首页 > 最新文献

Science China Materials最新文献

英文 中文
Editorial: special topic on biomedical materials 编辑:生物医学材料专题
IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-12 DOI: 10.1007/s40843-024-3178-y
Xuesi Chen
{"title":"Editorial: special topic on biomedical materials","authors":"Xuesi Chen","doi":"10.1007/s40843-024-3178-y","DOIUrl":"10.1007/s40843-024-3178-y","url":null,"abstract":"","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 12","pages":"3761 - 3762"},"PeriodicalIF":6.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced long-lasting luminescence nanorods for ultrasensitive detection of SARS-CoV-2 N protein 增强型长效发光纳米棒用于超灵敏检测sars - cov - 2n蛋白
IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-12 DOI: 10.1007/s40843-024-3148-9
Yi Wei  (, ), Menglin Song  (, ), Lihua Li  (, ), Yingjin Ma  (, ), Xinyue Lao  (, ), Yuan Liu  (, ), Guogang Li  (, ), Jianhua Hao  (, )

Persistent luminescence nanomaterials can remain luminescence when the light source is turned off, which exhibits promise in biosensor and bioimaging fields since they have the ability to completely eradicate tissue autofluorescence. Although significant progress has been made in the persistent luminescence biosensing, there is still a dearth of long-afterglow detection platform with low limit of detection (LOD) and high sensitivity. Herein, Zn2GeO4:Mn, Cr persistently luminescent nanorods (PLNRs) with superior persistent luminescence and long afterglow time were developed. The addition of Cr3+ manifestly improves persistent luminescence intensity and afterglow duration through creating a deep defect trap. Then the biosensors were constructed by combining the Zn2GeO4:Mn,Cr PLNRs-antibody and Fe3O4 magnetic nanoparticles (MNPs)-antibody for nucleocapsid protein detection based on electrostatic attraction. The LOD value for nucleocapsid protein realizes as low as 39.82 ag/mL, which is much lower than the previously reported persistent luminescent-based biosensors. Accordingly, the low detection sensitivity is attributed to fluorescence resonance energy transfer. In addition, high specificity is also achieved. Therefore, the as-prepared Zn2GeO4:Mn,Cr persistently luminescent materials can act as the promising candidate in biosensors applications. This strategy provides effective guidance for the development of biosensing platforms with high sensitivity and specificity.

持续发光纳米材料可以在光源关闭时保持发光,因为它们具有完全消除组织自身荧光的能力,因此在生物传感器和生物成像领域显示出前景。尽管在持续发光生物传感方面取得了重大进展,但低检测限(LOD)和高灵敏度的长余辉检测平台仍然缺乏。本文制备了具有优异的持续发光性能和较长的余辉时间的Zn2GeO4:Mn, Cr持续发光纳米棒(PLNRs)。Cr3+的加入通过形成深缺陷阱明显提高了持续发光强度和余辉持续时间。然后结合Zn2GeO4:Mn,Cr plnrs抗体和Fe3O4磁性纳米颗粒(MNPs)抗体构建基于静电吸引的核衣壳蛋白检测生物传感器。核衣壳蛋白的LOD值低至39.82 ag/mL,远低于先前报道的基于持续发光的生物传感器。因此,低检测灵敏度归因于荧光共振能量转移。此外,还具有较高的特异性。因此,制备的Zn2GeO4:Mn,Cr持续发光材料在生物传感器领域具有广阔的应用前景。该策略为开发高灵敏度、高特异性的生物传感平台提供了有效的指导。
{"title":"Enhanced long-lasting luminescence nanorods for ultrasensitive detection of SARS-CoV-2 N protein","authors":"Yi Wei \u0000 (,&nbsp;),&nbsp;Menglin Song \u0000 (,&nbsp;),&nbsp;Lihua Li \u0000 (,&nbsp;),&nbsp;Yingjin Ma \u0000 (,&nbsp;),&nbsp;Xinyue Lao \u0000 (,&nbsp;),&nbsp;Yuan Liu \u0000 (,&nbsp;),&nbsp;Guogang Li \u0000 (,&nbsp;),&nbsp;Jianhua Hao \u0000 (,&nbsp;)","doi":"10.1007/s40843-024-3148-9","DOIUrl":"10.1007/s40843-024-3148-9","url":null,"abstract":"<div><p>Persistent luminescence nanomaterials can remain luminescence when the light source is turned off, which exhibits promise in biosensor and bioimaging fields since they have the ability to completely eradicate tissue autofluorescence. Although significant progress has been made in the persistent luminescence biosensing, there is still a dearth of long-afterglow detection platform with low limit of detection (LOD) and high sensitivity. Herein, Zn<sub>2</sub>GeO<sub>4</sub>:Mn, Cr persistently luminescent nanorods (PLNRs) with superior persistent luminescence and long afterglow time were developed. The addition of Cr<sup>3+</sup> manifestly improves persistent luminescence intensity and afterglow duration through creating a deep defect trap. Then the biosensors were constructed by combining the Zn<sub>2</sub>GeO<sub>4</sub>:Mn,Cr PLNRs-antibody and Fe<sub>3</sub>O<sub>4</sub> magnetic nanoparticles (MNPs)-antibody for nucleocapsid protein detection based on electrostatic attraction. The LOD value for nucleocapsid protein realizes as low as 39.82 ag/mL, which is much lower than the previously reported persistent luminescent-based biosensors. Accordingly, the low detection sensitivity is attributed to fluorescence resonance energy transfer. In addition, high specificity is also achieved. Therefore, the as-prepared Zn<sub>2</sub>GeO<sub>4</sub>:Mn,Cr persistently luminescent materials can act as the promising candidate in biosensors applications. This strategy provides effective guidance for the development of biosensing platforms with high sensitivity and specificity.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"253 - 260"},"PeriodicalIF":6.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40843-024-3148-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrathin inorganic-organic solid-state electrolyte reinforced by a pre-fiberized LAGP continuous skeleton 由预纤维化LAGP连续骨架增强的超薄无机-有机固态电解质
IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-11 DOI: 10.1007/s40843-024-3104-2
Shiya Li  (, ), Shuhao Wang  (, ), Gaofeng Du  (, ), Jianing Liang  (, ), Zhaoming Tong  (, ), Yanming Cui  (, ), Jiu Lin  (, ), Xiaoxiong Xu  (, ), Xizheng Liu  (, ), Tianyou Zhai  (, ), Huiqiao Li  (, )

Inorganic-organic composite electrolyte is proved an effective way to enhance the overall performance of the electrolytes. However, simply combining powder fillers with polymers is not sufficient for the application of composite electrolytes. In this work, we designed an ultrathin organic-inorganic composite solid electrolyte with high mechanical strength and ionic conductivity, in which the inorganic Li1.5Al0.5Ge1.5(PO4)3 (LAGP) solid electrolyte is pre-fiberized into a three-dimensional nanofiber network to serve as a self-supporting skeleton for the polyethylene oxide (PEO) matrix. This continuous skeleton structure not only significantly improves the mechanical strength of the PEO-based electrolyte, but also forms a continuous lithium-ion conduction path, promoting the rapid migration of lithium ions. The fiber-reinforced composite electrolyte has an ionic conductivity of 8.27×10−4 S cm−1 at 60°C and a tensile strength of up to 4.29 MPa. Besides, it exhibits a reduced overpotential and stable long-term cycling performance over 1700 h when used in Li/Li symmetric batteries. The LiFePO4 (LFP)∣Li cell assembled with the fiber-reinforced composite electrolyte also delivers a specific capacity of about 142 mAh g−1 over 300 cycles at 0.5 C and maintains good cycling stability. This work provides a novel idea for designing the next generation of safe and reliable organic-inorganic composite solid-state electrolyte membranes.

无机-有机复合电解质是提高电解质综合性能的有效途径。然而,简单地将粉末填料与聚合物结合是不足以用于复合电解质的应用的。在这项工作中,我们设计了一种具有高机械强度和离子电导率的超薄有机-无机复合固体电解质,其中无机Li1.5Al0.5Ge1.5(PO4)3 (LAGP)固体电解质被预纤成三维纳米纤维网络,作为聚乙烯氧化物(PEO)基体的自支撑骨架。这种连续骨架结构不仅显著提高了peo基电解质的机械强度,而且形成了连续的锂离子传导路径,促进了锂离子的快速迁移。该复合电解质在60℃时的离子电导率为8.27×10−4 S cm−1,抗拉强度高达4.29 MPa。此外,在Li/Li对称电池中使用时,它具有降低过电位和超过1700 h的稳定长期循环性能。用纤维增强复合电解质组装的LiFePO4 (LFP)∣锂电池在0.5 C下,在300次循环中提供了约142 mAh g−1的比容量,并保持了良好的循环稳定性。这项工作为设计下一代安全可靠的有机-无机复合固态电解质膜提供了新的思路。
{"title":"Ultrathin inorganic-organic solid-state electrolyte reinforced by a pre-fiberized LAGP continuous skeleton","authors":"Shiya Li \u0000 (,&nbsp;),&nbsp;Shuhao Wang \u0000 (,&nbsp;),&nbsp;Gaofeng Du \u0000 (,&nbsp;),&nbsp;Jianing Liang \u0000 (,&nbsp;),&nbsp;Zhaoming Tong \u0000 (,&nbsp;),&nbsp;Yanming Cui \u0000 (,&nbsp;),&nbsp;Jiu Lin \u0000 (,&nbsp;),&nbsp;Xiaoxiong Xu \u0000 (,&nbsp;),&nbsp;Xizheng Liu \u0000 (,&nbsp;),&nbsp;Tianyou Zhai \u0000 (,&nbsp;),&nbsp;Huiqiao Li \u0000 (,&nbsp;)","doi":"10.1007/s40843-024-3104-2","DOIUrl":"10.1007/s40843-024-3104-2","url":null,"abstract":"<div><p>Inorganic-organic composite electrolyte is proved an effective way to enhance the overall performance of the electrolytes. However, simply combining powder fillers with polymers is not sufficient for the application of composite electrolytes. In this work, we designed an ultrathin organic-inorganic composite solid electrolyte with high mechanical strength and ionic conductivity, in which the inorganic Li<sub>1.5</sub>Al<sub>0.5</sub>Ge<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub> (LAGP) solid electrolyte is pre-fiberized into a three-dimensional nanofiber network to serve as a self-supporting skeleton for the polyethylene oxide (PEO) matrix. This continuous skeleton structure not only significantly improves the mechanical strength of the PEO-based electrolyte, but also forms a continuous lithium-ion conduction path, promoting the rapid migration of lithium ions. The fiber-reinforced composite electrolyte has an ionic conductivity of 8.27×10<sup>−4</sup> S cm<sup>−1</sup> at 60°C and a tensile strength of up to 4.29 MPa. Besides, it exhibits a reduced overpotential and stable long-term cycling performance over 1700 h when used in Li/Li symmetric batteries. The LiFePO<sub>4</sub> (LFP)∣Li cell assembled with the fiber-reinforced composite electrolyte also delivers a specific capacity of about 142 mAh g<sup>−1</sup> over 300 cycles at 0.5 C and maintains good cycling stability. This work provides a novel idea for designing the next generation of safe and reliable organic-inorganic composite solid-state electrolyte membranes.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"199 - 206"},"PeriodicalIF":6.8,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling enhanced oxygen reduction activity in PtCo bimetallic solid solutions through controlled crystal strain 通过控制晶体应变揭示了PtCo双金属固溶体中氧还原活性的增强
IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-11 DOI: 10.1007/s40843-024-3166-2
Ning He  (, ), Shengqiang Wu  (, ), Wensong Yu  (, ), Fangrun Jin  (, ), Wenjun Xie  (, ), Xinxin Lu  (, ), Xiaoxu Zhao  (, ), Zhongxin Chen  (, ), Wenguang Tu  (, ), S. Y. Tong  (, )

The development of low-cost, highly active platinum (Pt)-based electrocatalysts for oxygen reduction reaction (ORR) is crucial for widespread applications of fuel cells. An effective approach lies in alloying Pt with non-noble transition metals to modulate the physicochemical state of the Pt surface. However, fundamental challenges remain in understanding the structure-performance relationship due to the complexity of composition, crystal type, and surface structure during the alloying process. In this study, we synthesized a series of PtCo bimetallic solid solutions with varying ratios using a liquid-phase synthesis method. By exploiting the characteristics of solid solutions, the resulting PtCo bimetallic alloy maintains the face-centered cubic crystal structure of pure platinum, minimizing the complexities introduced during alloying and facilitating mechanism analysis. Furthermore, under controlled alloy composition and crystal structure, we investigated the dependence of the electrocatalytic activity for the oxygen reduction reaction on the surface strain of the platinum catalyst. The S-PtCo-SNPs cathode designed accordingly endows both proton exchange membrane fuel cell (PEMFC) (2.08 W cm−2 at 4 A cm−2) and Zn-air battery (ZAB) (143.1 mW cm−2 at 214.5 mA cm−2) with outstanding performance.

开发低成本、高活性的铂基氧还原反应电催化剂对燃料电池的广泛应用至关重要。一种有效的方法是将Pt与非贵金属过渡金属合金化,以调节Pt表面的物理化学状态。然而,由于合金过程中成分、晶体类型和表面结构的复杂性,在理解结构-性能关系方面仍然存在根本性的挑战。在本研究中,我们采用液相合成方法合成了一系列不同比例的PtCo双金属固溶体。通过利用固溶体的特性,得到的PtCo双金属合金保持了纯铂的面心立方晶体结构,最大限度地减少了合金化过程中引入的复杂性,便于机理分析。此外,在控制合金成分和晶体结构的情况下,我们研究了铂催化剂的表面应变对氧还原反应电催化活性的影响。设计的S-PtCo-SNPs阴极使质子交换膜燃料电池(PEMFC)(在4 A cm−2时为2.08 W cm−2)和锌空气电池(ZAB)(在214.5 mA cm−2时为143.1 mW cm−2)具有优异的性能。
{"title":"Unveiling enhanced oxygen reduction activity in PtCo bimetallic solid solutions through controlled crystal strain","authors":"Ning He \u0000 (,&nbsp;),&nbsp;Shengqiang Wu \u0000 (,&nbsp;),&nbsp;Wensong Yu \u0000 (,&nbsp;),&nbsp;Fangrun Jin \u0000 (,&nbsp;),&nbsp;Wenjun Xie \u0000 (,&nbsp;),&nbsp;Xinxin Lu \u0000 (,&nbsp;),&nbsp;Xiaoxu Zhao \u0000 (,&nbsp;),&nbsp;Zhongxin Chen \u0000 (,&nbsp;),&nbsp;Wenguang Tu \u0000 (,&nbsp;),&nbsp;S. Y. Tong \u0000 (,&nbsp;)","doi":"10.1007/s40843-024-3166-2","DOIUrl":"10.1007/s40843-024-3166-2","url":null,"abstract":"<div><p>The development of low-cost, highly active platinum (Pt)-based electrocatalysts for oxygen reduction reaction (ORR) is crucial for widespread applications of fuel cells. An effective approach lies in alloying Pt with non-noble transition metals to modulate the physicochemical state of the Pt surface. However, fundamental challenges remain in understanding the structure-performance relationship due to the complexity of composition, crystal type, and surface structure during the alloying process. In this study, we synthesized a series of PtCo bimetallic solid solutions with varying ratios using a liquid-phase synthesis method. By exploiting the characteristics of solid solutions, the resulting PtCo bimetallic alloy maintains the face-centered cubic crystal structure of pure platinum, minimizing the complexities introduced during alloying and facilitating mechanism analysis. Furthermore, under controlled alloy composition and crystal structure, we investigated the dependence of the electrocatalytic activity for the oxygen reduction reaction on the surface strain of the platinum catalyst. The S-PtCo-SNPs cathode designed accordingly endows both proton exchange membrane fuel cell (PEMFC) (2.08 W cm<sup>−2</sup> at 4 A cm<sup>−2</sup>) and Zn-air battery (ZAB) (143.1 mW cm<sup>−2</sup> at 214.5 mA cm<sup>−2</sup>) with outstanding performance.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"180 - 188"},"PeriodicalIF":6.8,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving ultra-large tensile strain in nanoscale Si mechanical metamaterials 在纳米级硅机械超材料中实现超大拉伸应变
IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-11 DOI: 10.1007/s40843-024-3118-4
Yuheng Huang  (, ), Kuibo Yin  (, ), Zijian Gao  (, ), Binghui Li  (, ), Meng Nie  (, ), Litao Sun  (, )

Compared with the inherent brittleness of bulk silicon (Si) at ambient temperature, the nanosized Si materials with very high strength, plasticity, and anelasticity due to size effect, are all well-documented. However, the ultimate stretchability of Si nanostructure has not yet been demonstrated due to the difficulties in experimental design. Herein, directly performing in-situ tensile tests in a scanning electron microscope after developing a protocol for sample transfer, shaping and straining, we report the customized nanosized Si mechanical metamaterial which overcomes brittle limitations and achieves an ultra-large tensile strain of up to 95% using the maskless focused ion beam (FIB) technology. The unprecedented characteristic is achieved synergistically through FIB-induced size-softening effect and engineering modification of mechanical metamaterials, revealed through analyses of finite element analysis, atomic-scale transmission electron microscope characterization and molecular dynamics simulations. This work is not only instructive for tailoring the strength and deformation behavior of nanosized Si mechanical metamaterials or other bulk materials, but also of practical relevance to the application of Si nanomaterials in nanoelectromechanical system and nanoscale strain engineering.

与大块硅(Si)在常温下固有的脆性相比,纳米硅材料具有极高的强度、可塑性以及因尺寸效应而产生的无弹性,这些都是有据可查的。然而,由于实验设计方面的困难,硅纳米结构的最终拉伸性尚未得到证实。在此,我们在制定了样品转移、成型和拉伸方案后,直接在扫描电子显微镜中进行原位拉伸试验,报告了定制的纳米尺寸硅机械超材料,它克服了脆性限制,并利用无掩模聚焦离子束(FIB)技术实现了高达 95% 的超大拉伸应变。通过有限元分析、原子尺度透射电子显微镜表征和分子动力学模拟分析,FIB 诱导的尺寸软化效应和机械超材料的工程改性协同实现了这一前所未有的特性。这项工作不仅对定制纳米级硅机械超材料或其他块体材料的强度和变形行为具有指导意义,而且对硅纳米材料在纳米机电系统和纳米级应变工程中的应用具有实际意义。
{"title":"Achieving ultra-large tensile strain in nanoscale Si mechanical metamaterials","authors":"Yuheng Huang \u0000 (,&nbsp;),&nbsp;Kuibo Yin \u0000 (,&nbsp;),&nbsp;Zijian Gao \u0000 (,&nbsp;),&nbsp;Binghui Li \u0000 (,&nbsp;),&nbsp;Meng Nie \u0000 (,&nbsp;),&nbsp;Litao Sun \u0000 (,&nbsp;)","doi":"10.1007/s40843-024-3118-4","DOIUrl":"10.1007/s40843-024-3118-4","url":null,"abstract":"<div><p>Compared with the inherent brittleness of bulk silicon (Si) at ambient temperature, the nanosized Si materials with very high strength, plasticity, and anelasticity due to size effect, are all well-documented. However, the ultimate stretchability of Si nanostructure has not yet been demonstrated due to the difficulties in experimental design. Herein, directly performing <i>in-situ</i> tensile tests in a scanning electron microscope after developing a protocol for sample transfer, shaping and straining, we report the customized nanosized Si mechanical metamaterial which overcomes brittle limitations and achieves an ultra-large tensile strain of up to 95% using the maskless focused ion beam (FIB) technology. The unprecedented characteristic is achieved synergistically through FIB-induced size-softening effect and engineering modification of mechanical metamaterials, revealed through analyses of finite element analysis, atomic-scale transmission electron microscope characterization and molecular dynamics simulations. This work is not only instructive for tailoring the strength and deformation behavior of nanosized Si mechanical metamaterials or other bulk materials, but also of practical relevance to the application of Si nanomaterials in nanoelectromechanical system and nanoscale strain engineering.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 12","pages":"4040 - 4048"},"PeriodicalIF":6.8,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances and future perspectives of metal-organic frameworks as efficient electrocatalysts for CO2 reduction 金属-有机骨架作为高效二氧化碳还原电催化剂的研究进展与展望
IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-08 DOI: 10.1007/s40843-024-3165-6
Chao Li  (, ), Hong Yan  (, ), Hanlu Yang  (, ), Wenqian Zhou  (, ), Chengyu Xie  (, ), Baocai Pan  (, ), Qichun Zhang  (, )

The conversion of carbon dioxide (CO2) to the reduced chemical compounds offers substantial environmental benefits through minimizing the emission of greenhouse gas and fostering sustainable practices. Recently, the unique properties of metal-organic frameworks (MOFs) make them attractive candidates for electrocatalytic CO2 reduction reaction (CO2RR), providing many opportunities to develop efficient, selective, and environmentally sustainable processes for mitigating CO2 emissions and utilizing CO2 as a valuable raw material for the synthesis of fuels and chemicals. Here, the recent advances in MOFs as efficient catalysts for electrocatalytic CO2RR are summarized. The detailed characteristics, electrocatalytic mechanisms, and practical approaches for improving the electrocatalytic efficiency, selectivity, and durability of MOFs under realistic reaction conditions are also clarified. Furthermore, the outlooks on the prospects of MOF-based electrocatalysts in CO2RR are provided.

将二氧化碳(CO2)转化为减少的化合物,通过最大限度地减少温室气体的排放和促进可持续的做法,提供了巨大的环境效益。最近,金属有机框架(mof)的独特性质使其成为电催化二氧化碳还原反应(CO2RR)的有吸引力的候选者,为开发高效、选择性和环境可持续的工艺提供了许多机会,以减少二氧化碳排放,并利用二氧化碳作为合成燃料和化学品的宝贵原料。本文综述了mof作为电催化CO2RR高效催化剂的研究进展。阐明了mof的详细特性、电催化机理以及在实际反应条件下提高电催化效率、选择性和耐久性的可行方法。展望了mof基CO2RR电催化剂的发展前景。
{"title":"Recent advances and future perspectives of metal-organic frameworks as efficient electrocatalysts for CO2 reduction","authors":"Chao Li \u0000 (,&nbsp;),&nbsp;Hong Yan \u0000 (,&nbsp;),&nbsp;Hanlu Yang \u0000 (,&nbsp;),&nbsp;Wenqian Zhou \u0000 (,&nbsp;),&nbsp;Chengyu Xie \u0000 (,&nbsp;),&nbsp;Baocai Pan \u0000 (,&nbsp;),&nbsp;Qichun Zhang \u0000 (,&nbsp;)","doi":"10.1007/s40843-024-3165-6","DOIUrl":"10.1007/s40843-024-3165-6","url":null,"abstract":"<div><p>The conversion of carbon dioxide (CO<sub>2</sub>) to the reduced chemical compounds offers substantial environmental benefits through minimizing the emission of greenhouse gas and fostering sustainable practices. Recently, the unique properties of metal-organic frameworks (MOFs) make them attractive candidates for electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR), providing many opportunities to develop efficient, selective, and environmentally sustainable processes for mitigating CO<sub>2</sub> emissions and utilizing CO<sub>2</sub> as a valuable raw material for the synthesis of fuels and chemicals. Here, the recent advances in MOFs as efficient catalysts for electrocatalytic CO<sub>2</sub>RR are summarized. The detailed characteristics, electrocatalytic mechanisms, and practical approaches for improving the electrocatalytic efficiency, selectivity, and durability of MOFs under realistic reaction conditions are also clarified. Furthermore, the outlooks on the prospects of MOF-based electrocatalysts in CO<sub>2</sub>RR are provided.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"21 - 38"},"PeriodicalIF":6.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40843-024-3165-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142941003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional elastic benzoxazole derivative crystals for advanced optoelectronic applications 先进光电应用的多功能弹性苯并恶唑衍生物晶体
IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-07 DOI: 10.1007/s40843-024-3140-4
Jiang Peng  (, ), Yuanyuan Liu  (, ), Jing Yang  (, ), Zirun Chen  (, ), Kai Wang  (, ), Aisen Li  (, )

We report a novel benzoxazole derivative, 1,4-bis(benzo[d]oxazol-2-yl)naphthalene (BBON), exhibiting exceptional multifunctional properties for advanced optoelectronic applications. BBON crystals demonstrate remarkable multidirectional bending and twisting at room temperature and retain elasticity under extreme conditions, such as exposure to liquid nitrogen, showcasing their durability. These crystals can be crafted into complex mesh and lantern shapes, highlighting their versatility for flexible and wearable technologies. Under high pressure, BBON exhibits significant piezochromic shifts, with the emission wavelength shifting from 477 to 545 nm upon pressure increase. BBON crystals, with a high quantum yield of 72.26%, exhibit excellent optical waveguide performance: 0.38 dB/cm when straight and 0.56 dB/cm when bent. These properties make them ideal for smart sensors and flexible electronic devices. Single-crystal analyses reveal that molecular stacking and intermolecular interactions are crucial to their elastic and piezochromic properties, providing insights for the design of future responsive materials.

我们报道了一种新的苯并恶唑衍生物,1,4-二(苯并[d]恶唑-2-基)萘(BBON),在先进的光电应用中表现出优异的多功能特性。BBON晶体在室温下表现出显著的多向弯曲和扭曲,并在极端条件下保持弹性,例如暴露在液氮中,展示了它们的耐久性。这些晶体可以制作成复杂的网格和灯笼形状,突出了它们的灵活性和可穿戴技术的多功能性。在高压下,BBON表现出明显的压致变色位移,随着压力的增加,发射波长从477 nm移动到545 nm。BBON晶体具有72.26%的高量子产率,具有优异的光波导性能:直波导为0.38 dB/cm,弯曲波导为0.56 dB/cm。这些特性使它们成为智能传感器和柔性电子设备的理想选择。单晶分析表明,分子堆叠和分子间相互作用对其弹性和压致变色性能至关重要,为未来响应材料的设计提供了见解。
{"title":"Multifunctional elastic benzoxazole derivative crystals for advanced optoelectronic applications","authors":"Jiang Peng \u0000 (,&nbsp;),&nbsp;Yuanyuan Liu \u0000 (,&nbsp;),&nbsp;Jing Yang \u0000 (,&nbsp;),&nbsp;Zirun Chen \u0000 (,&nbsp;),&nbsp;Kai Wang \u0000 (,&nbsp;),&nbsp;Aisen Li \u0000 (,&nbsp;)","doi":"10.1007/s40843-024-3140-4","DOIUrl":"10.1007/s40843-024-3140-4","url":null,"abstract":"<div><p>We report a novel benzoxazole derivative, 1,4-bis(benzo[<i>d</i>]oxazol-2-yl)naphthalene (BBON), exhibiting exceptional multifunctional properties for advanced optoelectronic applications. BBON crystals demonstrate remarkable multidirectional bending and twisting at room temperature and retain elasticity under extreme conditions, such as exposure to liquid nitrogen, showcasing their durability. These crystals can be crafted into complex mesh and lantern shapes, highlighting their versatility for flexible and wearable technologies. Under high pressure, BBON exhibits significant piezochromic shifts, with the emission wavelength shifting from 477 to 545 nm upon pressure increase. BBON crystals, with a high quantum yield of 72.26%, exhibit excellent optical waveguide performance: 0.38 dB/cm when straight and 0.56 dB/cm when bent. These properties make them ideal for smart sensors and flexible electronic devices. Single-crystal analyses reveal that molecular stacking and intermolecular interactions are crucial to their elastic and piezochromic properties, providing insights for the design of future responsive materials.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"141 - 148"},"PeriodicalIF":6.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasensitive conductive hydrogels conferred by nanoscale synergistic effect 纳米级协同效应赋予的超灵敏导电水凝胶
IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-07 DOI: 10.1007/s40843-024-3143-1
Gangrong Wang  (, ), Xin Jing  (, ), Binghan Niu  (, ), Liya Lin  (, ), Yaoxun Zhang  (, ), Jiazhou Zeng  (, ), Peiyong Feng  (, ), Yuejun Liu  (, ), Hao-Yang Mi  (, )

The inherent limitations of hydrogels, such as low electrical conductivity and inadequate sensitivity, present considerable challenges in flexible electronic applications. To address these issues, we proposed an innovative synthesis technique that synergistically leveraged the nanoscale properties of the conductive fillers including one-dimensional polyaniline and two-dimensional reduced graphene oxide to fabricate hydrogels with exceptional conductivity. This advanced hydrogel exhibited an extraordinary sensitivity with a gauge factor of 27.55, impressive electrical conductivity (7.2 mS/cm), and outstanding stability. Additionally, the hydrogel demonstrated excellent self-adhesion and robust self-healing properties, attributed to its abundant catechol functionalities, hydrogen bonding interactions, and π-π stacking. Consequently, the flexible, strain-sensitive, self-powered sensors derived from these hydrogels displayed unparalleled sensing performance, positioning them as highly promising candidates for advanced human-computer interaction systems and sophisticated information transmission applications.

水凝胶的固有局限性,如低导电性和灵敏度不足,在柔性电子应用中提出了相当大的挑战。为了解决这些问题,我们提出了一种创新的合成技术,协同利用导电填料的纳米级特性,包括一维聚苯胺和二维还原氧化石墨烯,来制造具有优异导电性的水凝胶。这种先进的水凝胶具有非凡的灵敏度,其测量因子为27.55,电导率(7.2 mS/cm)令人印象深刻,并且具有出色的稳定性。此外,由于其丰富的儿茶酚功能、氢键相互作用和π-π堆叠,水凝胶表现出优异的自粘附和强大的自修复性能。因此,由这些水凝胶衍生的柔性、应变敏感、自供电传感器显示出无与伦比的传感性能,使其成为先进人机交互系统和复杂信息传输应用的极有前途的候选者。
{"title":"Ultrasensitive conductive hydrogels conferred by nanoscale synergistic effect","authors":"Gangrong Wang \u0000 (,&nbsp;),&nbsp;Xin Jing \u0000 (,&nbsp;),&nbsp;Binghan Niu \u0000 (,&nbsp;),&nbsp;Liya Lin \u0000 (,&nbsp;),&nbsp;Yaoxun Zhang \u0000 (,&nbsp;),&nbsp;Jiazhou Zeng \u0000 (,&nbsp;),&nbsp;Peiyong Feng \u0000 (,&nbsp;),&nbsp;Yuejun Liu \u0000 (,&nbsp;),&nbsp;Hao-Yang Mi \u0000 (,&nbsp;)","doi":"10.1007/s40843-024-3143-1","DOIUrl":"10.1007/s40843-024-3143-1","url":null,"abstract":"<div><p>The inherent limitations of hydrogels, such as low electrical conductivity and inadequate sensitivity, present considerable challenges in flexible electronic applications. To address these issues, we proposed an innovative synthesis technique that synergistically leveraged the nanoscale properties of the conductive fillers including one-dimensional polyaniline and two-dimensional reduced graphene oxide to fabricate hydrogels with exceptional conductivity. This advanced hydrogel exhibited an extraordinary sensitivity with a gauge factor of 27.55, impressive electrical conductivity (7.2 mS/cm), and outstanding stability. Additionally, the hydrogel demonstrated excellent self-adhesion and robust self-healing properties, attributed to its abundant catechol functionalities, hydrogen bonding interactions, and π-π stacking. Consequently, the flexible, strain-sensitive, self-powered sensors derived from these hydrogels displayed unparalleled sensing performance, positioning them as highly promising candidates for advanced human-computer interaction systems and sophisticated information transmission applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"226 - 235"},"PeriodicalIF":6.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal-backboned polymer: concept, advance and perspective 金属骨架聚合物:概念、进展与展望
IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-07 DOI: 10.1007/s40843-024-3172-8
Yifeng Zhang  (, ), Kaiwen Zeng  (, ), Huisheng Peng  (, )

金属主链高分子是一类完全以金属原子作为主链的新材料, 有望在材料领域开创出一个全新的研究领域. 本文重点介绍了金属主链高分子的概念、合成、结构、性能与应用情况, 诠释了金属主链高分子广阔的发展前景. 本文也总结介绍了金属主链高分子在发展过程中面临的挑战和未来的发展方向.

金属主链高分子是一类完全以金属原子作为主链的新材料, 有望在材料领域开创出一个全新的研究领域. 本文重点介绍了金属主链高分子的概念、合成、结构、性能与应用情况, 诠释了金属主链高分子广阔的发展前景. 本文也总结介绍了金属主链高分子在发展过程中面临的挑战和未来的发展方向.
{"title":"Metal-backboned polymer: concept, advance and perspective","authors":"Yifeng Zhang \u0000 (,&nbsp;),&nbsp;Kaiwen Zeng \u0000 (,&nbsp;),&nbsp;Huisheng Peng \u0000 (,&nbsp;)","doi":"10.1007/s40843-024-3172-8","DOIUrl":"10.1007/s40843-024-3172-8","url":null,"abstract":"<p>金属主链高分子是一类完全以金属原子作为主链的新材料, 有望在材料领域开创出一个全新的研究领域. 本文重点介绍了金属主链高分子的概念、合成、结构、性能与应用情况, 诠释了金属主链高分子广阔的发展前景. 本文也总结介绍了金属主链高分子在发展过程中面临的挑战和未来的发展方向.</p>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 1","pages":"105 - 109"},"PeriodicalIF":6.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142940997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
General synthesis of a dual-atomic-site catalyst library
IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-11-07 DOI: 10.1007/s40843-024-3138-5
Jingfang Zhang, Yi Huang
{"title":"General synthesis of a dual-atomic-site catalyst library","authors":"Jingfang Zhang,&nbsp;Yi Huang","doi":"10.1007/s40843-024-3138-5","DOIUrl":"10.1007/s40843-024-3138-5","url":null,"abstract":"","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 2","pages":"679 - 680"},"PeriodicalIF":6.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143108728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Science China Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1