hosts","authors":"Jing Zhu \u0000 (,&nbsp;),&nbsp;Yang Yang \u0000 (,&nbsp;),&nbsp;Yuanfan Zhao \u0000 (,&nbsp;),&nbsp;Jiaojuan Lin \u0000 (,&nbsp;),&nbsp;Jie Zhang \u0000 (,&nbsp;),&nbsp;Pengqian Guo \u0000 (,&nbsp;),&nbsp;Xinghui Wang \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3534-0","DOIUrl":"10.1007/s40843-025-3534-0","url":null,"abstract":"<div><p>Lithium (Li) metal anodes (LMAs) have garnered significant attention due to their exceptionally high theoretical capacity and low redox potentials. However, the uncontrolled growth of Li dendrites and substantial volume expansion severely undermine their cycling stability, particularly at elevated current densities. Herein, we develop a lithiophilic 3D Li host by incorporating ZnO/ZnSe heterostructures onto brass fibers (ZnO/ZnSe@Brass), designed to enhance the fast-charging capabilities of Li metal batteries. This hierarchical structure effectively mitigates volume expansion and reduces local current density during lithiation. The uniformly distributed ZnO/ZnSe functions as a lithiophilic skin for the Li anode, facilitating smooth and dense Li deposition. Notably, the <i>in situ</i> formed solid electrolyte interphase, enriched with Li<sub>2</sub>Se and Li<sub>2</sub>O, provides high ionic conductivity and superior mechanical strength, thereby accelerating ion transport and charge transfer kinetics. Benefiting from the synergistic effects of the ZnO/ZnSe@Brass host, the resulting Li symmetric cell exhibits robust cycling performance exceeding 10,000 cycles (20 mA cm<sup>−2</sup>/1 mA h cm<sup>−2</sup>) and supports fast charging rates at an ultra-high current density of 80 mA cm<sup>−2</sup>. When paired with LiFePO<sub>4</sub>, the full-cell demonstrates excellent cycle life (&gt;500 cycles at 2 C) and outstanding rate performance. This finding of ZnO/ZnSe@Brass as a Li host sheds light on the design of advanced LMAs for fast-charging Li metal batteries.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 11","pages":"4068 - 4076"},"PeriodicalIF":7.4,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145476326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional graphdiyne based on perylene diimide units facilitating boosted performance of photothermal catalytic hydrogen evolution 基于苝二亚胺单元的功能石墨炔促进光热催化析氢性能的提高
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-10-09 DOI: 10.1007/s40843-025-3497-6
Xinyue Jiang  (, ), Huajun Xu  (, ), Wentao Zou  (, ), Xu Zhang  (, ), Fei Jin  (, ), Lingya Sun  (, ), Wanzhang Ding  (, ), Yuanyuan Kan  (, ), Yanna Sun  (, ), Ke Gao  (, )

Graphdiyne (GDY), known for its tunable intrinsic bandgap, high charge carrier mobility, and broad-spectrum absorption, has garnered significant attention for photocatalytic hydrogen evolution. However, GDY/wide-band semiconductor photocatalysts suffer from limitations, including low doping concentrations and insufficient absorption in the visible-to-near-infrared (Vis-NIR) region, which restricts full-spectrum energy utilization. To address these challenges, we designed and synthesized a functional graphdiyne quantum dots (PG-QDs) incorporating perylene diimide (PDI) units. These PG-QDs exhibit tailored spectral absorption, reducing competition with wide-band semiconductors for UV light while enhancing Vis-NIR absorption and photothermal conversion performance. PG-QDs overcame the doping concentration limitations of conventional GDY-based photocatalysts, achieving an optimal doping ratio of 15% without suppressing hydrogen evolution activity. The pronounced photothermal effect effectively suppressed the recombination of photogenerated carriers and enhanced charge carrier separation efficiency. The hydrogen evolution rate reached 12.69 mmol g−1 h−1, over thirty times higher than P25. This study presents a novel strategy for improving the full-spectrum energy utilization of GDY-based photocatalysts.

石墨炔(GDY)以其可调谐的固有带隙、高载流子迁移率和广谱吸收而闻名,在光催化析氢方面受到了广泛的关注。然而,GDY/宽带半导体光催化剂存在掺杂浓度低、可见光至近红外(Vis-NIR)区域吸收不足等局限性,限制了全光谱能量的利用。为了解决这些挑战,我们设计并合成了一种含有苝二酰亚胺(PDI)单元的功能石墨炔量子点(PG-QDs)。这些PG-QDs具有定制的光谱吸收,减少了与宽带半导体对紫外光的竞争,同时增强了可见光-近红外吸收和光热转换性能。PG-QDs克服了传统gdd基光催化剂掺杂浓度的限制,在不抑制析氢活性的情况下达到了15%的最佳掺杂比。明显的光热效应有效地抑制了光生载流子的复合,提高了载流子分离效率。析氢速率达到12.69 mmol g−1 h−1,是P25的30倍以上。本研究提出了一种提高gdd基光催化剂全光谱能量利用率的新策略。
{"title":"Functional graphdiyne based on perylene diimide units facilitating boosted performance of photothermal catalytic hydrogen evolution","authors":"Xinyue Jiang \u0000 (,&nbsp;),&nbsp;Huajun Xu \u0000 (,&nbsp;),&nbsp;Wentao Zou \u0000 (,&nbsp;),&nbsp;Xu Zhang \u0000 (,&nbsp;),&nbsp;Fei Jin \u0000 (,&nbsp;),&nbsp;Lingya Sun \u0000 (,&nbsp;),&nbsp;Wanzhang Ding \u0000 (,&nbsp;),&nbsp;Yuanyuan Kan \u0000 (,&nbsp;),&nbsp;Yanna Sun \u0000 (,&nbsp;),&nbsp;Ke Gao \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3497-6","DOIUrl":"10.1007/s40843-025-3497-6","url":null,"abstract":"<div><p>Graphdiyne (GDY), known for its tunable intrinsic bandgap, high charge carrier mobility, and broad-spectrum absorption, has garnered significant attention for photocatalytic hydrogen evolution. However, GDY/wide-band semiconductor photocatalysts suffer from limitations, including low doping concentrations and insufficient absorption in the visible-to-near-infrared (Vis-NIR) region, which restricts full-spectrum energy utilization. To address these challenges, we designed and synthesized a functional graphdiyne quantum dots (PG-QDs) incorporating perylene diimide (PDI) units. These PG-QDs exhibit tailored spectral absorption, reducing competition with wide-band semiconductors for UV light while enhancing Vis-NIR absorption and photothermal conversion performance. PG-QDs overcame the doping concentration limitations of conventional GDY-based photocatalysts, achieving an optimal doping ratio of 15% without suppressing hydrogen evolution activity. The pronounced photothermal effect effectively suppressed the recombination of photogenerated carriers and enhanced charge carrier separation efficiency. The hydrogen evolution rate reached 12.69 mmol g<sup>−1</sup> h<sup>−1</sup>, over thirty times higher than P25. This study presents a novel strategy for improving the full-spectrum energy utilization of GDY-based photocatalysts.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 11","pages":"4097 - 4106"},"PeriodicalIF":7.4,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145476327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lightening the unconventional transition metal dichalcogenide homobilayers via phonon energy harvesting 利用声子能量收集技术轻量化非常规过渡金属二硫族化物均质层
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-10-09 DOI: 10.1007/s40843-025-3543-0
Zheyuan Xu  (, ), Ying Chen  (, ), Jinyue Fu  (, ), Panfeng Cao  (, ), Biyuan Zheng  (, ), Boyi Xu  (, ), Sheng-Yi Xie  (, ), Ying Jiang  (, ), Anlian Pan  (, )

Phonon management in van der Waals (vdW) layered materials has become an area of increasing demand, driven by rapid advancements in electronic and optoelectronic devices. A fundamental challenge in the phonon management of these materials is the effective harvesting of phonons between layers to minimize energy dissipation. Here, we demonstrate a novel phonon energy harvesting strategy in vertically stacked transition metal dichalcogenide (TMD) homobilayers, whose constituent monolayers are prepared individually by mechanical exfoliation (ME) and chemical vapor deposition (CVD) methods. In these systems, owing to the defect-induced asymmetry of phonon populations between layers, the phonon energy can be transferred from CVD monolayers to ME monolayers and then sufficiently utilized to promote the trion-to-exciton conversion in homobilayers for significant photoluminescence (PL) enhancement. The degree of such PL enhancement can be further regulated by varying either the trion or phonon populations involved in the conversion process. This strategy is universally applicable to different TMD homobilayers, presenting a new avenue for phonon energy harvesting in vdW layered materials.

在电子和光电子器件快速发展的推动下,范德华(vdW)层状材料中的声子管理已经成为一个日益增长的需求领域。在这些材料的声子管理的一个基本挑战是有效地收集声子层之间,以尽量减少能量耗散。在这里,我们展示了一种新的声子能量收集策略,在垂直堆叠的过渡金属二硫化物(TMD)均匀层中,其组成单层是通过机械剥离(ME)和化学气相沉积(CVD)方法单独制备的。在这些系统中,由于层间声子居群的缺陷引起的不对称性,声子能量可以从CVD单层转移到ME单层,然后充分利用来促进均匀层中的trion-to-激子转换,从而显著增强光致发光(PL)。这种PL增强的程度可以通过改变转换过程中涉及的trion或声子种群来进一步调节。该策略普遍适用于不同的TMD层,为vdW层状材料声子能量收集提供了新的途径。
{"title":"Lightening the unconventional transition metal dichalcogenide homobilayers via phonon energy harvesting","authors":"Zheyuan Xu \u0000 (,&nbsp;),&nbsp;Ying Chen \u0000 (,&nbsp;),&nbsp;Jinyue Fu \u0000 (,&nbsp;),&nbsp;Panfeng Cao \u0000 (,&nbsp;),&nbsp;Biyuan Zheng \u0000 (,&nbsp;),&nbsp;Boyi Xu \u0000 (,&nbsp;),&nbsp;Sheng-Yi Xie \u0000 (,&nbsp;),&nbsp;Ying Jiang \u0000 (,&nbsp;),&nbsp;Anlian Pan \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3543-0","DOIUrl":"10.1007/s40843-025-3543-0","url":null,"abstract":"<div><p>Phonon management in van der Waals (vdW) layered materials has become an area of increasing demand, driven by rapid advancements in electronic and optoelectronic devices. A fundamental challenge in the phonon management of these materials is the effective harvesting of phonons between layers to minimize energy dissipation. Here, we demonstrate a novel phonon energy harvesting strategy in vertically stacked transition metal dichalcogenide (TMD) homobilayers, whose constituent monolayers are prepared individually by mechanical exfoliation (ME) and chemical vapor deposition (CVD) methods. In these systems, owing to the defect-induced asymmetry of phonon populations between layers, the phonon energy can be transferred from CVD monolayers to ME monolayers and then sufficiently utilized to promote the trion-to-exciton conversion in homobilayers for significant photoluminescence (PL) enhancement. The degree of such PL enhancement can be further regulated by varying either the trion or phonon populations involved in the conversion process. This strategy is universally applicable to different TMD homobilayers, presenting a new avenue for phonon energy harvesting in vdW layered materials.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 11","pages":"4032 - 4042"},"PeriodicalIF":7.4,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145476275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large crystallographic orientation difference contacts induce phase transformation of WS2 nanosheets from 2H to 1T 大晶体取向差接触诱导WS2纳米片由2H向1T相变
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-10-09 DOI: 10.1007/s40843-025-3505-0
Hantao Cui  (, ), Yunna Guo  (, ), Peng Jia  (, ), Yanxian Li  (, ), Zhangran Ye  (, ), Lei Deng  (, ), Chongchong Ma  (, ), Chao Tai  (, ), Liqiang Zhang  (, ), Bin Wen  (, )

Transition metal dichalcogenides (TMDs) have widespread applications in the fields of optoelectronics and catalysis. Generally, 1T phase TMDs have more edge active sites than 2H phase TMDs and thus exhibit superior catalytic efficiency. However, it remains challenging to prepare 1T phase TMDs to date. In this study, we found that when two 2H phase tungsten disulfide (2H-WS2) grains with large crystallographic orientation differences (>10°) come into contact at a temperature of 1000 °C, they can combine and further transform into one pure 1T phase tungsten disulfide (1T-WS2) grain without crystallographic orientation differences. The first-principles calculation showed that at a temperature lower than 280 K, the 2H-WS2 is a stable phase and 1T-WS2 is a metastable phase. But when the temperature is higher than 280 K, their relative stability turns. In the kinetic analysis of 2H to 1T phase nucleation, homogeneous nucleation needs to cross the energy barrier of 2.314 eV, while the heterogeneous nucleation of two nanosheets in contact only needs to cross the energy barrier of 0.005 eV, which is more prone to phase transformation. This work presents a novel approach for synthesizing 1T-WS2 and may provide a strategy for synthesizing other 1T phase TMDs.

过渡金属二硫族化合物(TMDs)在光电子学和催化领域有着广泛的应用。一般来说,1T相TMDs比2H相TMDs具有更多的边缘活性位点,因此表现出更好的催化效率。然而,到目前为止,制备1T相tmd仍然具有挑战性。在本研究中,我们发现在1000℃温度下,当两个具有较大结晶取向差异(>10°)的2H相二硫化钨(2H- ws2)晶粒接触时,它们可以结合并进一步转化为一个没有结晶取向差异的纯1T相二硫化钨(1T- ws2)晶粒。第一性原理计算表明,在低于280 K的温度下,2H-WS2为稳定相,1T-WS2为亚稳相。但当温度高于280k时,它们的相对稳定性发生了变化。在2H - 1T相成核的动力学分析中,均相成核需要跨越2.314 eV的能垒,而接触的两个纳米片的非均相成核只需要跨越0.005 eV的能垒,更容易发生相变。这项工作提出了一种合成1T- ws2的新方法,并可能为合成其他1T相tmd提供策略。
{"title":"Large crystallographic orientation difference contacts induce phase transformation of WS2 nanosheets from 2H to 1T","authors":"Hantao Cui \u0000 (,&nbsp;),&nbsp;Yunna Guo \u0000 (,&nbsp;),&nbsp;Peng Jia \u0000 (,&nbsp;),&nbsp;Yanxian Li \u0000 (,&nbsp;),&nbsp;Zhangran Ye \u0000 (,&nbsp;),&nbsp;Lei Deng \u0000 (,&nbsp;),&nbsp;Chongchong Ma \u0000 (,&nbsp;),&nbsp;Chao Tai \u0000 (,&nbsp;),&nbsp;Liqiang Zhang \u0000 (,&nbsp;),&nbsp;Bin Wen \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3505-0","DOIUrl":"10.1007/s40843-025-3505-0","url":null,"abstract":"<div><p>Transition metal dichalcogenides (TMDs) have widespread applications in the fields of optoelectronics and catalysis. Generally, 1T phase TMDs have more edge active sites than 2H phase TMDs and thus exhibit superior catalytic efficiency. However, it remains challenging to prepare 1T phase TMDs to date. In this study, we found that when two 2H phase tungsten disulfide (2H-WS<sub>2</sub>) grains with large crystallographic orientation differences (&gt;10°) come into contact at a temperature of 1000 °C, they can combine and further transform into one pure 1T phase tungsten disulfide (1T-WS<sub>2</sub>) grain without crystallographic orientation differences. The first-principles calculation showed that at a temperature lower than 280 K, the 2H-WS<sub>2</sub> is a stable phase and 1T-WS<sub>2</sub> is a metastable phase. But when the temperature is higher than 280 K, their relative stability turns. In the kinetic analysis of 2H to 1T phase nucleation, homogeneous nucleation needs to cross the energy barrier of 2.314 eV, while the heterogeneous nucleation of two nanosheets in contact only needs to cross the energy barrier of 0.005 eV, which is more prone to phase transformation. This work presents a novel approach for synthesizing 1T-WS<sub>2</sub> and may provide a strategy for synthesizing other 1T phase TMDs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 11","pages":"4231 - 4237"},"PeriodicalIF":7.4,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145476352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing nitrogen-rich clover-like covalent organic frameworks for effective iodine capture 构建富氮三叶草状共价有机框架,用于有效捕获碘
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-10-09 DOI: 10.1007/s40843-025-3618-1
Lingli Zhang  (, ), Songsong Zhang  (, ), Li Wang  (, ), Feng Luo  (, )

Covalent organic frameworks (COFs) are promising candidates for the rapid purification of toxic pollutants and mitigation of radioactive iodine leakage in nuclear accidents. In particular, COFs constructed from meta-position monomers can form clover-like morphology, increasing the specific surface area and providing multidimensional diffusion pathways for iodine. Herein, two nitrogen-rich COFs (DFPT-COF and DFPB-COF) featuring well-defined cloverlike nanochannels were successfully fabricated, demonstrating exceptional iodine capture performance. Compared to DFPB-COF, DFPT-COF exhibits better iodine capture performance (5.58 g g−1 for I2 vapor) due to its large specific surface area and rich nitrogen adsorption sites. Moreover, the adsorption dynamics of DFPT-COF for liquid iodine follow a pseudosecond-order kinetic model and the adsorption isotherm model complies with the Langmuir model. Notably, DFPT-COF exhibited excellent renewable adsorption performance, suggesting its potential as a sustainable and efficient green adsorbent for iodine in nuclear waste management.

共价有机框架(COFs)是快速净化有毒污染物和缓解核事故中放射性碘泄漏的有希望的候选材料。特别是,由位元单体构建的COFs可以形成三叶草状的形态,增加了比表面积,并为碘提供了多维扩散途径。本文成功制备了两种富氮COFs (DFPT-COF和DFPB-COF),它们具有明确定义的三叶草状纳米通道,表现出优异的碘捕获性能。与DFPT-COF相比,DFPT-COF由于其较大的比表面积和丰富的氮吸附位点,具有更好的碘捕获性能(I2蒸气为5.58 g g−1)。此外,DFPT-COF对液态碘的吸附动力学符合拟二级动力学模型,吸附等温线模型符合Langmuir模型。值得注意的是,DFPT-COF表现出优异的可再生吸附性能,表明其在核废料管理中具有可持续和高效的绿色吸附剂的潜力。
{"title":"Constructing nitrogen-rich clover-like covalent organic frameworks for effective iodine capture","authors":"Lingli Zhang \u0000 (,&nbsp;),&nbsp;Songsong Zhang \u0000 (,&nbsp;),&nbsp;Li Wang \u0000 (,&nbsp;),&nbsp;Feng Luo \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3618-1","DOIUrl":"10.1007/s40843-025-3618-1","url":null,"abstract":"<div><p>Covalent organic frameworks (COFs) are promising candidates for the rapid purification of toxic pollutants and mitigation of radioactive iodine leakage in nuclear accidents. In particular, COFs constructed from meta-position monomers can form clover-like morphology, increasing the specific surface area and providing multidimensional diffusion pathways for iodine. Herein, two nitrogen-rich COFs (DFPT-COF and DFPB-COF) featuring well-defined cloverlike nanochannels were successfully fabricated, demonstrating exceptional iodine capture performance. Compared to DFPB-COF, DFPT-COF exhibits better iodine capture performance (5.58 g g<sup>−1</sup> for I<sub>2</sub> vapor) due to its large specific surface area and rich nitrogen adsorption sites. Moreover, the adsorption dynamics of DFPT-COF for liquid iodine follow a pseudosecond-order kinetic model and the adsorption isotherm model complies with the Langmuir model. Notably, DFPT-COF exhibited excellent renewable adsorption performance, suggesting its potential as a sustainable and efficient green adsorbent for iodine in nuclear waste management.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 11","pages":"4164 - 4172"},"PeriodicalIF":7.4,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145476319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of multifunctional phosphonic acid molecule for highly efficient, stable inverted perovskite solar cells 高效、稳定的倒钙钛矿太阳能电池用多功能磷酸分子的设计
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-09-26 DOI: 10.1007/s40843-025-3643-8
Rongmei Zhao  (, ), Yachao Du  (, ), Nan Wu  (, ), Xinyue Li  (, ), Wenbin Yuan  (, ), Shifeng Ge  (, ), Zhaowei Xu  (, ), Xiaoyang Shen  (, ), Simin Ma  (, ), Ruohao Wang  (, ), Tinghuan Yang  (, ), Dengke Wang  (, ), Xiaodong Ren  (, ), Jiangzhao Chen  (, ), Kui Zhao  (, ), Wen-Hua Zhang  (, )

Inverted perovskite solar cells (PSCs) have emerged as promising photovoltaic candidates because of their high efficiency and cost-effective fabrication. However, abundant defects and inefficient charge transport critically compromise the device efficiency and stability. Phosphonic acid-based multifunctional molecules, mainly as self-assemble monolayer, have recently been demonstrated to be useful in improving the device performance of the inverted PSCs. Herein, we designed and synthesized a new multifunctional molecule, (2-(3,6-bis(trifluoromethoxy)-9H-carbazol-9-yl)ethyl)phosphonic acid (M28) as additive in perovskite precursor solution to fabricate high-efficiency and stable inverted PSCs. Through spontaneous segregation toward the buried interface and grain boundaries (GBs), M28 affords threefold roles in enhancing device performance: (1) slowing the crystallization rate and enlarging the grain sizes to improve the perovskite film quality, (2) passivating the defects at buried interface and GBs to suppress charge recombination, (3) inducing an extra electric field at the buried interface through p-type doping to promote hole transport. The resulting devices thus achieved a remarkable power conversion efficiency of 25.96% and impressive long-term operational stability: maintaining 80% of their initial efficiency after 1500 h tracking at the maximum power point. This work emphasizes the importance of exploration of new types of functional molecules in advancing PSCs.

倒置钙钛矿太阳能电池(PSCs)因其高效率和低成本的制造工艺而成为有前途的光伏候选材料。然而,大量的缺陷和低效的电荷输运严重影响了器件的效率和稳定性。磷酸基多功能分子,主要是自组装单层,最近被证明有助于提高倒置psc的器件性能。本文设计并合成了一种新的多功能分子(2-(3,6-二(三氟甲氧基)- 9h -咔唑-9-酰基)乙基)膦酸(M28)作为钙钛矿前驱体溶液的添加剂,制备了高效稳定的倒置聚酰亚胺。通过向埋藏界面和晶界自发偏析(GBs), M28在提高器件性能方面具有三方面的作用:(1)减缓结晶速率和增大晶粒尺寸,提高钙钛矿薄膜质量;(2)钝化埋藏界面和GBs处的缺陷,抑制电荷复合;(3)通过p型掺杂在埋藏界面处诱导额外电场,促进空穴输运。由此产生的器件实现了25.96%的显着功率转换效率和令人印象深刻的长期运行稳定性:在最大功率点跟踪1500小时后保持其初始效率的80%。这项工作强调了探索新型功能分子在推进psc的重要性。
{"title":"Design of multifunctional phosphonic acid molecule for highly efficient, stable inverted perovskite solar cells","authors":"Rongmei Zhao \u0000 (,&nbsp;),&nbsp;Yachao Du \u0000 (,&nbsp;),&nbsp;Nan Wu \u0000 (,&nbsp;),&nbsp;Xinyue Li \u0000 (,&nbsp;),&nbsp;Wenbin Yuan \u0000 (,&nbsp;),&nbsp;Shifeng Ge \u0000 (,&nbsp;),&nbsp;Zhaowei Xu \u0000 (,&nbsp;),&nbsp;Xiaoyang Shen \u0000 (,&nbsp;),&nbsp;Simin Ma \u0000 (,&nbsp;),&nbsp;Ruohao Wang \u0000 (,&nbsp;),&nbsp;Tinghuan Yang \u0000 (,&nbsp;),&nbsp;Dengke Wang \u0000 (,&nbsp;),&nbsp;Xiaodong Ren \u0000 (,&nbsp;),&nbsp;Jiangzhao Chen \u0000 (,&nbsp;),&nbsp;Kui Zhao \u0000 (,&nbsp;),&nbsp;Wen-Hua Zhang \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3643-8","DOIUrl":"10.1007/s40843-025-3643-8","url":null,"abstract":"<div><p>Inverted perovskite solar cells (PSCs) have emerged as promising photovoltaic candidates because of their high efficiency and cost-effective fabrication. However, abundant defects and inefficient charge transport critically compromise the device efficiency and stability. Phosphonic acid-based multifunctional molecules, mainly as self-assemble monolayer, have recently been demonstrated to be useful in improving the device performance of the inverted PSCs. Herein, we designed and synthesized a new multifunctional molecule, (2-(3,6-bis(trifluoromethoxy)-9<i>H</i>-carbazol-9-yl)ethyl)phosphonic acid (M28) as additive in perovskite precursor solution to fabricate high-efficiency and stable inverted PSCs. Through spontaneous segregation toward the buried interface and grain boundaries (GBs), M28 affords threefold roles in enhancing device performance: (1) slowing the crystallization rate and enlarging the grain sizes to improve the perovskite film quality, (2) passivating the defects at buried interface and GBs to suppress charge recombination, (3) inducing an extra electric field at the buried interface through p-type doping to promote hole transport. The resulting devices thus achieved a remarkable power conversion efficiency of 25.96% and impressive long-term operational stability: maintaining 80% of their initial efficiency after 1500 h tracking at the maximum power point. This work emphasizes the importance of exploration of new types of functional molecules in advancing PSCs.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 12","pages":"4555 - 4565"},"PeriodicalIF":7.4,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145610668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile synthesis of sp2-enriched hard carbon anodes for high-efficiency sodium storage 高效储钠富sp2硬碳阳极的简易合成
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-09-25 DOI: 10.1007/s40843-025-3499-6
Xiangying Yuan  (, ), Guilai Zhang  (, ), Yijie Wei  (, ), Jun Xiao  (, ), Xuzhao Wei  (, ), Hong Gao  (, ), Xin Guo  (, ), Jilei Liu  (, ), Huiming Cheng  (, )

Biomass-derived hard carbons (HCs) are promising anodes for sodium-ion batteries (SIBs) due to their low cost, renewable nature, and structural stability, yet their practical application is hindered by a low initial Coulombic efficiency (ICE) and inadequate rate capability. Herein, we report a tri-functional nitric acid treatment coupled with one-step carbonization to synthesize a hard carbon with a sp2-C-dominated structure. The process not only eliminates impurities but also selectively dissolves lignin in the biomass, thereby promoting the alignment of graphite microcrystals. At the same time, edge-N and C=O groups are grafted onto the carbon skeleton, which together produce an HC with an optimized interlayer spacing and abundant closed micropores. These structure modifications collectively increase Na+ adsorption kinetics in the sloping region and enable efficient sodium storage in the low-voltage plateau region, yielding a high ICE of 91.69% and a remarkable rate capability, with 83.9% capacity retention at 600 mA g−1. A full SIB cell using this HC anode with a Na3V2(PO4)3 cathode delivers an energy density of 213.14 Wh kg−1, demonstrating its practical potential. This work offers a simple and scalable engineering strategy to overcome the performance vs. manufacturing cost dilemma in developing HC anodes.

生物质硬碳(hc)具有成本低、可再生、结构稳定等优点,是钠离子电池(sib)极具前景的阳极材料,但其初始库仑效率(ICE)低、速率能力不足,阻碍了其实际应用。在此,我们报告了三功能硝酸处理结合一步碳化合成具有sp2- c主导结构的硬碳。该过程不仅可以去除杂质,还可以选择性地溶解生物质中的木质素,从而促进石墨微晶体的排列。同时,边n和C=O基团接枝到碳骨架上,形成层间间距优化、微孔闭合丰富的HC。这些结构修饰共同提高了斜坡区Na+的吸附动力学,并在低压高原区实现了高效的钠储存,产生了91.69%的高ICE和显著的速率能力,在600 mA g−1时容量保持率为83.9%。使用这种HC阳极和Na3V2(PO4)3阴极的全SIB电池提供了213.14 Wh kg−1的能量密度,证明了它的实用潜力。这项工作提供了一种简单且可扩展的工程策略,以克服开发HC阳极的性能与制造成本的困境。
{"title":"Facile synthesis of sp2-enriched hard carbon anodes for high-efficiency sodium storage","authors":"Xiangying Yuan \u0000 (,&nbsp;),&nbsp;Guilai Zhang \u0000 (,&nbsp;),&nbsp;Yijie Wei \u0000 (,&nbsp;),&nbsp;Jun Xiao \u0000 (,&nbsp;),&nbsp;Xuzhao Wei \u0000 (,&nbsp;),&nbsp;Hong Gao \u0000 (,&nbsp;),&nbsp;Xin Guo \u0000 (,&nbsp;),&nbsp;Jilei Liu \u0000 (,&nbsp;),&nbsp;Huiming Cheng \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3499-6","DOIUrl":"10.1007/s40843-025-3499-6","url":null,"abstract":"<div><p>Biomass-derived hard carbons (HCs) are promising anodes for sodium-ion batteries (SIBs) due to their low cost, renewable nature, and structural stability, yet their practical application is hindered by a low initial Coulombic efficiency (ICE) and inadequate rate capability. Herein, we report a tri-functional nitric acid treatment coupled with one-step carbonization to synthesize a hard carbon with a sp<sup>2</sup>-C-dominated structure. The process not only eliminates impurities but also selectively dissolves lignin in the biomass, thereby promoting the alignment of graphite microcrystals. At the same time, edge-N and C=O groups are grafted onto the carbon skeleton, which together produce an HC with an optimized interlayer spacing and abundant closed micropores. These structure modifications collectively increase Na<sup>+</sup> adsorption kinetics in the sloping region and enable efficient sodium storage in the low-voltage plateau region, yielding a high ICE of 91.69% and a remarkable rate capability, with 83.9% capacity retention at 600 mA g<sup>−1</sup>. A full SIB cell using this HC anode with a Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> cathode delivers an energy density of 213.14 Wh kg<sup>−1</sup>, demonstrating its practical potential. This work offers a simple and scalable engineering strategy to overcome the performance vs. manufacturing cost dilemma in developing HC anodes.</p></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 11","pages":"4077 - 4087"},"PeriodicalIF":7.4,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145476318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust alternating multilayered MXene/CNT films for high-performance EMI shielding and Joule heating with superior fire/oxidation resistance 坚固的多层交替MXene/CNT薄膜,用于高性能EMI屏蔽和焦耳加热,具有卓越的防火/抗氧化性
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-09-25 DOI: 10.1007/s40843-025-3578-5
Yong Shen  (, ), Yitong Yue  (, ), Hexie Li  (, ), Yahong Li  (, ), Hu Liu  (, ), Bing Zhou  (, ), Yuezhan Feng  (, ), Chuntai Liu  (, ), Changyu Shen  (, )

MXene-based multilayered composite films show great promise in electromagnetic interference (EMI) shielding field, but the trade-off between mechanical properties, oxidation resistance and EMI shielding performance remains a huge challenge. Herein, inspired by the architecture of millefeuille, alternating multilayered MXene/carbon nanotube (CNT) films were successfully prepared using an alternating vacuum-assisted filtration method, in which the alternating CNT layers not only act as the mechanical frame and oxidation barrier, but also synergistically enhance the EMI shielding effect of MXene layers through the distinctive “absorption-reflection-reabsorption” mechanism. By optimizing the alternating multilayered structure, the MXene/CNT film with a thickness of 36 µm can achieve a remarkable EMI shielding effectiveness (SE) of 81.4 dB across the frequency range of 8.2–26.5 GHz. Meanwhile, the mechanical strength and toughness of the MXene/CNT film reach 83.4 MPa and 7.20 MJ/m3, respectively. Moreover, the CNT layer can effectively isolate MXene layer from oxygen, thus enabling the fire/oxidation resistance of the multilayer film in complex environments. Besides, the multilayered composite film exhibits impressive Joule heating capacity, which can reach 237 °C within 10 s at an applied voltage of only 2.0 V. Therefore, the alternating multilayered MXene/CNT film breaks through the performance balance limit, showing a great prospect for the future.

基于mxene的多层复合薄膜在电磁干扰(EMI)屏蔽领域具有广阔的应用前景,但在机械性能、抗氧化性能和EMI屏蔽性能之间的权衡仍然是一个巨大的挑战。在此基础上,受millefeuille结构的启发,采用交替真空辅助过滤方法成功制备了多层MXene/碳纳米管(CNT)交替膜,其中交替的CNT层不仅作为机械框架和氧化屏障,而且通过独特的“吸收-反射-重吸收”机制协同增强了MXene层的EMI屏蔽效果。通过优化多层交替结构,厚度为36 μ m的MXene/CNT薄膜在8.2-26.5 GHz频率范围内实现了81.4 dB的显著EMI屏蔽效果。同时,MXene/CNT薄膜的机械强度和韧性分别达到83.4 MPa和7.20 MJ/m3。此外,碳纳米管层可以有效地将MXene层与氧气隔离,从而使多层膜在复杂环境中具有耐火/抗氧化性。此外,多层复合薄膜具有令人印象深刻的焦耳加热能力,在2.0 V的电压下,在10 s内加热到237°C。因此,交替多层MXene/CNT薄膜突破了性能平衡极限,显示出很大的前景。
{"title":"Robust alternating multilayered MXene/CNT films for high-performance EMI shielding and Joule heating with superior fire/oxidation resistance","authors":"Yong Shen \u0000 (,&nbsp;),&nbsp;Yitong Yue \u0000 (,&nbsp;),&nbsp;Hexie Li \u0000 (,&nbsp;),&nbsp;Yahong Li \u0000 (,&nbsp;),&nbsp;Hu Liu \u0000 (,&nbsp;),&nbsp;Bing Zhou \u0000 (,&nbsp;),&nbsp;Yuezhan Feng \u0000 (,&nbsp;),&nbsp;Chuntai Liu \u0000 (,&nbsp;),&nbsp;Changyu Shen \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3578-5","DOIUrl":"10.1007/s40843-025-3578-5","url":null,"abstract":"<div><p>MXene-based multilayered composite films show great promise in electromagnetic interference (EMI) shielding field, but the trade-off between mechanical properties, oxidation resistance and EMI shielding performance remains a huge challenge. Herein, inspired by the architecture of millefeuille, alternating multilayered MXene/carbon nanotube (CNT) films were successfully prepared using an alternating vacuum-assisted filtration method, in which the alternating CNT layers not only act as the mechanical frame and oxidation barrier, but also synergistically enhance the EMI shielding effect of MXene layers through the distinctive “absorption-reflection-reabsorption” mechanism. By optimizing the alternating multilayered structure, the MXene/CNT film with a thickness of 36 µm can achieve a remarkable EMI shielding effectiveness (SE) of 81.4 dB across the frequency range of 8.2–26.5 GHz. Meanwhile, the mechanical strength and toughness of the MXene/CNT film reach 83.4 MPa and 7.20 MJ/m<sup>3</sup>, respectively. Moreover, the CNT layer can effectively isolate MXene layer from oxygen, thus enabling the fire/oxidation resistance of the multilayer film in complex environments. Besides, the multilayered composite film exhibits impressive Joule heating capacity, which can reach 237 °C within 10 s at an applied voltage of only 2.0 V. Therefore, the alternating multilayered MXene/CNT film breaks through the performance balance limit, showing a great prospect for the future.</p></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 11","pages":"4144 - 4154"},"PeriodicalIF":7.4,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145476347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorization of “waste” MXene through multifunctional green composites with high-efficiency EMI shielding 利用高效电磁干扰屏蔽的多功能绿色复合材料实现“废弃”MXene的增值
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-09-22 DOI: 10.1007/s40843-025-3511-7
Zihan Liu  (, ), Jiaxin Song  (, ), Sen Jiao  (, ), Na Wu  (, ), Yue Zhang  (, ), Zhuyin Sui  (, ), Jiurong Liu  (, ), Sinan Zheng  (, ), Zhihui Zeng  (, )

The development of high-performance, eco-friendly, and multifunctional electromagnetic interference (EMI) shielding nanocomposites is highly desirable. Recently, transition metal/nitrides (MXenes) have showcased great potential in constructing EMI shields, but are restricted by low yield, limited utilization efficiency, and cost-ineffective preparation for practical applications. This work introduces a novel nanocomposite film comprising “waste” MXene sediments (MS) and sustainable cellulose nanofibers (CNFs), fabricated through a simple, straightforward casting approach. The nanocomposites not only enhance the utilization of MXene layers but also deliver exceptional EMI shielding effectiveness (SE), with the 80 wt.% MS/CNF nanocomposite film achieving 52.3 dB X-band SE at just 0.57 mm thickness. Notably, the EMI SE can be precisely tuned over a broad frequency range, including the X-, Ku-, K-, and Ka-bands, where the nanocomposite consistently exceeds 53.9 dB at 0.50 mm thickness. In addition, the nanocomposite film exhibits remarkable photothermal responses, reaching 100 °C within 80 s under 100 mW/cm2 light exposure. With its outstanding mechanical strength, electrical conductivity, and environmental sustainability, the MS/CNF nanocomposite shows immense potential for applications in wearable electronics, EMI shielding, and thermal therapy, offering a versatile and scalable solution for next-generation electronic and energy-efficient technologies.

开发高性能、环保、多功能的电磁干扰屏蔽纳米复合材料是迫切需要的。近年来,过渡金属/氮化物(MXenes)在构建电磁干扰屏蔽方面显示出巨大的潜力,但在实际应用中受到产率低、利用效率有限和制备成本低的限制。这项工作介绍了一种新型的纳米复合膜,该膜由“废弃”MXene沉积物(MS)和可持续纤维素纳米纤维(CNFs)组成,通过简单、直接的铸造方法制备。纳米复合材料不仅提高了MXene层的利用率,而且还提供了卓越的电磁干扰屏蔽效率(SE), 80 wt.%的MS/CNF纳米复合膜在0.57 mm厚度下实现了52.3 dB的x波段SE。值得注意的是,EMI SE可以在很宽的频率范围内精确调谐,包括X、Ku、K和ka波段,其中纳米复合材料在0.50 mm厚度下始终超过53.9 dB。此外,纳米复合膜表现出显著的光热响应,在100 mW/cm2的光照射下,80 s内达到100℃。凭借其卓越的机械强度,导电性和环境可持续性,MS/CNF纳米复合材料在可穿戴电子产品,EMI屏蔽和热治疗方面显示出巨大的应用潜力,为下一代电子和节能技术提供了多功能和可扩展的解决方案。
{"title":"Valorization of “waste” MXene through multifunctional green composites with high-efficiency EMI shielding","authors":"Zihan Liu \u0000 (,&nbsp;),&nbsp;Jiaxin Song \u0000 (,&nbsp;),&nbsp;Sen Jiao \u0000 (,&nbsp;),&nbsp;Na Wu \u0000 (,&nbsp;),&nbsp;Yue Zhang \u0000 (,&nbsp;),&nbsp;Zhuyin Sui \u0000 (,&nbsp;),&nbsp;Jiurong Liu \u0000 (,&nbsp;),&nbsp;Sinan Zheng \u0000 (,&nbsp;),&nbsp;Zhihui Zeng \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3511-7","DOIUrl":"10.1007/s40843-025-3511-7","url":null,"abstract":"<div><p>The development of high-performance, eco-friendly, and multifunctional electromagnetic interference (EMI) shielding nanocomposites is highly desirable. Recently, transition metal/nitrides (MXenes) have showcased great potential in constructing EMI shields, but are restricted by low yield, limited utilization efficiency, and cost-ineffective preparation for practical applications. This work introduces a novel nanocomposite film comprising “waste” MXene sediments (MS) and sustainable cellulose nanofibers (CNFs), fabricated through a simple, straightforward casting approach. The nanocomposites not only enhance the utilization of MXene layers but also deliver exceptional EMI shielding effectiveness (SE), with the 80 wt.% MS/CNF nanocomposite film achieving 52.3 dB X-band SE at just 0.57 mm thickness. Notably, the EMI SE can be precisely tuned over a broad frequency range, including the X-, Ku-, K-, and Ka-bands, where the nanocomposite consistently exceeds 53.9 dB at 0.50 mm thickness. In addition, the nanocomposite film exhibits remarkable photothermal responses, reaching 100 °C within 80 s under 100 mW/cm<sup>2</sup> light exposure. With its outstanding mechanical strength, electrical conductivity, and environmental sustainability, the MS/CNF nanocomposite shows immense potential for applications in wearable electronics, EMI shielding, and thermal therapy, offering a versatile and scalable solution for next-generation electronic and energy-efficient technologies.</p></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 11","pages":"4182 - 4191"},"PeriodicalIF":7.4,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145476323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Science China Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1