Pub Date : 2024-12-09DOI: 10.1007/s40843-024-3159-8
Hongjie Liu (, ), Xue Sun (, ), Jiaxin Liu (, ), Xiang Li (, ), Yunqiu Hua (, ), Zhongjie Yue (, ), Jian Song (, ), Xilong Wang (, ), Yujie Yang (, ), Qianqian Lin (, ), Zhongjun Zhai (, ), Xutang Tao (, ), Guodong Zhang (, )
Lead-halide perovskite single crystal (SC) heterojunctions have attracted significant attention for X-ray detection owing to their unique combination of high sensitivity, resolution, stability and low detection limit. However, the toxicity of lead in those perovskite heterojunctions limits their practical applications. Herein, we report the construction of the first all-inorganic lead-free Cs2AgBiBr6/Cs3Bi2Br9 SC heterojunctions with an area of 20 × 20 mm2 via a facile liquid-phase epitaxial method through temperature-lowering crystallization. The epitaxial crystallization of the three-dimensional (3D) Cs2AgBiBr6 SC film on a 2D Cs3Bi2Br9 SC substrate requires a large driving force for transitioning from the Volmer–Weber mode to the layer-by-layer growth mode under a rapid cooling rate. The Cs2AgBiBr6/Cs3Bi2Br9 SC heterojunction detector achieves a high sensitivity of 1390 µC Gyair−1 cm−2 for 100 keV hard X-ray detection at room temperature, which is enhanced to 2075 µC Gyair−1 cm−2 at 75°C, demonstrating impressive high-temperature stability. Moreover, the detector achieves a detection limit of 37.48 nGyair s−1 and excellent stability for 90 days without any encapsulation. This work demonstrates the feasibility of using the epitaxial mechanism of perovskite formation on a high-surface-energy substrate for the controllable construction of a 3D/2D heterojunction that significantly enhances X-ray detection performance.
{"title":"Lead-free perovskite Cs2AgBiBr6/Cs3Bi2Br9 single-crystalline heterojunction X-ray detector with enhanced sensitivity and ultra-low detection limit","authors":"Hongjie Liu \u0000 (, ), Xue Sun \u0000 (, ), Jiaxin Liu \u0000 (, ), Xiang Li \u0000 (, ), Yunqiu Hua \u0000 (, ), Zhongjie Yue \u0000 (, ), Jian Song \u0000 (, ), Xilong Wang \u0000 (, ), Yujie Yang \u0000 (, ), Qianqian Lin \u0000 (, ), Zhongjun Zhai \u0000 (, ), Xutang Tao \u0000 (, ), Guodong Zhang \u0000 (, )","doi":"10.1007/s40843-024-3159-8","DOIUrl":"10.1007/s40843-024-3159-8","url":null,"abstract":"<div><p>Lead-halide perovskite single crystal (SC) heterojunctions have attracted significant attention for X-ray detection owing to their unique combination of high sensitivity, resolution, stability and low detection limit. However, the toxicity of lead in those perovskite heterojunctions limits their practical applications. Herein, we report the construction of the first all-inorganic lead-free Cs<sub>2</sub>AgBiBr<sub>6</sub>/Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> SC heterojunctions with an area of 20 × 20 mm<sup>2</sup> via a facile liquid-phase epitaxial method through temperature-lowering crystallization. The epitaxial crystallization of the three-dimensional (3D) Cs<sub>2</sub>AgBiBr<sub>6</sub> SC film on a 2D Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> SC substrate requires a large driving force for transitioning from the Volmer–Weber mode to the layer-by-layer growth mode under a rapid cooling rate. The Cs<sub>2</sub>AgBiBr<sub>6</sub>/Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> SC heterojunction detector achieves a high sensitivity of 1390 µC Gy<sub>air</sub><sup>−1</sup> cm<sup>−2</sup> for 100 keV hard X-ray detection at room temperature, which is enhanced to 2075 µC Gy<sub>air</sub><sup>−1</sup> cm<sup>−2</sup> at 75°C, demonstrating impressive high-temperature stability. Moreover, the detector achieves a detection limit of 37.48 nGy<sub>air</sub> s<sup>−1</sup> and excellent stability for 90 days without any encapsulation. This work demonstrates the feasibility of using the epitaxial mechanism of perovskite formation on a high-surface-energy substrate for the controllable construction of a 3D/2D heterojunction that significantly enhances X-ray detection performance.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 2","pages":"561 - 570"},"PeriodicalIF":6.8,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.1007/s40843-024-3169-8
Cheng Qian (, ), Lixia Xie (, ), Lijie Liu (, ), Zhanqi Cao (, ), Dongjie Tian (, ), Dongdong Sun (, ), Guoxing Liu (, ), Zhiqian Guo (, ), Xin Zheng (, )
Smart materials with tunable multiple-color emissions have been widely investigated in the fields of bioimaging, display, and information encryption. Herein, multicolor emissive molecules with hydrazone bridged triphenylamines and pyridinium groups are reported. The protonation of the pyridine subunit by various acids leads to aggregation-induced emission with broad emission colors ranging from blue to red in multiple states and spectra of λPL, dichloromethane solution = 463–584 nm, λPL,powder = 455–620 nm, and λPL,crystal = 485–657 nm, respectively. Upon grinding or heating, hydrazone with CF3COO− exhibit blue-shift emissions from red to yellow due to weakened molecular packing and conformational rigidity. In contrast, hydrazone with (CF3SO2)2N− exhibited redshift emission from green to yellow due to the decreased electron-donating ability of the triphenylamine unit upon transformation from a rigid pyramidal shape to a planar structure. These are rare, charged organic examples exhibiting predictable mechanochromic and thermochromic strong emissions through facile anion exchanges, potentially providing new insights into the design of smart materials.
{"title":"Anion-induced opposite mechanochromic and thermochromic emission directions of protonated hydrazones","authors":"Cheng Qian \u0000 (, ), Lixia Xie \u0000 (, ), Lijie Liu \u0000 (, ), Zhanqi Cao \u0000 (, ), Dongjie Tian \u0000 (, ), Dongdong Sun \u0000 (, ), Guoxing Liu \u0000 (, ), Zhiqian Guo \u0000 (, ), Xin Zheng \u0000 (, )","doi":"10.1007/s40843-024-3169-8","DOIUrl":"10.1007/s40843-024-3169-8","url":null,"abstract":"<div><p>Smart materials with tunable multiple-color emissions have been widely investigated in the fields of bioimaging, display, and information encryption. Herein, multicolor emissive molecules with hydrazone bridged triphenylamines and pyridinium groups are reported. The protonation of the pyridine subunit by various acids leads to aggregation-induced emission with broad emission colors ranging from blue to red in multiple states and spectra of <i>λ</i><sub>PL</sub>, dichloromethane solution = 463–584 nm, <i>λ</i><sub>PL,powder</sub> = 455–620 nm, and <i>λ</i><sub>PL,crystal</sub> = 485–657 nm, respectively. Upon grinding or heating, hydrazone with CF<sub>3</sub>COO<sup>−</sup> exhibit blue-shift emissions from red to yellow due to weakened molecular packing and conformational rigidity. In contrast, hydrazone with (CF<sub>3</sub>SO<sub>2</sub>)<sub>2</sub>N<sup>−</sup> exhibited redshift emission from green to yellow due to the decreased electron-donating ability of the triphenylamine unit upon transformation from a rigid pyramidal shape to a planar structure. These are rare, charged organic examples exhibiting predictable mechanochromic and thermochromic strong emissions through facile anion exchanges, potentially providing new insights into the design of smart materials.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"125 - 131"},"PeriodicalIF":6.8,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1007/s40843-024-3190-7
Xiang Chen (, ), Shuai Feng (, ), Song Xie (, ), Yaping Miao (, ), Biao Gao (, ), Xuming Zhang (, ), Li Huang (, ), Yun Li (, ), Paul K. Chu, Xiang Peng (, )
Molybdenum-based catalysts have demonstrated significant potential in the electrocatalytic hydrogen evolution reaction (HER). However, the limited exposure of active sites and strong hydrogen adsorption result in suboptimal performance. Herein, a Mo2N–MoSe2 heterojunction is prepared on carbon cloth (MNS/CC) to enhance the HER. The strong electronic interaction between Mo2N and MoSe2, combined with the lower work function of Mo2N, creates an intrinsic electric field at the heterojunction interface, which markedly improves charge transfer efficiency. Additionally, the optimized electronic structure of Mo sites further enhances charge transfer and intrinsically catalytic activity in HER. As a result, MNS/CC requires overpotentials of mere 65 and 210 mV to achieve current densities of 20 mA cm−2 and 1 A cm−2, respectively, with a Tafel slope of only 96 mV dec−1. Moreover, MNS/CC maintains stable operation at 1 A cm−2 for 240 h without significant degradation. The results offer insights into the design of non-precious metal-based electro-catalysts for industrial hydrogen production.
钼基催化剂在电催化析氢反应(HER)中显示出巨大的潜力。然而,有限的活性位点暴露和强烈的氢吸附导致性能不理想。本文在碳布(MNS/CC)上制备了Mo2N-MoSe2异质结,以提高HER。Mo2N与MoSe2之间的强电子相互作用,加上Mo2N较低的功函数,在异质结界面处形成了本征电场,显著提高了电荷转移效率。此外,优化后的Mo位点的电子结构进一步增强了HER中的电荷转移和内在催化活性。因此,MNS/CC只需要65和210 mV的过电位就能分别达到20 mA cm - 2和1 a cm - 2的电流密度,塔菲尔斜率仅为96 mV dec - 1。此外,MNS/CC在1 A cm−2下保持稳定运行240小时,没有明显的退化。该结果为工业制氢非贵金属电催化剂的设计提供了见解。
{"title":"Boosting hydrogen evolution via work-function-accelerated electronic reconfiguration of Mo-based heterojunction","authors":"Xiang Chen \u0000 (, ), Shuai Feng \u0000 (, ), Song Xie \u0000 (, ), Yaping Miao \u0000 (, ), Biao Gao \u0000 (, ), Xuming Zhang \u0000 (, ), Li Huang \u0000 (, ), Yun Li \u0000 (, ), Paul K. Chu, Xiang Peng \u0000 (, )","doi":"10.1007/s40843-024-3190-7","DOIUrl":"10.1007/s40843-024-3190-7","url":null,"abstract":"<div><p>Molybdenum-based catalysts have demonstrated significant potential in the electrocatalytic hydrogen evolution reaction (HER). However, the limited exposure of active sites and strong hydrogen adsorption result in suboptimal performance. Herein, a Mo<sub>2</sub>N–MoSe<sub>2</sub> heterojunction is prepared on carbon cloth (MNS/CC) to enhance the HER. The strong electronic interaction between Mo<sub>2</sub>N and MoSe<sub>2</sub>, combined with the lower work function of Mo<sub>2</sub>N, creates an intrinsic electric field at the heterojunction interface, which markedly improves charge transfer efficiency. Additionally, the optimized electronic structure of Mo sites further enhances charge transfer and intrinsically catalytic activity in HER. As a result, MNS/CC requires overpotentials of mere 65 and 210 mV to achieve current densities of 20 mA cm<sup>−2</sup> and 1 A cm<sup>−2</sup>, respectively, with a Tafel slope of only 96 mV dec<sup>−1</sup>. Moreover, MNS/CC maintains stable operation at 1 A cm<sup>−2</sup> for 240 h without significant degradation. The results offer insights into the design of non-precious metal-based electro-catalysts for industrial hydrogen production.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"189 - 198"},"PeriodicalIF":6.8,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-29DOI: 10.1007/s40843-024-3189-1
Tiantian Lou (, ), Letian Chen (, ), Guichun Yang (, ), Peng Chen (, ), Wenyan Zhao (, ), Hongshi Li (, ), Guoran Li (, )
Colloids are a vital component of perovskite precursor solutions (PPSs), significantly influencing the quality of perovskite film formation. Despite their importance, a comprehensive understanding of these colloids remains elusive. In this work, we explored the colloidal compositions of two distinct PPS types: the monomer-mixing dissolution (MMD) and the pre-synthesized perovskite single crystal redissolution (SCR). We have uncovered a new dissolution chemical equilibrium mechanism where the transition from mixed monomers to the 3C cubic phase (α-phase) involves a reversible transformation. Our findings indicate that although colloidal size significantly affects the nucleation during perovskite crystallization, the composition of the colloids plays a more crucial role. The MMD method yields poly Pb-I·solvent clusters while the colloids derived from the SCR approach produce hexagonal lead-halide-based perovskite phase clusters. These divergent colloidal compositions lead to markedly different impacts on the perovskite film formation process. Notably, hexagonal-phase colloids act as favorable nucleation sites, promoting the generation of the α-phase perovskite films with larger grains, more homogeneous phases, and fewer defects. This work demonstrates the importance of tailoring colloidal compositions and provides theoretical insights into the beneficial effects of redissolving perovskite in forms such as powder, microcrystals, and single crystals.
{"title":"Unraveling the colloidal composition of perovskite precursor solutions and its impact on film formation","authors":"Tiantian Lou \u0000 (, ), Letian Chen \u0000 (, ), Guichun Yang \u0000 (, ), Peng Chen \u0000 (, ), Wenyan Zhao \u0000 (, ), Hongshi Li \u0000 (, ), Guoran Li \u0000 (, )","doi":"10.1007/s40843-024-3189-1","DOIUrl":"10.1007/s40843-024-3189-1","url":null,"abstract":"<div><p>Colloids are a vital component of perovskite precursor solutions (PPSs), significantly influencing the quality of perovskite film formation. Despite their importance, a comprehensive understanding of these colloids remains elusive. In this work, we explored the colloidal compositions of two distinct PPS types: the monomer-mixing dissolution (MMD) and the pre-synthesized perovskite single crystal redissolution (SCR). We have uncovered a new dissolution chemical equilibrium mechanism where the transition from mixed monomers to the 3C cubic phase (α-phase) involves a reversible transformation. Our findings indicate that although colloidal size significantly affects the nucleation during perovskite crystallization, the composition of the colloids plays a more crucial role. The MMD method yields poly Pb-I·solvent clusters while the colloids derived from the SCR approach produce hexagonal lead-halide-based perovskite phase clusters. These divergent colloidal compositions lead to markedly different impacts on the perovskite film formation process. Notably, hexagonal-phase colloids act as favorable nucleation sites, promoting the generation of the α-phase perovskite films with larger grains, more homogeneous phases, and fewer defects. This work demonstrates the importance of tailoring colloidal compositions and provides theoretical insights into the beneficial effects of redissolving perovskite in forms such as powder, microcrystals, and single crystals.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"156 - 164"},"PeriodicalIF":6.8,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The A-D-A′-D-A-type non-fused ring electron acceptors (NFREAs), consisting of electron-donating unit (D) as the bridge to link electron-accepting units (A and A′), have emerged as promising electron acceptors for organic solar cells (OSCs) and organic photodetectors (OPDs). As the units are linked by the carbon-carbon single bonds, these electron acceptors generally possess feasible synthesis and tunable optoelectronic properties. Herein, the recent progress of A-D-A′-D-A-type NFREAs is reviewed, including molecular design, device performance, structure-property relationships, and their applications in OSCs and OPDs. Finally, we discuss the challenges and propose the perspectives for the further development of A-D-A′-D-A-type NFREAs.
A-D-A ' -D-A型非熔合环电子受体(NFREAs)由供电子单元(D)作为连接电子接受单元(A和A ')的桥梁组成,已成为有机太阳能电池(OSCs)和有机光电探测器(opd)中很有前途的电子受体。由于这些电子受体是由碳-碳单键连接的,因此这些电子受体通常具有可行的合成和可调谐的光电性能。本文综述了A-D-A ' - d - a型NFREAs的分子设计、器件性能、结构-性能关系及其在osc和opd中的应用等方面的研究进展。最后,我们讨论了A-D-A ' - d - a型NFREAs的挑战,并提出了进一步发展的前景。
{"title":"A-D-A′-D-A-type non-fused ring electron acceptors for organic solar cells and photodetectors","authors":"Wenkui Wei \u0000 (, ), Xia Zhou \u0000 (, ), Mingqun Yang \u0000 (, ), Baoqi Wu \u0000 (, ), Chunhui Duan \u0000 (, )","doi":"10.1007/s40843-024-3197-3","DOIUrl":"10.1007/s40843-024-3197-3","url":null,"abstract":"<div><p>The A-D-A′-D-A-type non-fused ring electron acceptors (NFREAs), consisting of electron-donating unit (D) as the bridge to link electron-accepting units (A and A′), have emerged as promising electron acceptors for organic solar cells (OSCs) and organic photodetectors (OPDs). As the units are linked by the carbon-carbon single bonds, these electron acceptors generally possess feasible synthesis and tunable optoelectronic properties. Herein, the recent progress of A-D-A′-D-A-type NFREAs is reviewed, including molecular design, device performance, structure-property relationships, and their applications in OSCs and OPDs. Finally, we discuss the challenges and propose the perspectives for the further development of A-D-A′-D-A-type NFREAs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"1 - 20"},"PeriodicalIF":6.8,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1007/s40843-024-3187-8
Tingyao Zhou (, ), Zheng Li (, )
Ultrasmall gold nanoparticles (AuNPs, d < 3 nm) have become an outstanding type of theranostic probe because of tunable luminescence, superior pharmacokinetics, low toxicity, and rich surface chemistry. The second near-infrared (NIR-II) luminescence offers unique merits, such as deep tissue penetration, high spatial resolution, and admirable signal-noise ratio, creating many opportunities and challenges for ultrasmall AuNPs in advanced biomedical applications. Herein, this review illustrates the recent advances of ultrasmall AuNPs in understanding the NIR-II mechanisms, clearance pathways, and related biomedical applications. We firstly elucidate the present understanding of the NIR-II mechanisms of ultrasmall AuNPs, along with some effective strategies for enhancing NIR-II luminescence, namely heterometal doping and surface rigidification. Then, we discuss the impact of their structures on liver clearance and kidney clearance. Further, we highlight the major biomedical applications of these ultrasmall AuNPs in bioimaging, antibacterial, nanomedicine, and drug delivery. Finally, we offer some outlooks on the challenges and chances of ultrasmall AuNPs for later research endeavors to promote their clinical translation in the biomedical field.
超小金纳米颗粒(AuNPs, d <;3nm)因其发光可调、药代动力学优异、毒性低、表面化学成分丰富等优点,已成为一种杰出的治疗探针。二次近红外(NIR-II)发光具有穿透组织深度、高空间分辨率和良好的信噪比等独特优点,为超小型aunp在先进生物医学领域的应用创造了许多机遇和挑战。本文综述了超小AuNPs在了解NIR-II机制、清除途径和相关生物医学应用方面的最新进展。我们首先阐明了目前对超小AuNPs NIR-II发光机理的理解,以及增强NIR-II发光的一些有效策略,即异质金属掺杂和表面硬化。然后,我们讨论了它们的结构对肝脏和肾脏清除的影响。此外,我们强调了这些超小aunp在生物成像、抗菌、纳米医学和药物输送方面的主要生物医学应用。最后,我们展望了超小aunp的挑战和机遇,以促进其在生物医学领域的临床转化。
{"title":"Harnessing NIR-II luminescence in ultrasmall gold nanoparticles for enhanced biomedical applications","authors":"Tingyao Zhou \u0000 (, ), Zheng Li \u0000 (, )","doi":"10.1007/s40843-024-3187-8","DOIUrl":"10.1007/s40843-024-3187-8","url":null,"abstract":"<div><p>Ultrasmall gold nanoparticles (AuNPs, <i>d</i> < 3 nm) have become an outstanding type of theranostic probe because of tunable luminescence, superior pharmacokinetics, low toxicity, and rich surface chemistry. The second near-infrared (NIR-II) luminescence offers unique merits, such as deep tissue penetration, high spatial resolution, and admirable signal-noise ratio, creating many opportunities and challenges for ultrasmall AuNPs in advanced biomedical applications. Herein, this review illustrates the recent advances of ultrasmall AuNPs in understanding the NIR-II mechanisms, clearance pathways, and related biomedical applications. We firstly elucidate the present understanding of the NIR-II mechanisms of ultrasmall AuNPs, along with some effective strategies for enhancing NIR-II luminescence, namely heterometal doping and surface rigidification. Then, we discuss the impact of their structures on liver clearance and kidney clearance. Further, we highlight the major biomedical applications of these ultrasmall AuNPs in bioimaging, antibacterial, nanomedicine, and drug delivery. Finally, we offer some outlooks on the challenges and chances of ultrasmall AuNPs for later research endeavors to promote their clinical translation in the biomedical field.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"86 - 104"},"PeriodicalIF":6.8,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1007/s40843-024-3176-5
Zhiyuan Quan (, ), Linghui Chen (, ), Beibei Chen (, ), Kangli Guo (, ), Pengfei Tian (, ), Haobo Pan (, ), Yang Li (, ), Nana Zhao (, ), Fu-Jian Xu (, )
Post-resection recurrence remains a severe problem in melanoma treatment. New therapeutic strategies, such as chemodynamic therapy (CDT), exhibit high specificity and responsiveness, demonstrating potential to elicit antitumor immune responses by triggering immunogenic cell death (ICD). However, the efficacy of CDT still faces challenges from the immunosuppressive tumor microenvironment (TME) characterized by elevated lactate levels. Herein, we propose a strategy to construct an immunomodulatory hydrogel to synergistically reprogram tumor-associated macrophages and amplify ICD to inhibit melanoma recurrence after surgery. The hyaluronic acid hydrogel containing borosilicate glasses (BGs) and Fe3O4 nanoparticles (HBF hydrogel) are obtained, which can neutralize tumor acidity to reprogram macrophages to M1 phenotype. Furthermore, the HBF hydrogel induces reactive oxygen species production in melanoma cells, which could induce ICD through CDT and stimulate strong antitumor immune responses, thereby promoting tumor immunotherapy. The cooperative ICD induced by CDT and immunosuppressive TME remodeling leads to effective suppression of tumor recurrence. This work provides a promising strategy for immunomodulation-enhanced melanoma therapy through the fabrication of hydrogel to prevent postsurgical tumor recurrence.
{"title":"Immunomodulatory hydrogel neutralizes tumor acidity to augment immune responses for the prevention of post-surgical recurrence of melanoma","authors":"Zhiyuan Quan \u0000 (, ), Linghui Chen \u0000 (, ), Beibei Chen \u0000 (, ), Kangli Guo \u0000 (, ), Pengfei Tian \u0000 (, ), Haobo Pan \u0000 (, ), Yang Li \u0000 (, ), Nana Zhao \u0000 (, ), Fu-Jian Xu \u0000 (, )","doi":"10.1007/s40843-024-3176-5","DOIUrl":"10.1007/s40843-024-3176-5","url":null,"abstract":"<div><p>Post-resection recurrence remains a severe problem in melanoma treatment. New therapeutic strategies, such as chemodynamic therapy (CDT), exhibit high specificity and responsiveness, demonstrating potential to elicit antitumor immune responses by triggering immunogenic cell death (ICD). However, the efficacy of CDT still faces challenges from the immunosuppressive tumor microenvironment (TME) characterized by elevated lactate levels. Herein, we propose a strategy to construct an immunomodulatory hydrogel to synergistically reprogram tumor-associated macrophages and amplify ICD to inhibit melanoma recurrence after surgery. The hyaluronic acid hydrogel containing borosilicate glasses (BGs) and Fe<sub>3</sub>O<sub>4</sub> nanoparticles (HBF hydrogel) are obtained, which can neutralize tumor acidity to reprogram macrophages to M1 phenotype. Furthermore, the HBF hydrogel induces reactive oxygen species production in melanoma cells, which could induce ICD through CDT and stimulate strong antitumor immune responses, thereby promoting tumor immunotherapy. The cooperative ICD induced by CDT and immunosuppressive TME remodeling leads to effective suppression of tumor recurrence. This work provides a promising strategy for immunomodulation-enhanced melanoma therapy through the fabrication of hydrogel to prevent postsurgical tumor recurrence.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"270 - 279"},"PeriodicalIF":6.8,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}