首页 > 最新文献

Science China Materials最新文献

英文 中文
Facile construction of self-supported Ru-Ni(OH)2 with built-in interfacial electric field for accelerating hydrogen evolution 内置界面电场的自支撑Ru-Ni(OH)2的快速构建加速析氢
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-10-30 DOI: 10.1007/s40843-025-3564-9
Jianli Yu  (, ), Yongli Shen  (, ), Pei Zhu  (, ), Lina Li  (, ), Changhua An  (, )

Sluggish water dissociation kinetics in the alkaline hydrogen evolution reaction (HER) continue to hamper its practical production. Herein, a class of heterojunction electrocatalyst featuring Ru-Ni(OH)2 interfaces on nickel foam (NF) with self-engineered built-in electric fields (BIEF) has been synthesized via a simple in situ galvanic replacement reaction. The as-made hierarchical architecture of Ru-Ni (OH)2/NF exhibits a record overpotential of 9.6 mV at a current density of 10 mA cm−2 for alkaline HER, surpassing most reported catalysts and the commercial Pt/C benchmark. Furthermore, it also reveals exceptional catalytic activity towards hydrazine oxidation reaction (HzOR) at 100 mA cm−2 with a remarkably low potential of ca. 0.015 V vs. RHE (reversible hydrogen electrode). The assembled overall hydrazine splitting (OHzS) system integrating HER and HzOR requires a cell voltage of about 0.09 V to reach 50 mA cm−2, which is 1.637 V lower than the corresponding overall water splitting (OWS) device. Systematic analysis and calculation reveal that the BIEF induces the redistribution of interfacial electrons for Ru, facilitating H2O dissociation and intermediates conversion to deliver the ultra-high electrocatalytic performance. This work provides an avenue for the design and preparation of electric field-mediated catalysts towards sustainable energy conversion.

在碱性析氢反应(HER)中,缓慢的水解离动力学继续阻碍其实际生产。本文通过简单的原位电替换反应合成了一类在泡沫镍(NF)上具有自工程内置电场(BIEF)的Ru-Ni(OH)2界面的异质结电催化剂。在10 mA cm−2的电流密度下,Ru-Ni (OH)2/NF的分层结构在碱性HER中显示出创纪录的9.6 mV过电位,超过了大多数报道的催化剂和商业Pt/C基准。此外,它还显示了对肼氧化反应(HzOR)的特殊催化活性,在100 mA cm - 2下,与RHE(可逆氢电极)相比,电位非常低,约为0.015 V。集成HER和HzOR的组装整体联氨分解(OHzS)系统需要约0.09 V的电池电压才能达到50 mA cm−2,比相应的整体水分解(OWS)装置低1.637 V。系统的分析和计算表明,BIEF诱导Ru的界面电子重新分布,促进H2O解离和中间体转化,从而实现超高的电催化性能。这项工作为设计和制备电场介导的催化剂以实现可持续的能量转换提供了一条途径。
{"title":"Facile construction of self-supported Ru-Ni(OH)2 with built-in interfacial electric field for accelerating hydrogen evolution","authors":"Jianli Yu \u0000 (,&nbsp;),&nbsp;Yongli Shen \u0000 (,&nbsp;),&nbsp;Pei Zhu \u0000 (,&nbsp;),&nbsp;Lina Li \u0000 (,&nbsp;),&nbsp;Changhua An \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3564-9","DOIUrl":"10.1007/s40843-025-3564-9","url":null,"abstract":"<div><p>Sluggish water dissociation kinetics in the alkaline hydrogen evolution reaction (HER) continue to hamper its practical production. Herein, a class of heterojunction electrocatalyst featuring Ru-Ni(OH)<sub>2</sub> interfaces on nickel foam (NF) with self-engineered built-in electric fields (BIEF) has been synthesized via a simple <i>in situ</i> galvanic replacement reaction. The as-made hierarchical architecture of Ru-Ni (OH)<sub>2</sub>/NF exhibits a record overpotential of 9.6 mV at a current density of 10 mA cm<sup>−2</sup> for alkaline HER, surpassing most reported catalysts and the commercial Pt/C benchmark. Furthermore, it also reveals exceptional catalytic activity towards hydrazine oxidation reaction (HzOR) at 100 mA cm<sup>−2</sup> with a remarkably low potential of <i>ca.</i> 0.015 V vs. RHE (reversible hydrogen electrode). The assembled overall hydrazine splitting (OHzS) system integrating HER and HzOR requires a cell voltage of about 0.09 V to reach 50 mA cm<sup>−2</sup>, which is 1.637 V lower than the corresponding overall water splitting (OWS) device. Systematic analysis and calculation reveal that the BIEF induces the redistribution of interfacial electrons for Ru, facilitating H<sub>2</sub>O dissociation and intermediates conversion to deliver the ultra-high electrocatalytic performance. This work provides an avenue for the design and preparation of electric field-mediated catalysts towards sustainable energy conversion.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"69 1","pages":"271 - 279"},"PeriodicalIF":7.4,"publicationDate":"2025-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145891169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Porous TPU piezoelectric composites with core-shell structured PZT@CMCS particles for enhanced energy harvesting 多孔TPU压电复合材料与核壳结构PZT@CMCS颗粒增强能量收集
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-10-29 DOI: 10.1007/s40843-025-3604-1
Zhi-Yu Xue  (, ), Jia-Qi Luo  (, ), Yi-Jing Nie  (, ), Ni-Jia Shen  (, ), Wen-Qiang Qiu  (, ), Lang Shuai  (, ), Ying-Yu Zhang  (, ), Hai-Feng Lu  (, ), Yi Zhang  (, ), Da-Wei Fu  (, )

Piezoelectric materials can convert mechanical energy into electrical signals, making them highly applicable in sensors, actuators, and energy harvesting systems. Although traditional inorganic piezoelectric ceramics (e.g., PZT and BTO) exhibit excellent piezoelectric properties, their brittleness significantly limits their use in flexible electronic devices. Herein, we fabricated PZT@carboxymethyl chitosan (CMCS)/thermoplastic polyurethane (TPU) porous composite used as flexible piezoelectric materials. The core-shell structure of PZT@CMCS improves interfacial compatibility with the polymer matrix. Meanwhile, the porous skeleton structure of the TPU matrix facilitates stress transfer and amplification, achieving a large piezoelectric composited content and enhancing piezoelectric output. Thus, PZT@CMCS/TPU piezoelectric devices in this work achieve remarkable output voltage (53 V), current (13 µA), showing an 11-fold increase in piezoelectric output performance compared to conventional PZT composite films. Enabling the application of PZT composite materials in flexible piezoelectric devices.

压电材料可以将机械能转换为电信号,因此在传感器、执行器和能量收集系统中具有很高的应用价值。尽管传统的无机压电陶瓷(如PZT和BTO)具有优异的压电性能,但其脆性极大地限制了其在柔性电子器件中的应用。本文制备了PZT@carboxymethyl壳聚糖(CMCS)/热塑性聚氨酯(TPU)多孔复合材料作为柔性压电材料。PZT@CMCS的核壳结构提高了与聚合物基体的界面相容性。同时,TPU基体的多孔骨架结构有利于应力传递和放大,实现了较大的压电复合含量,提高了压电输出。因此,PZT@CMCS/TPU压电器件在这项工作中实现了显著的输出电压(53 V),电流(13µA),与传统的PZT复合薄膜相比,压电输出性能提高了11倍。使PZT复合材料在柔性压电器件中的应用成为可能。
{"title":"Porous TPU piezoelectric composites with core-shell structured PZT@CMCS particles for enhanced energy harvesting","authors":"Zhi-Yu Xue \u0000 (,&nbsp;),&nbsp;Jia-Qi Luo \u0000 (,&nbsp;),&nbsp;Yi-Jing Nie \u0000 (,&nbsp;),&nbsp;Ni-Jia Shen \u0000 (,&nbsp;),&nbsp;Wen-Qiang Qiu \u0000 (,&nbsp;),&nbsp;Lang Shuai \u0000 (,&nbsp;),&nbsp;Ying-Yu Zhang \u0000 (,&nbsp;),&nbsp;Hai-Feng Lu \u0000 (,&nbsp;),&nbsp;Yi Zhang \u0000 (,&nbsp;),&nbsp;Da-Wei Fu \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3604-1","DOIUrl":"10.1007/s40843-025-3604-1","url":null,"abstract":"<div><p>Piezoelectric materials can convert mechanical energy into electrical signals, making them highly applicable in sensors, actuators, and energy harvesting systems. Although traditional inorganic piezoelectric ceramics (e.g., PZT and BTO) exhibit excellent piezoelectric properties, their brittleness significantly limits their use in flexible electronic devices. Herein, we fabricated PZT@carboxymethyl chitosan (CMCS)/thermoplastic polyurethane (TPU) porous composite used as flexible piezoelectric materials. The core-shell structure of PZT@CMCS improves interfacial compatibility with the polymer matrix. Meanwhile, the porous skeleton structure of the TPU matrix facilitates stress transfer and amplification, achieving a large piezoelectric composited content and enhancing piezoelectric output. Thus, PZT@CMCS/TPU piezoelectric devices in this work achieve remarkable output voltage (53 V), current (13 µA), showing an 11-fold increase in piezoelectric output performance compared to conventional PZT composite films. Enabling the application of PZT composite materials in flexible piezoelectric devices.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"69 1","pages":"439 - 446"},"PeriodicalIF":7.4,"publicationDate":"2025-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145891217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amino-modified graphdiyne-based flexible respiratory sensor for monitoring sleep apnea syndrome 用于监测睡眠呼吸暂停综合征的氨基改性石墨烯柔性呼吸传感器
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-10-28 DOI: 10.1007/s40843-025-3724-y
Zhipeng Xu  (, ), Jie Wang  (, ), Qianbo Yu  (, ), Jiaqi Liu  (, ), Xu Ye  (, ), Jialiang Xu  (, ), Wentao Xu  (, )

Respiratory sensors, capable of monitoring human respiratory status, are essential for health management, disease prevention, and early diagnosis. Achieving real-time monitoring of respiratory status requires sensors with fast and sensitive respiratory response, as well as high stability. Herein, we demonstrate an amino-modified graphdiyne (NH2-GDY)-based sensor for real-time monitoring of human respiratory status. Compared to pristine graphdiyne, the amino-functionalized NH2-GDY exhibits enhanced adsorption capacity for water molecules. Furthermore, its enlarged nanoporous structure facilitates the migration of water molecules, enabling rapid adsorption/desorption of water molecules. This respiratory sensor demonstrates ultra-fast and ultra-sensitive respiratory responses, coupled with remarkable flexibility and stability. When integrated into a wearable electronic system, it achieves real-time monitoring of sleep apnea syndrome. This work highlights the feasibility of novel carbon-based respiratory sensors in advanced health monitoring applications.

能够监测人体呼吸状态的呼吸传感器对于健康管理、疾病预防和早期诊断至关重要。实现对呼吸状态的实时监测,需要传感器具有快速灵敏的呼吸反应和高稳定性。在此,我们展示了一种基于氨基修饰石墨炔(NH2-GDY)的传感器,用于实时监测人类呼吸状态。与原始石墨炔相比,氨基功能化的NH2-GDY对水分子的吸附能力增强。此外,其扩大的纳米孔结构有利于水分子的迁移,使水分子能够快速吸附/解吸。该呼吸传感器具有超快速、超灵敏的呼吸反应,同时具有显著的灵活性和稳定性。当集成到可穿戴电子系统中时,它可以实现对睡眠呼吸暂停综合征的实时监测。这项工作强调了新型碳基呼吸传感器在高级健康监测应用中的可行性。
{"title":"Amino-modified graphdiyne-based flexible respiratory sensor for monitoring sleep apnea syndrome","authors":"Zhipeng Xu \u0000 (,&nbsp;),&nbsp;Jie Wang \u0000 (,&nbsp;),&nbsp;Qianbo Yu \u0000 (,&nbsp;),&nbsp;Jiaqi Liu \u0000 (,&nbsp;),&nbsp;Xu Ye \u0000 (,&nbsp;),&nbsp;Jialiang Xu \u0000 (,&nbsp;),&nbsp;Wentao Xu \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3724-y","DOIUrl":"10.1007/s40843-025-3724-y","url":null,"abstract":"<div><p>Respiratory sensors, capable of monitoring human respiratory status, are essential for health management, disease prevention, and early diagnosis. Achieving real-time monitoring of respiratory status requires sensors with fast and sensitive respiratory response, as well as high stability. Herein, we demonstrate an amino-modified graphdiyne (NH<sub>2</sub>-GDY)-based sensor for real-time monitoring of human respiratory status. Compared to pristine graphdiyne, the amino-functionalized NH<sub>2</sub>-GDY exhibits enhanced adsorption capacity for water molecules. Furthermore, its enlarged nanoporous structure facilitates the migration of water molecules, enabling rapid adsorption/desorption of water molecules. This respiratory sensor demonstrates ultra-fast and ultra-sensitive respiratory responses, coupled with remarkable flexibility and stability. When integrated into a wearable electronic system, it achieves real-time monitoring of sleep apnea syndrome. This work highlights the feasibility of novel carbon-based respiratory sensors in advanced health monitoring applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 12","pages":"4384 - 4391"},"PeriodicalIF":7.4,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145610743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Breathable all-textile pressure sensor with conductivity-modulable polypyrrole for deep learning-enhanced sensing 透气全纺织压力传感器,电导率可调聚吡咯,用于深度学习增强传感
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-10-28 DOI: 10.1007/s40843-025-3753-y
Pengfei Zhao  (, ), Yining Zhang  (, ), Wei Dai  (, ), Fangtao Li  (, ), Zitong Mu  (, ), Shukai Zhang  (, ), Hongguang Zhang  (, ), Su-Ting Han  (, ), Ye Zhou  (, )

Deep learning-enhanced pressure sensors integrate signal processing and sensing capabilities, offering transformative potential in wearable electronics. However, current deep learning-based pressure sensors primarily use petroleum-based polymers for the sensing/encapsulating layers and metallic electrodes. This results in limited biodegradability, poor biocompatibility, and insufficient breathability. Here, we present an all-textile-based pressure sensor that combines tunable-conductivity polypyrrole textiles for the electrode and sensing layers with real-time artificial intelligence algorithms. Eliminating the constraints of metallic electrodes and petroleum-based polymers results in an entire device that exhibits excellent biocompatibility, biodegradability, and breathability. Moreover, the textile sensing layer’s structure ensures pressure-induced conductivity, contributing to high sensitivity and a wide detection range. Based on these high-performance and comfortable textiles, we demonstrate intelligent applications such as health monitoring, software/hardware control, and complex human motion analysis. Our work paves the way for sustainable, breathable, and biocompatible next-generation smart textiles, enabling the development of intelligent and eco-conscious electronic systems.

深度学习增强的压力传感器集成了信号处理和传感功能,为可穿戴电子产品提供了变革潜力。然而,目前基于深度学习的压力传感器主要使用石油基聚合物作为传感/封装层和金属电极。这导致生物降解性有限,生物相容性差,透气性不足。在这里,我们提出了一种基于全纺织品的压力传感器,该传感器将用于电极和传感层的可调电导率聚吡咯纺织品与实时人工智能算法相结合。消除了金属电极和石油基聚合物的限制,使得整个装置具有优异的生物相容性、生物可降解性和透气性。此外,纺织传感层的结构确保了压力诱导电导率,有助于高灵敏度和宽检测范围。基于这些高性能和舒适的纺织品,我们展示了智能应用,如健康监测,软件/硬件控制和复杂的人体运动分析。我们的工作为可持续,透气和生物相容性的下一代智能纺织品铺平了道路,使智能和生态意识电子系统的发展成为可能。
{"title":"Breathable all-textile pressure sensor with conductivity-modulable polypyrrole for deep learning-enhanced sensing","authors":"Pengfei Zhao \u0000 (,&nbsp;),&nbsp;Yining Zhang \u0000 (,&nbsp;),&nbsp;Wei Dai \u0000 (,&nbsp;),&nbsp;Fangtao Li \u0000 (,&nbsp;),&nbsp;Zitong Mu \u0000 (,&nbsp;),&nbsp;Shukai Zhang \u0000 (,&nbsp;),&nbsp;Hongguang Zhang \u0000 (,&nbsp;),&nbsp;Su-Ting Han \u0000 (,&nbsp;),&nbsp;Ye Zhou \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3753-y","DOIUrl":"10.1007/s40843-025-3753-y","url":null,"abstract":"<div><p>Deep learning-enhanced pressure sensors integrate signal processing and sensing capabilities, offering transformative potential in wearable electronics. However, current deep learning-based pressure sensors primarily use petroleum-based polymers for the sensing/encapsulating layers and metallic electrodes. This results in limited biodegradability, poor biocompatibility, and insufficient breathability. Here, we present an all-textile-based pressure sensor that combines tunable-conductivity polypyrrole textiles for the electrode and sensing layers with real-time artificial intelligence algorithms. Eliminating the constraints of metallic electrodes and petroleum-based polymers results in an entire device that exhibits excellent biocompatibility, biodegradability, and breathability. Moreover, the textile sensing layer’s structure ensures pressure-induced conductivity, contributing to high sensitivity and a wide detection range. Based on these high-performance and comfortable textiles, we demonstrate intelligent applications such as health monitoring, software/hardware control, and complex human motion analysis. Our work paves the way for sustainable, breathable, and biocompatible next-generation smart textiles, enabling the development of intelligent and eco-conscious electronic systems.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 12","pages":"4375 - 4383"},"PeriodicalIF":7.4,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145610670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface modification of metal nanostructures toward electrically pumped perovskite microlasers 电泵钙钛矿微激光器对金属纳米结构的表面修饰
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-10-28 DOI: 10.1007/s40843-025-3629-3
Bingwang Yang  (, ), Maosheng Liu  (, ), Tong Xu  (, ), Yun Wei  (, ), Shulin Sha  (, ), Peng Wan  (, ), Caixia Kan  (, ), Daning Shi  (, ), Mingming Jiang  (, )

The achievement of electrically pumped lasers with smaller and more compact physical dimensions is expected to be crucial for future optical information processing, optical storage, and photonic integrated circuits. However, developing laser devices upon electrical injection remains challenging due to stability issues, significant non-radiative losses, and severe Joule heating effects. Herein, we exhibit an ultralow-threshold low-dimensional perovskite microlaser coated with Au nanoparticles (AuNPs), which enables the optimization of its lasing properties upon optical pumping synchronized with current injection at ambient temperature. The threshold value is considerably reduced to 8.6 µJ/cm2, which is approximately 44% lower than that of the pristine one. The microlaser incorporates size-optimized AuNPs that simultaneously enhance perovskite’s lasing performance and electrical properties, particularly enabling a current injection of approximately 2.98 kA/cm2. Besides, AuNPs can accelerate hot-carrier cooling in perovskites, thereby reducing non-radiative recombination losses and mitigating Joule heating effects. The microlaser thresholds show progressive reduction with increasing electrical assist fraction. This study underscores that the ultimate goal of realizing electrically driven perovskite microlasers may eventually become a reality, paving a promising avenue toward the further development of electrically pumped microlaser diodes.

实现物理尺寸更小、更紧凑的电泵浦激光器对于未来的光信息处理、光存储和光子集成电路至关重要。然而,由于稳定性问题、显著的非辐射损耗和严重的焦耳热效应,开发基于电注入的激光设备仍然具有挑战性。在此,我们展示了一种超低阈值的低维钙钛矿微激光器,该激光器包覆了金纳米颗粒(AuNPs),可以在室温下同步光泵浦和电流注入时优化其激光特性。阈值大大降低到8.6µJ/cm2,比原始值低约44%。微激光器集成了尺寸优化的aunp,同时增强了钙钛矿的激光性能和电学性能,特别是能够实现约2.98 kA/cm2的电流注入。此外,aunp可以加速钙钛矿中的热载子冷却,从而减少非辐射复合损失,减轻焦耳加热效应。随着电辅助分数的增加,微激光阈值逐渐降低。这项研究强调了实现电驱动钙钛矿微激光器的最终目标可能最终成为现实,为进一步发展电抽运微激光二极管铺平了有希望的道路。
{"title":"Surface modification of metal nanostructures toward electrically pumped perovskite microlasers","authors":"Bingwang Yang \u0000 (,&nbsp;),&nbsp;Maosheng Liu \u0000 (,&nbsp;),&nbsp;Tong Xu \u0000 (,&nbsp;),&nbsp;Yun Wei \u0000 (,&nbsp;),&nbsp;Shulin Sha \u0000 (,&nbsp;),&nbsp;Peng Wan \u0000 (,&nbsp;),&nbsp;Caixia Kan \u0000 (,&nbsp;),&nbsp;Daning Shi \u0000 (,&nbsp;),&nbsp;Mingming Jiang \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3629-3","DOIUrl":"10.1007/s40843-025-3629-3","url":null,"abstract":"<div><p>The achievement of electrically pumped lasers with smaller and more compact physical dimensions is expected to be crucial for future optical information processing, optical storage, and photonic integrated circuits. However, developing laser devices upon electrical injection remains challenging due to stability issues, significant non-radiative losses, and severe Joule heating effects. Herein, we exhibit an ultralow-threshold low-dimensional perovskite microlaser coated with Au nanoparticles (AuNPs), which enables the optimization of its lasing properties upon optical pumping synchronized with current injection at ambient temperature. The threshold value is considerably reduced to 8.6 µJ/cm<sup>2</sup>, which is approximately 44% lower than that of the pristine one. The microlaser incorporates size-optimized AuNPs that simultaneously enhance perovskite’s lasing performance and electrical properties, particularly enabling a current injection of approximately 2.98 kA/cm<sup>2</sup>. Besides, AuNPs can accelerate hot-carrier cooling in perovskites, thereby reducing non-radiative recombination losses and mitigating Joule heating effects. The microlaser thresholds show progressive reduction with increasing electrical assist fraction. This study underscores that the ultimate goal of realizing electrically driven perovskite microlasers may eventually become a reality, paving a promising avenue toward the further development of electrically pumped microlaser diodes.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"69 1","pages":"149 - 160"},"PeriodicalIF":7.4,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145891237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perovskite photodetectors on skin: current advances and commercialization challenges 皮肤上的钙钛矿光电探测器:目前的进展和商业化挑战
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-10-28 DOI: 10.1007/s40843-025-3570-4
Jianglei Zhang  (, ), Junhu Zhang  (, ), Haotong Wei  (, )

柔性钙钛矿光电探测器凭借其优异的可变形性、可调谐的宽带 光谱响应性、低温溶液加工潜力以及低功耗/自供电特性, 为下一代可 穿戴电子设备在个性化健康监测、环境参数感知及智能非接触人机交 互等领域提供了极具前景的技术路径. 本文综述了柔性钙钛矿光电探 测器的最新研究进展, 重点阐述了其在材料体系、器件结构设计和性 能优化方面取得的进展. 尽管实验室性能亮眼, 柔性钙钛矿光电探测器 迈向实际可穿戴应用仍面临商业化挑战, 主要包括在真实复杂环境下 的长期运行稳定性、标准化加速老化测试规程的缺乏, 以及可扩展制 造与成本控制等问题. 系统性地解决这些关键挑战, 并推动跨学科协同 创新, 是加速柔性钙钛矿光电探测器从实验室走向可穿戴市场、最终 实现其商业化应用潜力的关键.

柔性钙钛矿光电探测器凭借其优异的可变形性、可调谐的宽带 光谱响应性、低温溶液加工潜力以及低功耗/自供电特性, 为下一代可 穿戴电子设备在个性化健康监测、环境参数感知及智能非接触人机交 互等领域提供了极具前景的技术路径. 本文综述了柔性钙钛矿光电探 测器的最新研究进展, 重点阐述了其在材料体系、器件结构设计和性 能优化方面取得的进展. 尽管实验室性能亮眼, 柔性钙钛矿光电探测器 迈向实际可穿戴应用仍面临商业化挑战, 主要包括在真实复杂环境下 的长期运行稳定性、标准化加速老化测试规程的缺乏, 以及可扩展制 造与成本控制等问题. 系统性地解决这些关键挑战, 并推动跨学科协同 创新, 是加速柔性钙钛矿光电探测器从实验室走向可穿戴市场、最终 实现其商业化应用潜力的关键.
{"title":"Perovskite photodetectors on skin: current advances and commercialization challenges","authors":"Jianglei Zhang \u0000 (,&nbsp;),&nbsp;Junhu Zhang \u0000 (,&nbsp;),&nbsp;Haotong Wei \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3570-4","DOIUrl":"10.1007/s40843-025-3570-4","url":null,"abstract":"<p>柔性钙钛矿光电探测器凭借其优异的可变形性、可调谐的宽带 光谱响应性、低温溶液加工潜力以及低功耗/自供电特性, 为下一代可 穿戴电子设备在个性化健康监测、环境参数感知及智能非接触人机交 互等领域提供了极具前景的技术路径. 本文综述了柔性钙钛矿光电探 测器的最新研究进展, 重点阐述了其在材料体系、器件结构设计和性 能优化方面取得的进展. 尽管实验室性能亮眼, 柔性钙钛矿光电探测器 迈向实际可穿戴应用仍面临商业化挑战, 主要包括在真实复杂环境下 的长期运行稳定性、标准化加速老化测试规程的缺乏, 以及可扩展制 造与成本控制等问题. 系统性地解决这些关键挑战, 并推动跨学科协同 创新, 是加速柔性钙钛矿光电探测器从实验室走向可穿戴市场、最终 实现其商业化应用潜力的关键.\u0000</p>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 12","pages":"4364 - 4370"},"PeriodicalIF":7.4,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145610779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MXene-based flexible electronics: current advances and future perspectives 基于mxene的柔性电子:当前进展和未来展望
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-10-28 DOI: 10.1007/s40843-025-3731-3
Jiabin Wu  (, ), Huaiguang Li  (, )

二维过渡金属碳化物、氮化物和碳氮化物(MXenes)已成为柔性 电子领域最具变革性的材料体系之一. 其卓越的电导率 (>10,000 S cm−1)、可调谐的表面化学特性、出色的机械柔韧性以及良 好的溶液加工能力, 使其在可穿戴传感器、储能器件和电磁屏蔽(EMI) 等领域展现出广阔前景. 本文重点阐述了基于MXenes的柔性电子器件 的最新突破性进展, 针对环境不稳定性、氧化敏感性及可规模化制备 等持续性挑战进行了深入分析. 最后, 展望了未来的发展方向, 将多功 能性、智能化与可持续性融入新一代柔性电子器件. 强调表面与结构 工程、先进制造技术以及仿生设计在释放MXenes潜能、推动下一代 智能与可持续柔性电子发展中的关键作用.

二维过渡金属碳化物、氮化物和碳氮化物(MXenes)已成为柔性 电子领域最具变革性的材料体系之一. 其卓越的电导率 (>10,000 S cm−1)、可调谐的表面化学特性、出色的机械柔韧性以及良 好的溶液加工能力, 使其在可穿戴传感器、储能器件和电磁屏蔽(EMI) 等领域展现出广阔前景. 本文重点阐述了基于MXenes的柔性电子器件 的最新突破性进展, 针对环境不稳定性、氧化敏感性及可规模化制备 等持续性挑战进行了深入分析. 最后, 展望了未来的发展方向, 将多功 能性、智能化与可持续性融入新一代柔性电子器件. 强调表面与结构 工程、先进制造技术以及仿生设计在释放MXenes潜能、推动下一代 智能与可持续柔性电子发展中的关键作用.
{"title":"MXene-based flexible electronics: current advances and future perspectives","authors":"Jiabin Wu \u0000 (,&nbsp;),&nbsp;Huaiguang Li \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3731-3","DOIUrl":"10.1007/s40843-025-3731-3","url":null,"abstract":"<p>二维过渡金属碳化物、氮化物和碳氮化物(MXenes)已成为柔性 电子领域最具变革性的材料体系之一. 其卓越的电导率 (&gt;10,000 S cm<sup>−1</sup>)、可调谐的表面化学特性、出色的机械柔韧性以及良 好的溶液加工能力, 使其在可穿戴传感器、储能器件和电磁屏蔽(EMI) 等领域展现出广阔前景. 本文重点阐述了基于MXenes的柔性电子器件 的最新突破性进展, 针对环境不稳定性、氧化敏感性及可规模化制备 等持续性挑战进行了深入分析. 最后, 展望了未来的发展方向, 将多功 能性、智能化与可持续性融入新一代柔性电子器件. 强调表面与结构 工程、先进制造技术以及仿生设计在释放MXenes潜能、推动下一代 智能与可持续柔性电子发展中的关键作用.\u0000</p>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 12","pages":"4360 - 4363"},"PeriodicalIF":7.4,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145610761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible and wearable bioelectronics for electrocardiography monitoring: a review 柔性和可穿戴生物电子学用于心电图监测:综述
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-10-28 DOI: 10.1007/s40843-025-3688-9
Chunling Zheng  (, ), Zhouheng Wang  (, ), Liaonan Li  (, ), Yinji Ma  (, ), Xue Feng  (, )

The rapid development of biomedical engineering has laid a solid foundation for integrated healthcare monitoring systems across hospital and ambulatory settings. As a key technology in this field, flexible and wearable bioelectronics, with distinct mechanical compliance and biocompatibility, enable real-time, continuous electrocardiography (ECG) monitoring, offering new possibilities for early diagnosis and personalized treatment of cardiovascular diseases. This review presents a summary of recent advances in flexible and wearable bioelectronics for ECG monitoring from three major perspectives. First, in terms of materials, we highlight the roles of emerging functional materials, such as liquid metals, nanomaterials, and conductive hydrogels, in improving electrical performance and user comfort. Second, for structural design, we discuss strategies including microneedle arrays, bioinspired geometries, and stretchable interconnects to enhance skin-electrode interface stability and adaptability to body motion. Third, at the system level, we analyse the integration of multichannel and multimodal sensing and wireless transmission technologies to support practical ECG applications. Finally, current challenges, including long-term reliability and data security risks, are discussed, and future directions are proposed, including material–structure co-optimization and AI-assisted analysis, to guide the development of next-generation intelligent ECG monitoring systems.

生物医学工程的快速发展为跨医院和门诊的综合医疗监测系统奠定了坚实的基础。作为该领域的关键技术,灵活可穿戴的生物电子学具有独特的机械顺应性和生物相容性,可以实现实时、连续的心电图监测,为心血管疾病的早期诊断和个性化治疗提供新的可能性。本文主要从三个方面综述了用于心电监测的柔性和可穿戴生物电子技术的最新进展。首先,在材料方面,我们强调了新兴功能材料,如液态金属、纳米材料和导电水凝胶,在提高电气性能和用户舒适度方面的作用。其次,在结构设计方面,我们讨论了包括微针阵列、仿生几何形状和可拉伸互连在内的策略,以增强皮肤电极界面的稳定性和对身体运动的适应性。第三,在系统层面,我们分析了多通道、多模态传感和无线传输技术的集成,以支持实际心电应用。最后,讨论了当前面临的挑战,包括长期可靠性和数据安全风险,并提出了未来的发展方向,包括材料-结构协同优化和人工智能辅助分析,以指导下一代智能心电监护系统的发展。
{"title":"Flexible and wearable bioelectronics for electrocardiography monitoring: a review","authors":"Chunling Zheng \u0000 (,&nbsp;),&nbsp;Zhouheng Wang \u0000 (,&nbsp;),&nbsp;Liaonan Li \u0000 (,&nbsp;),&nbsp;Yinji Ma \u0000 (,&nbsp;),&nbsp;Xue Feng \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3688-9","DOIUrl":"10.1007/s40843-025-3688-9","url":null,"abstract":"<div><p>The rapid development of biomedical engineering has laid a solid foundation for integrated healthcare monitoring systems across hospital and ambulatory settings. As a key technology in this field, flexible and wearable bioelectronics, with distinct mechanical compliance and biocompatibility, enable real-time, continuous electrocardiography (ECG) monitoring, offering new possibilities for early diagnosis and personalized treatment of cardiovascular diseases. This review presents a summary of recent advances in flexible and wearable bioelectronics for ECG monitoring from three major perspectives. First, in terms of materials, we highlight the roles of emerging functional materials, such as liquid metals, nanomaterials, and conductive hydrogels, in improving electrical performance and user comfort. Second, for structural design, we discuss strategies including microneedle arrays, bioinspired geometries, and stretchable interconnects to enhance skin-electrode interface stability and adaptability to body motion. Third, at the system level, we analyse the integration of multichannel and multimodal sensing and wireless transmission technologies to support practical ECG applications. Finally, current challenges, including long-term reliability and data security risks, are discussed, and future directions are proposed, including material–structure co-optimization and AI-assisted analysis, to guide the development of next-generation intelligent ECG monitoring systems.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 12","pages":"4344 - 4359"},"PeriodicalIF":7.4,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145610759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Centrifugal casting-enabled highly-oriented MXene-based layered films with dual-shielding against electromagnetic wave and infrared radiation 离心铸造使高取向的mxene基层状薄膜具有双重屏蔽电磁波和红外辐射
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-10-28 DOI: 10.1007/s40843-025-3539-5
Congqi Liu  (, ), Jingyu Dong  (, ), Hongli Cheng  (, ), Chengen He  (, ), Bing Zhou  (, ), Ming Huang  (, ), Chuntai Liu  (, ), Yuezhan Feng  (, )

MXene-based layered films show great promise for electromagnetic interference (EMI) shielding, yet maintaining highly ordered structures during large-scale production remains challenging. Herein, we present a facile centrifugal casting method for scalable fabrication of MXene/polyvinyl alcohol (MXene/PVA) films with highly oriented and compact layered structures. During centrifugal casting, the viscous fluid experiences strong shear and centrifugal forces along the tangential and normal directions, respectively, inducing compact and oriented arrangement of MXene nanosheets in the layered structure. Consequently, the Herman’s orientation factor of MXene in composite films shows a significant increase from 0.681 to 0.794 as the rotation rate rises from 0 to 4000 r/min. Accordingly, the tensile strength and toughness of the composite film increase from 55.2 to 191.1 MPa, and from ∼0.8 to 2.5 MJ/m3. More importantly, the highly oriented and compact layered structure with the ultrathin thickness (∼8 µm) enables a high absolute electromagnetic shielding effectiveness (SSE/t) of 21029 dB cm2/g. Moreover, the increased oriented arrangement of MXene in the layered structure can significantly reduce the infrared emissivity to 0.248, thus endowing the MXene/PVA film with excellent thermal camouflage capability. Therefore, this work presents a more effective strategy for constructing high-performance MXene-based layered films.

基于mxene的层状薄膜在电磁干扰(EMI)屏蔽方面显示出巨大的前景,但在大规模生产过程中保持高度有序的结构仍然具有挑战性。在此,我们提出了一种简便的离心铸造方法,用于可扩展地制备具有高度定向和致密层状结构的MXene/聚乙烯醇(MXene/PVA)薄膜。在离心铸造过程中,黏性流体分别在切向和法向受到强大的剪切力和离心力,导致MXene纳米片在层状结构中排列致密和定向。因此,当旋转速率从0 r/min增加到4000 r/min时,复合膜中MXene的Herman取向因子从0.681显著增加到0.794。复合膜的抗拉强度和韧性从55.2 MPa增加到191.1 MPa,从0.8 MJ/m3增加到2.5 MJ/m3。更重要的是,高度定向和紧凑的层状结构具有超薄厚度(~ 8µm),使绝对电磁屏蔽效率(SSE/t)达到21029 dB cm2/g。此外,层状结构中MXene定向排列的增加可以显著降低红外发射率至0.248,从而使MXene/PVA薄膜具有优异的热伪装能力。因此,这项工作提出了一种更有效的策略来构建高性能的基于mxeni的层状薄膜。
{"title":"Centrifugal casting-enabled highly-oriented MXene-based layered films with dual-shielding against electromagnetic wave and infrared radiation","authors":"Congqi Liu \u0000 (,&nbsp;),&nbsp;Jingyu Dong \u0000 (,&nbsp;),&nbsp;Hongli Cheng \u0000 (,&nbsp;),&nbsp;Chengen He \u0000 (,&nbsp;),&nbsp;Bing Zhou \u0000 (,&nbsp;),&nbsp;Ming Huang \u0000 (,&nbsp;),&nbsp;Chuntai Liu \u0000 (,&nbsp;),&nbsp;Yuezhan Feng \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3539-5","DOIUrl":"10.1007/s40843-025-3539-5","url":null,"abstract":"<div><p>MXene-based layered films show great promise for electromagnetic interference (EMI) shielding, yet maintaining highly ordered structures during large-scale production remains challenging. Herein, we present a facile centrifugal casting method for scalable fabrication of MXene/polyvinyl alcohol (MXene/PVA) films with highly oriented and compact layered structures. During centrifugal casting, the viscous fluid experiences strong shear and centrifugal forces along the tangential and normal directions, respectively, inducing compact and oriented arrangement of MXene nanosheets in the layered structure. Consequently, the Herman’s orientation factor of MXene in composite films shows a significant increase from 0.681 to 0.794 as the rotation rate rises from 0 to 4000 r/min. Accordingly, the tensile strength and toughness of the composite film increase from 55.2 to 191.1 MPa, and from ∼0.8 to 2.5 MJ/m<sup>3</sup>. More importantly, the highly oriented and compact layered structure with the ultrathin thickness (∼8 µm) enables a high absolute electromagnetic shielding effectiveness (SSE/<i>t</i>) of 21029 dB cm<sup>2</sup>/g. Moreover, the increased oriented arrangement of MXene in the layered structure can significantly reduce the infrared emissivity to 0.248, thus endowing the MXene/PVA film with excellent thermal camouflage capability. Therefore, this work presents a more effective strategy for constructing high-performance MXene-based layered films.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"69 1","pages":"395 - 404"},"PeriodicalIF":7.4,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145891253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly robust and fatigue-resistant organic hydrogel composite elastomer fibers with multi-sensing capabilities 高度坚固和抗疲劳的有机水凝胶复合弹性体纤维,具有多传感能力
IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-10-28 DOI: 10.1007/s40843-025-3580-0
Jiaxin Shen  (, ), Tao Feng  (, ), Chen Li  (, ), Shisheng Hou  (, ), Kuibo Yin  (, ), Hengchang Bi  (, ), Litao Sun  (, )

Converting hydrogels into one-dimensional (1D) fiber structures and integrating them into textiles offers a promising approach for the development of smart wearable devices. However, under repeated deformations, the fracture of low-energy amorphous crosslinking structure in the hydrogel leads to fatigue and hysteresis. This severely impairs the mechanical properties of hydrogel fibers and limits their potential applications. In this study, a novel strategy for fabricating composite hydrogel smart fibers featuring exceptional mechanical robustness and multisensory capabilities is proposed. By integrating an Ecoflex elastomer backbone into the organic hydrogel, the fatigue resistance is enhanced and hysteresis is eliminated, and no significant degradation of mechanical properties is observed after 10,000 cycles of 200% strain loading and unloading. The strain sensor based on this fiber has high sensitivity (gauge factor ∼3.0), fast response (140 ms)/recovery time (130 ms), and excellent repeatability (10,000 cycles at 70% strain). Moreover, the organic hydrogel/Ecoflex fiber (OHEF) exhibits remarkable resistance to dehydration and freezing. Smart textiles based on OHEF can detect diverse external stimuli, including deformation, temperature, proximity, pressure, and can perform passive sensing. The successful development of this fiber represents significant progress in applying hydrogels to wearable devices. Its multisensory properties highlight the great potential of OHEF for wearable electronics applications.

将水凝胶转化为一维(1D)纤维结构并将其集成到纺织品中,为开发智能可穿戴设备提供了一种很有前途的方法。然而,在反复变形下,水凝胶中低能非晶交联结构的断裂导致疲劳和迟滞。这严重损害了水凝胶纤维的机械性能,限制了其潜在的应用。在这项研究中,提出了一种制造复合水凝胶智能纤维的新策略,该纤维具有优异的机械稳健性和多感官能力。通过将Ecoflex弹性体骨架整合到有机水凝胶中,增强了抗疲劳性能,消除了迟滞,并且在200%应变加载和卸载10,000次循环后,没有观察到机械性能的明显退化。基于该纤维的应变传感器具有高灵敏度(测量因子~ 3.0),快速响应(140 ms)/恢复时间(130 ms)和出色的重复性(70%应变下10,000次循环)。此外,有机水凝胶/Ecoflex纤维(OHEF)具有显著的抗脱水和抗冻性能。基于OHEF的智能纺织品可以检测各种外部刺激,包括变形、温度、接近度、压力,并可以执行被动感应。这种纤维的成功开发代表了将水凝胶应用于可穿戴设备的重大进展。它的多感官特性突出了OHEF在可穿戴电子应用中的巨大潜力。
{"title":"Highly robust and fatigue-resistant organic hydrogel composite elastomer fibers with multi-sensing capabilities","authors":"Jiaxin Shen \u0000 (,&nbsp;),&nbsp;Tao Feng \u0000 (,&nbsp;),&nbsp;Chen Li \u0000 (,&nbsp;),&nbsp;Shisheng Hou \u0000 (,&nbsp;),&nbsp;Kuibo Yin \u0000 (,&nbsp;),&nbsp;Hengchang Bi \u0000 (,&nbsp;),&nbsp;Litao Sun \u0000 (,&nbsp;)","doi":"10.1007/s40843-025-3580-0","DOIUrl":"10.1007/s40843-025-3580-0","url":null,"abstract":"<div><p>Converting hydrogels into one-dimensional (1D) fiber structures and integrating them into textiles offers a promising approach for the development of smart wearable devices. However, under repeated deformations, the fracture of low-energy amorphous crosslinking structure in the hydrogel leads to fatigue and hysteresis. This severely impairs the mechanical properties of hydrogel fibers and limits their potential applications. In this study, a novel strategy for fabricating composite hydrogel smart fibers featuring exceptional mechanical robustness and multisensory capabilities is proposed. By integrating an Ecoflex elastomer backbone into the organic hydrogel, the fatigue resistance is enhanced and hysteresis is eliminated, and no significant degradation of mechanical properties is observed after 10,000 cycles of 200% strain loading and unloading. The strain sensor based on this fiber has high sensitivity (gauge factor ∼3.0), fast response (140 ms)/recovery time (130 ms), and excellent repeatability (10,000 cycles at 70% strain). Moreover, the organic hydrogel/Ecoflex fiber (OHEF) exhibits remarkable resistance to dehydration and freezing. Smart textiles based on OHEF can detect diverse external stimuli, including deformation, temperature, proximity, pressure, and can perform passive sensing. The successful development of this fiber represents significant progress in applying hydrogels to wearable devices. Its multisensory properties highlight the great potential of OHEF for wearable electronics applications.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 12","pages":"4534 - 4545"},"PeriodicalIF":7.4,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145610795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Science China Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1