首页 > 最新文献

Science China Materials最新文献

英文 中文
Tailoring alloy-reaction-induced semi-coherent interface to guide sodium nucleation and growth for long-term anode-less sodium-metal batteries 定制合金反应诱导的半相干界面,引导钠的成核和生长,用于长期无阳极钠金属电池
IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-10 DOI: 10.1007/s40843-024-3084-4
Pei Ma  (, ), Yaoyang Zhang  (, ), Wenbin Li  (, ), Jun Luo  (, ), Longfei Wen  (, ), Guochuan Tang  (, ), Jingjing Gai  (, ), Qingbao Wang  (, ), Lingfei Zhao  (, ), Junmin Ge  (, ), Weihua Chen  (, )

Sodium metal batteries are emerging as promising energy storage technologies owing to their high-energy density and rich resources. However, the challenge of achieving continuous operation at high areal capacity hinders the application of this system. Here, a robust two-dimensional tin/sodium–tin alloy interface was introduced onto an Al substrate as an anode via an industrial electroplating strategy. Unlike the widely accepted in situ formation of Na15Sn4 alloys, the formation of Na9Sn4 alloys results in a semi-coherent interface with sodium due to low lattice mismatch (20.84%), which alleviates the lattice stress of sodium deposition and induces subsequent dense sodium deposition under high areal capacity. In addition, the strong interaction of Sn with anions allows more PF6 to preferentially participate in the interfacial solvation structure, thereby facilitating the formation of a thin (10 nm) NaF-rich solid electrolyte interface. Therefore, the substrate can withstand a high areal capacity of 5 mA h cm−2, exhibiting a high average Coulombic efficiency of 99.7%. The full battery exhibits long-term cycling performance (600 cycles) with a low decay rate of 0.0018% per cycle at 60 mA g−1.

钠金属电池因其高能量密度和丰富的资源而成为一种前景广阔的储能技术。然而,实现高电容连续运行的挑战阻碍了这一系统的应用。在这里,通过工业电镀策略,在铝基板上引入了坚固的二维锡/钠锡合金界面作为阳极。与广泛接受的原位形成 Na15Sn4 合金不同,Na9Sn4 合金的形成由于晶格失配较低(20.84%),与钠形成了半相干界面,从而减轻了钠沉积的晶格应力,并诱导钠在高磁通量下进行后续致密沉积。此外,Sn 与阴离子的强相互作用使更多的 PF6- 优先参与界面溶解结构,从而促进了富含 NaF 的固体电解质薄界面(10 nm)的形成。因此,衬底可承受 5 mA h cm-2 的高电容,平均库仑效率高达 99.7%。整个电池具有长期循环性能(600 次循环),在 60 mA g-1 的条件下,每次循环的衰减率仅为 0.0018%。
{"title":"Tailoring alloy-reaction-induced semi-coherent interface to guide sodium nucleation and growth for long-term anode-less sodium-metal batteries","authors":"Pei Ma \u0000 (,&nbsp;),&nbsp;Yaoyang Zhang \u0000 (,&nbsp;),&nbsp;Wenbin Li \u0000 (,&nbsp;),&nbsp;Jun Luo \u0000 (,&nbsp;),&nbsp;Longfei Wen \u0000 (,&nbsp;),&nbsp;Guochuan Tang \u0000 (,&nbsp;),&nbsp;Jingjing Gai \u0000 (,&nbsp;),&nbsp;Qingbao Wang \u0000 (,&nbsp;),&nbsp;Lingfei Zhao \u0000 (,&nbsp;),&nbsp;Junmin Ge \u0000 (,&nbsp;),&nbsp;Weihua Chen \u0000 (,&nbsp;)","doi":"10.1007/s40843-024-3084-4","DOIUrl":"10.1007/s40843-024-3084-4","url":null,"abstract":"<div><p>Sodium metal batteries are emerging as promising energy storage technologies owing to their high-energy density and rich resources. However, the challenge of achieving continuous operation at high areal capacity hinders the application of this system. Here, a robust two-dimensional tin/sodium–tin alloy interface was introduced onto an Al substrate as an anode via an industrial electroplating strategy. Unlike the widely accepted <i>in situ</i> formation of Na<sub>15</sub>Sn<sub>4</sub> alloys, the formation of Na<sub>9</sub>Sn<sub>4</sub> alloys results in a semi-coherent interface with sodium due to low lattice mismatch (20.84%), which alleviates the lattice stress of sodium deposition and induces subsequent dense sodium deposition under high areal capacity. In addition, the strong interaction of Sn with anions allows more PF<sub>6</sub><sup>−</sup> to preferentially participate in the interfacial solvation structure, thereby facilitating the formation of a thin (10 nm) NaF-rich solid electrolyte interface. Therefore, the substrate can withstand a high areal capacity of 5 mA h cm<sup>−2</sup>, exhibiting a high average Coulombic efficiency of 99.7%. The full battery exhibits long-term cycling performance (600 cycles) with a low decay rate of 0.0018% per cycle at 60 mA g<sup>−1</sup>.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3648 - 3657"},"PeriodicalIF":6.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Porous carbon microspheres assembled by defective nitrogen and sulfur co-doped nanosheets as anode materials for lithium-/sodium-ion batteries 由缺陷氮和硫共掺杂纳米片组装而成的多孔碳微球作为锂离子/钠离子电池的负极材料
IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-10 DOI: 10.1007/s40843-024-3041-3
Yutian Chen  (, ), Jie You  (, ), Xiaoran Zhao  (, ), Mai Li  (, ), Xiaolei Han  (, ), Hui Liu  (, ), Hongran Sun  (, ), Xiaojun Wang  (, ), Huifang Li  (, ), Peng Wang  (, ), Zhiming Liu  (, )

Carbon-based anode materials are widely used in various battery energy storage systems due to their low cost, wide source, high conductivity and easy morphology control. However, current commercially available anode materials as active materials for lithium-/sodium-ion batteries generally suffer from large volume changes and poor rate performance. In response, we synthesized defect-rich N, S co-doped two dimensional (2D) nanosheet-assembled porous carbon microspheres (N, S-PCS) via simple hydrothermal, carbonization and etching process based on the principle of Schiff base reaction. The N, S-PCS structure is thus constructed by removing Fe7S8 nanoparticles from the carbon skeleton to form porous microspheres with N, S doping. Therefore, the micromorphology characteristic, pore structure and electro-conductivity of carbon materials are effectively optimized via heteroatom doping and surface engineering. As expected, the prepared N, S-PCS electrodes exhibit excellent electrochemical performance in both lithium-ion and sodium-ion batteries. For lithium-ion batteries, it achieves reversible capacities of 1045 and 237 mAh g−1 at 0.1 and 20 A g−1, respectively. For sodium-ion batteries, it shows good cycling stability with a capacity of 157 mAh g−1 after 500 cycles at 1 A g−1. Experimental and theoretical calculation results confirm that the N, S co-doping strategies help to improve the structural stability, shorten the ion diffusion paths, and promote the reaction kinetics, thus achieving excellent electrochemical performance. This work is instructive for the practical application of nonmetal doping functionalized porous carbon structures for metal-ion batteries.

碳基负极材料具有成本低、来源广、电导率高、形态易控制等特点,被广泛应用于各种电池储能系统中。然而,目前市面上作为锂离子/钠离子电池活性材料的负极材料普遍存在体积变化大、速率性能差的问题。为此,我们根据希夫碱反应原理,通过简单的水热、碳化和刻蚀工艺合成了富含缺陷的 N、S 共掺杂二维(2D)纳米片组装多孔碳微球(N,S-PCS)。因此,N、S-PCS 结构是通过从碳骨架中去除 Fe7S8 纳米颗粒,形成掺杂 N、S 的多孔微球。因此,通过杂原子掺杂和表面工程,碳材料的微观形貌特征、孔隙结构和导电性能得到了有效优化。正如预期的那样,制备的 N、S-PCS 电极在锂离子电池和钠离子电池中均表现出优异的电化学性能。对于锂离子电池,在 0.1 和 20 A g-1 的条件下,其可逆容量分别达到 1045 和 237 mAh g-1。对于钠离子电池,它显示出良好的循环稳定性,在 1 A g-1 下循环 500 次后,容量为 157 mAh g-1。实验和理论计算结果证实,N、S 共掺杂策略有助于提高结构稳定性、缩短离子扩散路径和促进反应动力学,从而实现优异的电化学性能。这项工作对金属离子电池非金属掺杂功能化多孔碳结构的实际应用具有指导意义。
{"title":"Porous carbon microspheres assembled by defective nitrogen and sulfur co-doped nanosheets as anode materials for lithium-/sodium-ion batteries","authors":"Yutian Chen \u0000 (,&nbsp;),&nbsp;Jie You \u0000 (,&nbsp;),&nbsp;Xiaoran Zhao \u0000 (,&nbsp;),&nbsp;Mai Li \u0000 (,&nbsp;),&nbsp;Xiaolei Han \u0000 (,&nbsp;),&nbsp;Hui Liu \u0000 (,&nbsp;),&nbsp;Hongran Sun \u0000 (,&nbsp;),&nbsp;Xiaojun Wang \u0000 (,&nbsp;),&nbsp;Huifang Li \u0000 (,&nbsp;),&nbsp;Peng Wang \u0000 (,&nbsp;),&nbsp;Zhiming Liu \u0000 (,&nbsp;)","doi":"10.1007/s40843-024-3041-3","DOIUrl":"10.1007/s40843-024-3041-3","url":null,"abstract":"<div><p>Carbon-based anode materials are widely used in various battery energy storage systems due to their low cost, wide source, high conductivity and easy morphology control. However, current commercially available anode materials as active materials for lithium-/sodium-ion batteries generally suffer from large volume changes and poor rate performance. In response, we synthesized defect-rich N, S co-doped two dimensional (2D) nanosheet-assembled porous carbon microspheres (N, S-PCS) via simple hydrothermal, carbonization and etching process based on the principle of Schiff base reaction. The N, S-PCS structure is thus constructed by removing Fe<sub>7</sub>S<sub>8</sub> nanoparticles from the carbon skeleton to form porous microspheres with N, S doping. Therefore, the micromorphology characteristic, pore structure and electro-conductivity of carbon materials are effectively optimized via heteroatom doping and surface engineering. As expected, the prepared N, S-PCS electrodes exhibit excellent electrochemical performance in both lithium-ion and sodium-ion batteries. For lithium-ion batteries, it achieves reversible capacities of 1045 and 237 mAh g<sup>−1</sup> at 0.1 and 20 A g<sup>−1</sup>, respectively. For sodium-ion batteries, it shows good cycling stability with a capacity of 157 mAh g<sup>−1</sup> after 500 cycles at 1 A g<sup>−1</sup>. Experimental and theoretical calculation results confirm that the N, S co-doping strategies help to improve the structural stability, shorten the ion diffusion paths, and promote the reaction kinetics, thus achieving excellent electrochemical performance. This work is instructive for the practical application of nonmetal doping functionalized porous carbon structures for metal-ion batteries.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3637 - 3647"},"PeriodicalIF":6.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special kinetics features of scandium antimonide thin films conducive to swiftly embedded phase-change memory applications 有利于快速嵌入相变存储器应用的锑化镓钪薄膜的特殊动力学特性
IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-10 DOI: 10.1007/s40843-024-3086-6
Xue-Peng Wang  (, ), Bin Chen  (, ), Huang Gong  (, ), Xinxin Duan  (, ), Yimin Chen  (, ), Feng Rao  (, )

Embedded phase-change random-access memory (ePCRAM) applications demand superior data retention in amorphous phase-change materials (PCMs). Traditional PCM design strategies have focused on enhancing the thermal stability of the amorphous phase, often at the expense of the crystallization speed. While this approach supports reliable microchip operations, it compromises the ability to achieve rapid responses. To address this limitation, we modified ultrafast-crystallizing Sb thin films by incorporating Sc dopants, achieving the highest 10-year retention temperature (∼175°C) among binary antimonide PCMs while maintaining a sub-10-ns SET operation speed. This reconciliation of two seemingly contradictory properties arises from the unique kinetic features of the 5-nm-thick Sc12Sb88 films, which exhibit an enlarged fragile-to-strong crossover in viscosity at medium supercooled temperature zones and an incompatible sublattice ordering behavior between the Sc and Sb atoms. By tailoring the crystallization kinetics of PCMs through strategic doping and nanoscale confinement, we provide new opportunities for developing robust yet swift ePCRAMs.

嵌入式相变随机存取存储器(ePCRAM)应用要求非晶相变材料(PCM)具有出色的数据保持能力。传统的 PCM 设计策略侧重于提高非晶相的热稳定性,通常以牺牲结晶速度为代价。虽然这种方法支持可靠的微芯片操作,但却损害了实现快速响应的能力。为了解决这一局限性,我们通过加入 Sc 掺杂剂对超快结晶锑薄膜进行了改良,在二元锑化 PCM 中实现了最高的 10 年保持温度(175°C),同时保持了低于 10-ns 的 SET 运行速度。5 纳米厚的 Sc12Sb88 薄膜具有独特的动力学特征,在中等过冷温度区粘度从脆到强的交叉点增大,Sc 原子和 Sb 原子间的亚晶格有序行为不相容,这两种看似矛盾的特性得以调和。通过策略性掺杂和纳米级限制来定制 PCM 的结晶动力学,我们为开发坚固而快速的 ePCRAM 提供了新的机遇。
{"title":"Special kinetics features of scandium antimonide thin films conducive to swiftly embedded phase-change memory applications","authors":"Xue-Peng Wang \u0000 (,&nbsp;),&nbsp;Bin Chen \u0000 (,&nbsp;),&nbsp;Huang Gong \u0000 (,&nbsp;),&nbsp;Xinxin Duan \u0000 (,&nbsp;),&nbsp;Yimin Chen \u0000 (,&nbsp;),&nbsp;Feng Rao \u0000 (,&nbsp;)","doi":"10.1007/s40843-024-3086-6","DOIUrl":"10.1007/s40843-024-3086-6","url":null,"abstract":"<div><p>Embedded phase-change random-access memory (ePCRAM) applications demand superior data retention in amorphous phase-change materials (PCMs). Traditional PCM design strategies have focused on enhancing the thermal stability of the amorphous phase, often at the expense of the crystallization speed. While this approach supports reliable microchip operations, it compromises the ability to achieve rapid responses. To address this limitation, we modified ultrafast-crystallizing Sb thin films by incorporating Sc dopants, achieving the highest 10-year retention temperature (∼175°C) among binary antimonide PCMs while maintaining a sub-10-ns SET operation speed. This reconciliation of two seemingly contradictory properties arises from the unique kinetic features of the 5-nm-thick Sc<sub>12</sub>Sb<sub>88</sub> films, which exhibit an enlarged fragile-to-strong crossover in viscosity at medium supercooled temperature zones and an incompatible sublattice ordering behavior between the Sc and Sb atoms. By tailoring the crystallization kinetics of PCMs through strategic doping and nanoscale confinement, we provide new opportunities for developing robust yet swift ePCRAMs.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3684 - 3691"},"PeriodicalIF":6.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in drugs restructured with nanomedicines for multiple myeloma treatment 用纳米药物重组药物治疗多发性骨髓瘤的进展
IF 8.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-10 DOI: 10.1007/s40843-024-3077-0
Zhaoyun Liu, Hongli Shen, Hui Liu, Kai Ding, Jia Song, Jingtian Zhang, Dan Ding, Rong Fu

Multiple myeloma (MM) is an incurable malignancy of clonal plasma cells, characterized by high relapse rates and rapid development of drug resistance. The emergence of proteasome inhibitors has dramatically improved the therapeutic effect of MM; however, side effects and drug resistance still negatively affect the survival rate of MM. Nano-medicine has become a promising field for therapeutic innovation owing to its biodegradability and biocompatibility. Nanoparticles (NPs), when combined with MM therapeutic drugs, can reduce side effects, increase treatment efficacy, and alleviate drug resistance, providing a new direction for the treatment of MM. Restructuring drugs with NPs presents an ideal strategy for ongoing studies aimed at more effective therapies. Additionally, clinical nanomedicine research has yielded new opportunities for MM treatment. This review, guided by the development of MM therapeutic drugs, summarizes the past 20 years of research progress and breakthroughs in NP-based systems for treating MM and improving drug targeting ability.

多发性骨髓瘤(MM)是一种无法治愈的克隆性浆细胞恶性肿瘤,其特点是复发率高且耐药性发展迅速。蛋白酶体抑制剂的出现大大提高了 MM 的治疗效果,但副作用和耐药性仍对 MM 的存活率产生负面影响。纳米医学因其生物可降解性和生物相容性,已成为一个前景广阔的治疗创新领域。纳米粒子(NPs)与MM治疗药物结合,可以减少副作用、提高疗效、缓解耐药性,为MM的治疗提供了新的方向。用 NPs 重组药物是目前研究更有效疗法的理想策略。此外,临床纳米医学研究也为 MM 的治疗带来了新的机遇。本综述以 MM 治疗药物的开发为指导,总结了过去 20 年基于 NP 的系统在治疗 MM 和提高药物靶向能力方面的研究进展和突破。
{"title":"Advancements in drugs restructured with nanomedicines for multiple myeloma treatment","authors":"Zhaoyun Liu, Hongli Shen, Hui Liu, Kai Ding, Jia Song, Jingtian Zhang, Dan Ding, Rong Fu","doi":"10.1007/s40843-024-3077-0","DOIUrl":"https://doi.org/10.1007/s40843-024-3077-0","url":null,"abstract":"<p>Multiple myeloma (MM) is an incurable malignancy of clonal plasma cells, characterized by high relapse rates and rapid development of drug resistance. The emergence of proteasome inhibitors has dramatically improved the therapeutic effect of MM; however, side effects and drug resistance still negatively affect the survival rate of MM. Nano-medicine has become a promising field for therapeutic innovation owing to its biodegradability and biocompatibility. Nanoparticles (NPs), when combined with MM therapeutic drugs, can reduce side effects, increase treatment efficacy, and alleviate drug resistance, providing a new direction for the treatment of MM. Restructuring drugs with NPs presents an ideal strategy for ongoing studies aimed at more effective therapies. Additionally, clinical nanomedicine research has yielded new opportunities for MM treatment. This review, guided by the development of MM therapeutic drugs, summarizes the past 20 years of research progress and breakthroughs in NP-based systems for treating MM and improving drug targeting ability.\u0000</p>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"408 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of boron-containing acceptors towards high-efficiency TADF emitters: sky-blue OLEDs with external quantum efficiency of 32.6% 优化含硼受体,实现高效 TADF 发射器:外部量子效率达 32.6% 的天蓝色 OLED
IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-10 DOI: 10.1007/s40843-024-3047-4
Xu Gong  (, ), Wei Yang  (, ), He Zhang  (, ), Weimin Ning  (, ), Shaolong Gong  (, ), Xiang Gao  (, ), Chuluo Yang  (, )

Two new thermally activated delayed fluorescence (TADF) molecules, 13-(2,12-di-tert-butyl-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracen-7-yl)-5,5-dimethyl-5,13-dihydrobenzo[4,5]thieno[3,2-c]acridine (BOBT) and 13-(4-(dimesitylboranyl)-3,5-dimethylphenyl)-5,5-dimethyl-5,13-dihydrobenzo[4,5]thieno[3,2-c]acridine (BPBT), are constructed via connecting the 5,5-dimethyl-5,13-dihydrobenzo[4,5]thieno[3,2-c]acridine (BTDMAC) donor (D) with triarylboron or oxygen-bridged cyclized boron acceptors (A), respectively. In comparison with the photoluminescence quantum yield (PLQY) of 84% for BPBT, BOBT shows a higher PLQY of 100%, due to the multi-resonance effect of the boron-oxygen skeleton. In addition, the D-A-type molecular structural characteristic endows the boron-containing BOBT emitter with a fast reverse intersystem crossing rate on the order of 106 s−1. The sky-blue organic light-emitting diode (OLED) employing the BOBT emitter achieves state-of-the-art device performances with a high external quantum efficiency of 32.6%.

5,5 二甲基-5,13-二氢苯并[4,5]噻吩并[3,2-c]吖啶(BPBT),分别通过连接 5,5 二甲基-5,13-二氢苯并[4,5]噻吩并[3,2-c]吖啶(BTDMAC)供体(D)和三芳基硼或氧桥环化硼受体(A)而构建。与 BPBT 84% 的光致发光量子产率(PLQY)相比,BOBT 的光致发光量子产率更高,达到 100%,这是由于硼氧骨架的多共振效应。此外,D-A 型分子结构特性使含硼的 BOBT 发光体具有 106 s-1 量级的快速反向系统间穿越率。采用这种 BOBT 发射器的天蓝色有机发光二极管(OLED)实现了最先进的器件性能,外部量子效率高达 32.6%。
{"title":"Optimization of boron-containing acceptors towards high-efficiency TADF emitters: sky-blue OLEDs with external quantum efficiency of 32.6%","authors":"Xu Gong \u0000 (,&nbsp;),&nbsp;Wei Yang \u0000 (,&nbsp;),&nbsp;He Zhang \u0000 (,&nbsp;),&nbsp;Weimin Ning \u0000 (,&nbsp;),&nbsp;Shaolong Gong \u0000 (,&nbsp;),&nbsp;Xiang Gao \u0000 (,&nbsp;),&nbsp;Chuluo Yang \u0000 (,&nbsp;)","doi":"10.1007/s40843-024-3047-4","DOIUrl":"10.1007/s40843-024-3047-4","url":null,"abstract":"<div><p>Two new thermally activated delayed fluorescence (TADF) molecules, 13-(2,12-di-<i>tert</i>-butyl-5,9-dioxa-13b-boranaphtho[3,2,1-<i>de</i>]anthracen-7-yl)-5,5-dimethyl-5,13-dihydrobenzo[4,5]thieno[3,2-<i>c</i>]acridine (BOBT) and 13-(4-(dimesitylboranyl)-3,5-dimethylphenyl)-5,5-dimethyl-5,13-dihydrobenzo[4,5]thieno[3,2-<i>c</i>]acridine (BPBT), are constructed <i>via</i> connecting the 5,5-dimethyl-5,13-dihydrobenzo[4,5]thieno[3,2-<i>c</i>]acridine (BTDMAC) donor (D) with triarylboron or oxygen-bridged cyclized boron acceptors (A), respectively. In comparison with the photoluminescence quantum yield (PLQY) of 84% for BPBT, BOBT shows a higher PLQY of 100%, due to the multi-resonance effect of the boron-oxygen skeleton. In addition, the D-A-type molecular structural characteristic endows the boron-containing BOBT emitter with a fast reverse intersystem crossing rate on the order of 10<sup>6</sup> s<sup>−1</sup>. The sky-blue organic light-emitting diode (OLED) employing the BOBT emitter achieves state-of-the-art device performances with a high external quantum efficiency of 32.6%.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3537 - 3542"},"PeriodicalIF":6.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulating CsPbI3 crystal growth for efficient printable perovskite solar cells and minimodules 调节 CsPbI3 晶体生长,实现高效的可印刷过氧化物太阳能电池和微型模块
IF 8.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-10 DOI: 10.1007/s40843-024-3046-3
Yuqi Cui, Chengyu Tan, Rui Zhang, Shan Tan, Yiming Li, Huijue Wu, Jiangjian Shi, Yanhong Luo, Dongmei Li, Qingbo Meng

Large pinhole-free, high-crystal-quality perovskite films are the key to realizing efficient, stable CsPbI3 perovskite modules. In this work, we use the crystal growth modulation strategy to prepare high-quality CsPbI3 films from small to large sizes using a new precursor solution with CsI/DMAPbI3/PbI2 in a DMAAc/DMF mixed solvent (DMAAc: dimethylamine acetate). The champion small-size CsPbI3 device presents a photoelectric conversion efficiency (PCE) above 21% and a certified PCE of 20.05%, and the best blade-coated CsPbI3 minimodule exhibits a PCE of 18.3% for an aperture area of 12.39 cm2 and a PCE of 19.9% for an active area of 11.40 cm2. In addition, the composition engineering of the precursor solution toward CsPbI3 crystallization is explored: the DMAAc/DMF mixed solvent can facilitate phase transformation and reduce the nucleation rate, and the mixture of PbI2 and DMAPbI3 will further improve the film microstructure and uniformity. Consequently, the anti-humidity stability and phase stability of the CsPbI3 films are greatly improved, and the corresponding devices exhibit good operational stability. CsPbI3 modules with simple encapsulation also present excellent long-term storage stability over 150 days. This crystal growth regulation strategy provides a new method to produce large-scale CsPbI3 and even hybrid perovskite solar cells for future commercialization.

大尺寸无针孔、高晶体质量的包晶薄膜是实现高效、稳定的 CsPbI3 包晶模块的关键。在这项工作中,我们采用晶体生长调制策略,在 DMAAc/DMF 混合溶剂(DMAAc:二甲胺醋酸酯)中使用 CsI/DMAPbI3/PbI2 的新型前驱体溶液,制备了从小尺寸到大尺寸的高质量 CsPbI3 薄膜。冠军小尺寸 CsPbI3 器件的光电转换效率 (PCE) 超过 21%,经认证的 PCE 为 20.05%;最佳叶片涂层 CsPbI3 微型模块的 PCE 为 18.3%(孔径面积为 12.39 平方厘米),PCE 为 19.9%(活性面积为 11.40 平方厘米)。此外,还探讨了 CsPbI3 结晶前驱体溶液的成分工程:DMAAc/DMF 混合溶剂可促进相变并降低成核率,而 PbI2 和 DMAPbI3 的混合物将进一步改善薄膜的微观结构和均匀性。因此,CsPbI3 薄膜的抗湿稳定性和相稳定性得到了极大的改善,相应的器件也表现出了良好的运行稳定性。封装简单的 CsPbI3 模块还具有 150 天以上的出色长期存储稳定性。这种晶体生长调控策略为大规模生产 CsPbI3 甚至混合型过氧化物太阳能电池提供了一种新方法,可在未来实现商业化。
{"title":"Regulating CsPbI3 crystal growth for efficient printable perovskite solar cells and minimodules","authors":"Yuqi Cui, Chengyu Tan, Rui Zhang, Shan Tan, Yiming Li, Huijue Wu, Jiangjian Shi, Yanhong Luo, Dongmei Li, Qingbo Meng","doi":"10.1007/s40843-024-3046-3","DOIUrl":"https://doi.org/10.1007/s40843-024-3046-3","url":null,"abstract":"<p>Large pinhole-free, high-crystal-quality perovskite films are the key to realizing efficient, stable CsPbI<sub>3</sub> perovskite modules. In this work, we use the crystal growth modulation strategy to prepare high-quality CsPbI<sub>3</sub> films from small to large sizes using a new precursor solution with CsI/DMAPbI<sub>3</sub>/PbI<sub>2</sub> in a DMAAc/DMF mixed solvent (DMAAc: dimethylamine acetate). The champion small-size CsPbI<sub>3</sub> device presents a photoelectric conversion efficiency (<i>PCE</i>) above 21% and a certified <i>PCE</i> of 20.05%, and the best blade-coated CsPbI<sub>3</sub> minimodule exhibits a <i>PCE</i> of 18.3% for an aperture area of 12.39 cm<sup>2</sup> and a <i>PCE</i> of 19.9% for an active area of 11.40 cm<sup>2</sup>. In addition, the composition engineering of the precursor solution toward CsPbI<sub>3</sub> crystallization is explored: the DMAAc/DMF mixed solvent can facilitate phase transformation and reduce the nucleation rate, and the mixture of PbI<sub>2</sub> and DMAPbI<sub>3</sub> will further improve the film microstructure and uniformity. Consequently, the anti-humidity stability and phase stability of the CsPbI<sub>3</sub> films are greatly improved, and the corresponding devices exhibit good operational stability. CsPbI<sub>3</sub> modules with simple encapsulation also present excellent long-term storage stability over 150 days. This crystal growth regulation strategy provides a new method to produce large-scale CsPbI<sub>3</sub> and even hybrid perovskite solar cells for future commercialization.\u0000</p>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"18 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adjustable ion energy barrier for reliable memristive neuromorphic systems 为可靠的记忆神经形态系统提供可调节的离子能障
IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-09-03 DOI: 10.1007/s40843-024-3098-6
Tianci Huang, Zuqing Yuan
{"title":"Adjustable ion energy barrier for reliable memristive neuromorphic systems","authors":"Tianci Huang,&nbsp;Zuqing Yuan","doi":"10.1007/s40843-024-3098-6","DOIUrl":"10.1007/s40843-024-3098-6","url":null,"abstract":"","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3759 - 3760"},"PeriodicalIF":6.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
8.2%-Efficiency hydrothermal Sb2S3 thin film solar cells by two-step RTP annealing strategy 通过两步 RTP 退火策略实现 8.2% 效率的水热法 Sb2S3 薄膜太阳能电池
IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-30 DOI: 10.1007/s40843-024-3055-x
Hui Deng  (, ), Xinxin Feng  (, ), Qiqiang Zhu  (, ), Yonghao Liu  (, ), Guidong Wang  (, ), Caixia Zhang  (, ), Qiao Zheng  (, ), Jionghua Wu  (, ), Weihuang Wang  (, ), Shuying Cheng  (, )

Antimony sulfide (Sb2S3) solar cells fabricated via hydrothermal deposition have attracted widespread attention. The annealing crystallization process plays a crucial role in achieving optimal crystallinity in hydrothermal Sb2S3 thin films. Nevertheless, incomplete crystallization and the loss of sulfur at high-temperature contribute to defect recombination, constraining device performance. Herein, a two-step rapid thermal processing (RTP) annealing strategy is proposed to improve the crystal quality and efficiency of Sb2S3 solar cells. The annealing process in Ar protection with atmospheric pressure can suppress S loss caused by saturated vapor pressure. The two-step RTP annealing with the 330°C low-temperature and 370°C high-temperature process ensures high crystallinity and vertical orientations of Sb2S3 thin films, accompanied by a reduction in defect concentration from 1.01 × 1012 to 5.97 × 1011 cm−3. The Sb2S3 solar cell achieves an efficiency of 8.20% with an enhanced open circuit voltage (VOC) of 784 mV. The build-in voltage (Vbi) of 1.17 V and irradiation-dependent ideal factor (n) of 1.48 demonstrate enhanced heterojunction quality and suppressed defect recombination in the devices. The presented two-step annealing strategy and physical mechanism study will open new prospects for high-performance Sb2S3 solar cells.

通过水热沉积法制造的硫化锑(Sb2S3)太阳能电池引起了广泛关注。退火结晶过程对实现水热法 Sb2S3 薄膜的最佳结晶度起着至关重要的作用。然而,不完全结晶和高温下的硫损失会导致缺陷重组,从而限制器件的性能。本文提出了一种两步快速热处理(RTP)退火策略,以提高 Sb2S3 太阳能电池的晶体质量和效率。在大气压下的氩气保护下进行退火可抑制饱和蒸汽压造成的 S 损失。330°C 低温和 370°C 高温两步 RTP 退火工艺确保了 Sb2S3 薄膜的高结晶度和垂直取向性,同时缺陷浓度从 1.01 × 1012 cm-3 降至 5.97 × 1011 cm-3。Sb2S3 太阳能电池的效率达到 8.20%,开路电压(VOC)提高到 784 mV。内置电压(Vbi)为 1.17 V,辐照相关理想因子(n)为 1.48,这表明器件的异质结质量得到提高,缺陷重组受到抑制。所提出的两步退火策略和物理机制研究将为高性能 Sb2S3 太阳能电池开辟新的前景。
{"title":"8.2%-Efficiency hydrothermal Sb2S3 thin film solar cells by two-step RTP annealing strategy","authors":"Hui Deng \u0000 (,&nbsp;),&nbsp;Xinxin Feng \u0000 (,&nbsp;),&nbsp;Qiqiang Zhu \u0000 (,&nbsp;),&nbsp;Yonghao Liu \u0000 (,&nbsp;),&nbsp;Guidong Wang \u0000 (,&nbsp;),&nbsp;Caixia Zhang \u0000 (,&nbsp;),&nbsp;Qiao Zheng \u0000 (,&nbsp;),&nbsp;Jionghua Wu \u0000 (,&nbsp;),&nbsp;Weihuang Wang \u0000 (,&nbsp;),&nbsp;Shuying Cheng \u0000 (,&nbsp;)","doi":"10.1007/s40843-024-3055-x","DOIUrl":"10.1007/s40843-024-3055-x","url":null,"abstract":"<div><p>Antimony sulfide (Sb<sub>2</sub>S<sub>3</sub>) solar cells fabricated via hydrothermal deposition have attracted widespread attention. The annealing crystallization process plays a crucial role in achieving optimal crystallinity in hydrothermal Sb<sub>2</sub>S<sub>3</sub> thin films. Nevertheless, incomplete crystallization and the loss of sulfur at high-temperature contribute to defect recombination, constraining device performance. Herein, a two-step rapid thermal processing (RTP) annealing strategy is proposed to improve the crystal quality and efficiency of Sb<sub>2</sub>S<sub>3</sub> solar cells. The annealing process in Ar protection with atmospheric pressure can suppress S loss caused by saturated vapor pressure. The two-step RTP annealing with the 330°C low-temperature and 370°C high-temperature process ensures high crystallinity and vertical orientations of Sb<sub>2</sub>S<sub>3</sub> thin films, accompanied by a reduction in defect concentration from 1.01 × 10<sup>12</sup> to 5.97 × 10<sup>11</sup> cm<sup>−3</sup>. The Sb<sub>2</sub>S<sub>3</sub> solar cell achieves an efficiency of 8.20% with an enhanced open circuit voltage (<i>V</i><sub>OC</sub>) of 784 mV. The build-in voltage (<i>V</i><sub>bi</sub>) of 1.17 V and irradiation-dependent ideal factor (<i>n</i>) of 1.48 demonstrate enhanced heterojunction quality and suppressed defect recombination in the devices. The presented two-step annealing strategy and physical mechanism study will open new prospects for high-performance Sb<sub>2</sub>S<sub>3</sub> solar cells.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 11","pages":"3666 - 3674"},"PeriodicalIF":6.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of semi-perfluoroalkyl chains on A-DA′D-A type small molecule acceptor in organic solar cells 半全氟化烷基链对有机太阳能电池中 A-DA′D-A 型小分子受体的影响
IF 8.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-30 DOI: 10.1007/s40843-024-3075-2
Wei Liu, Yijie Nai, Weikun Chen, Guanhaojie Zhen, Songting Liang, Xueyi Guo, Jun Yuan, Yingping Zou

Herein, a new A-DA′D-A structured small molecule acceptor named m-TF9, containing semi-perfluoroalkyl chains, was designed and synthesized for highly efficient organic solar cells (OSCs). Compared with its alkylsubstituted analogous m-TH, m-TF9 exhibits tighter molecular packing and lower surface free energy. When blended with PTQ10, m-TF9 can achieve a high fill factor of 77.3%. By using 1,4-difluorobenzene as an additive, the PTQ10:m-TF9-based OSC delivers a high efficiency of 16.3% with an improved short circuit current (JSC) of 27.0 mA cm−2. In addition, the m-TF9-based OSC demonstrates good storage stability in both air and nitrogen environments. This work highlights the great potential of semi-perfluoroalkyl chains as the modification blocks for A-DA′D-A type acceptors to achieve good charge transport properties and high efficiency.

本文设计并合成了一种名为 m-TF9 的新型 A-DA′D-A 结构小分子受体,该受体含有半全氟化烷基链,可用于高效有机太阳能电池(OSC)。与烷基取代的类似物 m-TH 相比,m-TF9 的分子堆积更紧密,表面自由能更低。与 PTQ10 混合后,m-TF9 的填充因子高达 77.3%。通过使用 1,4-二氟苯作为添加剂,基于 PTQ10:m-TF9 的 OSC 的效率高达 16.3%,短路电流(JSC)提高到 27.0 mA cm-2。此外,基于 m-TF9 的 OSC 在空气和氮气环境中均表现出良好的存储稳定性。这项工作凸显了半全氟化烷基链作为 A-DA′D-A 型受体的改性砌块在实现良好电荷传输特性和高效率方面的巨大潜力。
{"title":"Effect of semi-perfluoroalkyl chains on A-DA′D-A type small molecule acceptor in organic solar cells","authors":"Wei Liu, Yijie Nai, Weikun Chen, Guanhaojie Zhen, Songting Liang, Xueyi Guo, Jun Yuan, Yingping Zou","doi":"10.1007/s40843-024-3075-2","DOIUrl":"https://doi.org/10.1007/s40843-024-3075-2","url":null,"abstract":"<p>Herein, a new A-DA′D-A structured small molecule acceptor named <i>m</i>-TF<sub>9</sub>, containing semi-perfluoroalkyl chains, was designed and synthesized for highly efficient organic solar cells (OSCs). Compared with its alkylsubstituted analogous <i>m</i>-TH, <i>m</i>-TF<sub>9</sub> exhibits tighter molecular packing and lower surface free energy. When blended with PTQ10, <i>m</i>-TF<sub>9</sub> can achieve a high fill factor of 77.3%. By using 1,4-difluorobenzene as an additive, the PTQ10:<i>m</i>-TF<sub>9</sub>-based OSC delivers a high efficiency of 16.3% with an improved short circuit current (<i>J</i><sub>SC</sub>) of 27.0 mA cm<sup>−2</sup>. In addition, the <i>m</i>-TF<sub>9</sub>-based OSC demonstrates good storage stability in both air and nitrogen environments. This work highlights the great potential of semi-perfluoroalkyl chains as the modification blocks for A-DA′D-A type acceptors to achieve good charge transport properties and high efficiency.</p>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"5 1","pages":""},"PeriodicalIF":8.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fatigue-resistant sliding ferroelectricity 抗疲劳滑动铁电
IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2024-08-30 DOI: 10.1007/s40843-024-3023-1
Zheng Liu
{"title":"Fatigue-resistant sliding ferroelectricity","authors":"Zheng Liu","doi":"10.1007/s40843-024-3023-1","DOIUrl":"10.1007/s40843-024-3023-1","url":null,"abstract":"","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 10","pages":"3417 - 3418"},"PeriodicalIF":6.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142518678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Science China Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1