Pub Date : 2024-04-05DOI: 10.1007/s00193-024-01160-x
N. Itouyama, X. Huang, R. Mével, K. Matsuoka, J. Kasahara, H. Habu
Ammonium dinitramide (ADN, ([textrm{NH}_{4}]^{+}[textrm{N}(textrm{NO}_{2})_{2}]^{-})) and its related propellants are promising high energy density materials for new-generation space propulsion. In order to ensure their safe utilization, it is of primary importance to assess the risk of accidental combustion events such as detonation. Thus, focusing on ADN and its related propellant composed of ADN, monomethylamine nitrate, and urea with weight percentages of 40:40:20 (AMU442), we have studied the properties and steady structure of detonation propagating in gaseous mixtures formed by their thermal decomposition. The AMU442-based mixture exhibits higher von Neumann and Chapman–Jouguet temperatures and pressures than the ADN-based mixture. The study of their steady detonation structure reveals that the gaseous species resulting from the decomposition of AMU442 have higher detonability than the ones resulting from the decomposition of ADN alone. This is in contrast to a previous study about the safety of these propellants in their original (solid or liquid) phase, i.e., AMU442 has lower sensitivity/reactivity to incident impact than ADN. Thermochemical analyses performed for both mixtures show that the decomposition of (textrm{HNO}_{3}) plays a dominant role for the energy consumption and initiation of the reaction by releasing both OH and (textrm{NO}_{2}). For the ADN-based mixture, the reactions involving (textrm{HN}(textrm{NO}_{2})_{2}) and (textrm{HNO}_{3}) are the most sensitive, whereas for the AMU442-based mixture, the most sensitive reactions involve (textrm{CH}_{3}textrm{NH}_{2}), (textrm{CH}_{2}textrm{NH}_{2}), and (textrm{HNO}_{3}). Reaction pathway diagrams emphasize the higher complexity of the chemical pathways for the AMU442-based mixture because of the presence of ([textrm{CH}_{3}textrm{NH}_{3}]^{+}[textrm{NO}_{3}]^{-}) and (textrm{CH}_{4}textrm{N}_{2}textrm{O}) in the initial mixture. An uncertainty quantification study demonstrated that the calculated induction lengths exhibit an uncertainty on the order of 50%.
{"title":"Assessment of the sensitivity to detonation of the gaseous pyrolytic products formed during the thermal decomposition of ammonium dinitramide and its related ionic liquids","authors":"N. Itouyama, X. Huang, R. Mével, K. Matsuoka, J. Kasahara, H. Habu","doi":"10.1007/s00193-024-01160-x","DOIUrl":"https://doi.org/10.1007/s00193-024-01160-x","url":null,"abstract":"<p>Ammonium dinitramide (ADN, <span>([textrm{NH}_{4}]^{+}[textrm{N}(textrm{NO}_{2})_{2}]^{-})</span>) and its related propellants are promising high energy density materials for new-generation space propulsion. In order to ensure their safe utilization, it is of primary importance to assess the risk of accidental combustion events such as detonation. Thus, focusing on ADN and its related propellant composed of ADN, monomethylamine nitrate, and urea with weight percentages of 40:40:20 (AMU442), we have studied the properties and steady structure of detonation propagating in gaseous mixtures formed by their thermal decomposition. The AMU442-based mixture exhibits higher von Neumann and Chapman–Jouguet temperatures and pressures than the ADN-based mixture. The study of their steady detonation structure reveals that the gaseous species resulting from the decomposition of AMU442 have higher detonability than the ones resulting from the decomposition of ADN alone. This is in contrast to a previous study about the safety of these propellants in their original (solid or liquid) phase, i.e., AMU442 has lower sensitivity/reactivity to incident impact than ADN. Thermochemical analyses performed for both mixtures show that the decomposition of <span>(textrm{HNO}_{3})</span> plays a dominant role for the energy consumption and initiation of the reaction by releasing both OH and <span>(textrm{NO}_{2})</span>. For the ADN-based mixture, the reactions involving <span>(textrm{HN}(textrm{NO}_{2})_{2})</span> and <span>(textrm{HNO}_{3})</span> are the most sensitive, whereas for the AMU442-based mixture, the most sensitive reactions involve <span>(textrm{CH}_{3}textrm{NH}_{2})</span>, <span>(textrm{CH}_{2}textrm{NH}_{2})</span>, and <span>(textrm{HNO}_{3})</span>. Reaction pathway diagrams emphasize the higher complexity of the chemical pathways for the AMU442-based mixture because of the presence of <span>([textrm{CH}_{3}textrm{NH}_{3}]^{+}[textrm{NO}_{3}]^{-})</span> and <span>(textrm{CH}_{4}textrm{N}_{2}textrm{O})</span> in the initial mixture. An uncertainty quantification study demonstrated that the calculated induction lengths exhibit an uncertainty on the order of 50%.</p>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"31 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140575692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-27DOI: 10.1007/s00193-023-01154-1
M. du Plessis, N. Mahomed, R. Heise
The ongoing study of blast waves and blast wave mitigation continues to play an essential role in protecting structures and personnel. The methodology, however, for capturing far-field blast waves in large-scale tests has remained largely unchanged for three decades, relying on large arrays of pressure transducers connected by hundreds of meters of cabling and requiring a considerable amount of time to set up. This paper evaluates the use of a modern low-cost microprocessor with high computational power to capture blast waves with sufficient fidelity to provide scientists and engineers with credible data. The system utilizes an ARM Cortex M7 processor as an experimental data acquisition (DAQ) system for measuring far-field blast waves in an open-air blast arena at sampling speeds of up to 1.8 Msps (megasamples per second). The experimental system’s performance was evaluated by comparing it to a traditional commercial system used for measuring blast waves. The comparison showed an average Spearman correlation coefficient r of 0.928 between the two systems, suggesting a low variance between the commercial and experimental DAQ systems. This suggests that, despite its simplicity, the experimental system is an effective and low-cost alternative for accurately measuring blast waves.
对冲击波和冲击波缓解的持续研究在保护结构和人员方面继续发挥着至关重要的作用。然而,在大规模试验中捕捉远场爆炸波的方法三十年来基本未变,一直依赖于由数百米长的电缆连接的大型压力传感器阵列,并且需要大量时间进行设置。本文评估了如何使用具有高计算能力的现代低成本微处理器来捕捉足够逼真的爆炸波,从而为科学家和工程师提供可靠的数据。该系统利用 ARM Cortex M7 处理器作为实验数据采集(DAQ)系统,以高达 1.8 Msps(百万采样/秒)的采样速度测量露天爆破场中的远场爆破波。通过与用于测量爆炸波的传统商业系统进行比较,对实验系统的性能进行了评估。比较结果显示,两个系统之间的平均斯皮尔曼相关系数 r 为 0.928,表明商用和实验 DAQ 系统之间的差异很小。这表明,尽管实验系统很简单,但它是精确测量爆炸波的一种有效且低成本的替代方法。
{"title":"Experimental study on the use of the ARM Cortex M7 processor for measuring far-field blast waves","authors":"M. du Plessis, N. Mahomed, R. Heise","doi":"10.1007/s00193-023-01154-1","DOIUrl":"10.1007/s00193-023-01154-1","url":null,"abstract":"<div><p>The ongoing study of blast waves and blast wave mitigation continues to play an essential role in protecting structures and personnel. The methodology, however, for capturing far-field blast waves in large-scale tests has remained largely unchanged for three decades, relying on large arrays of pressure transducers connected by hundreds of meters of cabling and requiring a considerable amount of time to set up. This paper evaluates the use of a modern low-cost microprocessor with high computational power to capture blast waves with sufficient fidelity to provide scientists and engineers with credible data. The system utilizes an ARM Cortex M7 processor as an experimental data acquisition (DAQ) system for measuring far-field blast waves in an open-air blast arena at sampling speeds of up to 1.8 Msps (megasamples per second). The experimental system’s performance was evaluated by comparing it to a traditional commercial system used for measuring blast waves. The comparison showed an average Spearman correlation coefficient <i>r</i> of 0.928 between the two systems, suggesting a low variance between the commercial and experimental DAQ systems. This suggests that, despite its simplicity, the experimental system is an effective and low-cost alternative for accurately measuring blast waves.\u0000</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 1","pages":"69 - 78"},"PeriodicalIF":1.7,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-023-01154-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140316261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-04DOI: 10.1007/s00193-024-01159-4
A. M. Ferris, P. Biswas, R. Choudhary, R. K. Hanson
Shock wave reforming, or the use of shock waves to achieve the necessary high-temperature conditions for thermal cracking, has recently gained commercial interest as a new approach to clean hydrogen (H(_2)) generation. Presented here is an analysis of the chemical kinetic and gasdynamic processes driving the shock wave reforming process, as applied to methane (CH(_4)) reforming. Reflected shock experiments were conducted for high-fuel-loading conditions of 11.5–35.5% CH(_4) in Ar for 1790–2410 K and 1.6–4 atm. These experiments were used to assess the performance of five chemical kinetic models. Chemical kinetic simulations were then carried out to investigate the thermal pyrolysis of 100% CH(_4) across a wide range of temperature and pressure conditions (1400–2600 K, 1–30 atm). The impact of temperature, pressure, and reactor assumptions on H(_2) conversion yields was explored, and conditions yielding optimal H(_2) production were identified. Next, the gasdynamic processes needed to achieve the target temperature and pressure conditions for optimal H(_2) production were investigated, including analysis of requisite shock strengths and potential driver gases. The chemical kinetic and gasdynamic analyses presented here reveal a number of challenges associated with the shock wave reforming approach, but simultaneously reveal opportunities for further research and innovation.
冲击波重整,或者说利用冲击波实现热裂解所需的高温条件,作为一种清洁制氢(H(_2))的新方法,最近获得了商业上的关注。本文分析了驱动冲击波重整过程的化学动力学和气体动力学过程,并将其应用于甲烷(CH(_4))重整。在 1790-2410 K 和 1.6-4 atm 的条件下,对 11.5-35.5% CH(_4) in Ar 的高燃料负荷条件进行了反射冲击实验。这些实验用于评估五个化学动力学模型的性能。然后进行了化学动力学模拟,以研究 100%的 CH(_4) 在广泛的温度和压力条件下(1400-2600 K,1-30 atm)的热裂解。探讨了温度、压力和反应器假设对 H(_2) 转化率的影响,并确定了产生最佳 H(_2) 产率的条件。接下来,研究了为实现最佳 H(_2) 生产的目标温度和压力条件所需的气体动力学过程,包括分析必要的冲击强度和潜在的驱动气体。这里介绍的化学动力学和气体动力学分析揭示了与冲击波重整方法相关的一些挑战,但同时也揭示了进一步研究和创新的机会。
{"title":"Experimental and numerical investigation of shock wave-based methane pyrolysis for clean H $$_2$$ production","authors":"A. M. Ferris, P. Biswas, R. Choudhary, R. K. Hanson","doi":"10.1007/s00193-024-01159-4","DOIUrl":"https://doi.org/10.1007/s00193-024-01159-4","url":null,"abstract":"<p>Shock wave reforming, or the use of shock waves to achieve the necessary high-temperature conditions for thermal cracking, has recently gained commercial interest as a new approach to clean hydrogen (H<span>(_2)</span>) generation. Presented here is an analysis of the chemical kinetic and gasdynamic processes driving the shock wave reforming process, as applied to methane (CH<span>(_4)</span>) reforming. Reflected shock experiments were conducted for high-fuel-loading conditions of 11.5–35.5% CH<span>(_4)</span> in Ar for 1790–2410 K and 1.6–4 atm. These experiments were used to assess the performance of five chemical kinetic models. Chemical kinetic simulations were then carried out to investigate the thermal pyrolysis of 100% CH<span>(_4)</span> across a wide range of temperature and pressure conditions (1400–2600 K, 1–30 atm). The impact of temperature, pressure, and reactor assumptions on H<span>(_2)</span> conversion yields was explored, and conditions yielding optimal H<span>(_2)</span> production were identified. Next, the gasdynamic processes needed to achieve the target temperature and pressure conditions for optimal H<span>(_2)</span> production were investigated, including analysis of requisite shock strengths and potential driver gases. The chemical kinetic and gasdynamic analyses presented here reveal a number of challenges associated with the shock wave reforming approach, but simultaneously reveal opportunities for further research and innovation.</p>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"28 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28DOI: 10.1007/s00193-023-01156-z
K. Ramachandra, S. Bhardwaj, J. N. Murugan, R. Sriram
The dynamics of shock-induced unsteady separated flow past a three-dimensional square-faced protuberance are investigated through wind tunnel experiments. Time-resolved schlieren imaging and unsteady surface pressure measurements are the diagnostics employed. Dynamic mode decomposition (DMD) of schlieren snapshots and analysis of spectrum and correlations in pressure data are used to characterize and resolve the flow physics. The mean shock foot in the centreline is found to exhibit a Strouhal number of around 0.01, which is also the order of magnitude of the Strouhal numbers reported in the literature for two-dimensional shock–boundary layer interactions. The wall pressure spectra, in general, shift towards lower frequencies as one moves away (spanwise) from the centreline with some variation in the nature of peaks. The cross-correlation analysis depicts the strong dependence of the mean shock oscillations and the plateau pressure region, and disturbances are found to travel upstream from inside the separation bubble. Good coherence is observed between the spanwise mean shock foot locations till a Strouhal number of about 0.015 indicating that the three-dimensional shock foot largely moves to-and-fro in a coherent fashion.
{"title":"Study of unsteadiness due to 3-D shock–boundary layer interaction in flow over a square-faced protuberance","authors":"K. Ramachandra, S. Bhardwaj, J. N. Murugan, R. Sriram","doi":"10.1007/s00193-023-01156-z","DOIUrl":"10.1007/s00193-023-01156-z","url":null,"abstract":"<div><p>The dynamics of shock-induced unsteady separated flow past a three-dimensional square-faced protuberance are investigated through wind tunnel experiments. Time-resolved schlieren imaging and unsteady surface pressure measurements are the diagnostics employed. Dynamic mode decomposition (DMD) of schlieren snapshots and analysis of spectrum and correlations in pressure data are used to characterize and resolve the flow physics. The mean shock foot in the centreline is found to exhibit a Strouhal number of around 0.01, which is also the order of magnitude of the Strouhal numbers reported in the literature for two-dimensional shock–boundary layer interactions. The wall pressure spectra, in general, shift towards lower frequencies as one moves away (spanwise) from the centreline with some variation in the nature of peaks. The cross-correlation analysis depicts the strong dependence of the mean shock oscillations and the plateau pressure region, and disturbances are found to travel upstream from inside the separation bubble. Good coherence is observed between the spanwise mean shock foot locations till a Strouhal number of about 0.015 indicating that the three-dimensional shock foot largely moves to-and-fro in a coherent fashion.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 7-8","pages":"569 - 583"},"PeriodicalIF":1.7,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140004410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28DOI: 10.1007/s00193-023-01155-0
A. Khan, M. Chidambaranathan, S. B. Verma, R. Kumar
Passive flow control devices, such as vortex generators (VGs), have shown to be successful in controlling flows associated with shock-wave/boundary-layer interactions. In the present work, we investigate the effectiveness of micro-VGs in controlling the interactions of the boundary layer with a swept shock wave generated by a semi-infinite fin placed in a Mach 2 freestream generated in a wind tunnel with a rectangular cross section. The strength of the interaction is varied by changing the angle of attack of the fin in the range (alpha = 3^circ )–(15^circ ). Arrays of micro-VGs are placed upstream of the interaction zone in two different configurations: (I) along a line perpendicular to the freestream and (II) along a line inclined to the freestream following the conical topology of the interaction zone. A parametric analysis is done for the rectangular, ramp, and Anderson-type micro-VGs for three different heights. Unsteady and time-averaged pressure measurements are done using arrays of ports spanned radially across the interaction zone. Surface flow patterns are obtained using the oil-flow visualisation technique. It is observed that VGs offer significantly better control effectiveness when placed inclined to the freestream along the interaction region. The rectangular VGs demonstrate a maximum shift (as much as (8^circ )) in the upstream influence line azimuthally towards the fin resulting in a decrease in the size of the separation region. Footprints obtained from the oil-flow experiments give important signatures of the vortices that are shed from the VGs and are responsible for the flowfield distortion in the interaction zone.
{"title":"Swept shock/boundary-layer interaction control using micro-vortex generators","authors":"A. Khan, M. Chidambaranathan, S. B. Verma, R. Kumar","doi":"10.1007/s00193-023-01155-0","DOIUrl":"10.1007/s00193-023-01155-0","url":null,"abstract":"<div><p>Passive flow control devices, such as vortex generators (VGs), have shown to be successful in controlling flows associated with shock-wave/boundary-layer interactions. In the present work, we investigate the effectiveness of micro-VGs in controlling the interactions of the boundary layer with a swept shock wave generated by a semi-infinite fin placed in a Mach 2 freestream generated in a wind tunnel with a rectangular cross section. The strength of the interaction is varied by changing the angle of attack of the fin in the range <span>(alpha = 3^circ )</span>–<span>(15^circ )</span>. Arrays of micro-VGs are placed upstream of the interaction zone in two different configurations: (I) along a line perpendicular to the freestream and (II) along a line inclined to the freestream following the conical topology of the interaction zone. A parametric analysis is done for the rectangular, ramp, and Anderson-type micro-VGs for three different heights. Unsteady and time-averaged pressure measurements are done using arrays of ports spanned radially across the interaction zone. Surface flow patterns are obtained using the oil-flow visualisation technique. It is observed that VGs offer significantly better control effectiveness when placed inclined to the freestream along the interaction region. The rectangular VGs demonstrate a maximum shift (as much as <span>(8^circ )</span>) in the upstream influence line azimuthally towards the fin resulting in a decrease in the size of the separation region. Footprints obtained from the oil-flow experiments give important signatures of the vortices that are shed from the VGs and are responsible for the flowfield distortion in the interaction zone.\u0000</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 7-8","pages":"553 - 567"},"PeriodicalIF":1.7,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140004407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-28DOI: 10.1007/s00193-023-01153-2
C. H. B. Civrais, C. White, R. Steijl
An extension to the normal shock relations for a thermally perfect, calorically imperfect gas, modelling the vibrational excitation with an anharmonic oscillator model and including the influence of electronic modes, is derived and studied. Such additional considerations constitute an extension to the work achieved in the past, which modelled the caloric imperfections with a harmonic oscillator for vibrational energy and did not consider the effect of electronic energy. Additionally, the newly derived expressions provide physical insights into the limitations of experimentation for replicating flight conditions, which is demonstrated through providing solutions at different upstream temperatures. The results are compared with direct simulation Monte Carlo simulations for nitrogen and air, with the extent of the caloric imperfection of the gas showing excellent agreement. For low upstream temperatures, the extended relations are found to be in good agreement with the original normal shock wave expressions, but the results diverge for higher upstream temperatures that would be more representative of real flows. The results show that the new expressions depart from ideal gas theory for Mach numbers in excess of 4.9 at wind-tunnel conditions and for any Mach number above 3.0 at flight conditions. It is also shown that the traditional harmonic oscillator model and the anharmonic oscillator model begin to diverge at Mach number 3.0 for molecular oxygen gas and at Mach number 5.0 for an air mixture at flight conditions.
{"title":"Extension of the normal shock wave relations for calorically imperfect gases","authors":"C. H. B. Civrais, C. White, R. Steijl","doi":"10.1007/s00193-023-01153-2","DOIUrl":"10.1007/s00193-023-01153-2","url":null,"abstract":"<div><p>An extension to the normal shock relations for a thermally perfect, calorically imperfect gas, modelling the vibrational excitation with an anharmonic oscillator model and including the influence of electronic modes, is derived and studied. Such additional considerations constitute an extension to the work achieved in the past, which modelled the caloric imperfections with a harmonic oscillator for vibrational energy and did not consider the effect of electronic energy. Additionally, the newly derived expressions provide physical insights into the limitations of experimentation for replicating flight conditions, which is demonstrated through providing solutions at different upstream temperatures. The results are compared with direct simulation Monte Carlo simulations for nitrogen and air, with the extent of the caloric imperfection of the gas showing excellent agreement. For low upstream temperatures, the extended relations are found to be in good agreement with the original normal shock wave expressions, but the results diverge for higher upstream temperatures that would be more representative of real flows. The results show that the new expressions depart from ideal gas theory for Mach numbers in excess of 4.9 at wind-tunnel conditions and for any Mach number above 3.0 at flight conditions. It is also shown that the traditional harmonic oscillator model and the anharmonic oscillator model begin to diverge at Mach number 3.0 for molecular oxygen gas and at Mach number 5.0 for an air mixture at flight conditions.\u0000</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 7-8","pages":"533 - 551"},"PeriodicalIF":1.7,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-023-01153-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140004907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-23DOI: 10.1007/s00193-023-01152-3
K. Bao, X. Zhang, G. Wang, J. Deng, T. Chong, D. Han, L. Bingqiang, M. Tan
YAG transparent ceramic has great potential in the applications to transparent armour protection modules. To study the dynamic behaviour and obtain the parameters for the equation of state of YAG under the load of longitudinal stress ranging from 0 to 20 GPa, ramp wave and shock compression experiments were conducted based on the electromagnetic loading test platform. The Hugoniot data, isentropic data, dynamic strength, and elastic limit of YAG were obtained. The results showed that the relationship between the longitudinal wave speed and the particle velocity of YAG was linear when the longitudinal stress was lower than the elastic limit. The quasi-isentropic compression and shock Hugoniot compression curves were coincident when the stress in YAG was below 10 GPa; however, a separation of the two curves occurred when the stress in YAG ranged from 10 GPa to the elastic limit. Moreover, the effect of strain rate on the fracture stress of YAG under a moderate strain rate of 10(^{textrm{5}})–10(^{textrm{6}})(hbox {s}^{mathrm {-1}}) was more evident than in other strain rate ranges. The amplitude of the precursor wave decayed with increasing sample thickness.
{"title":"Dynamic behaviour of YAG transparent ceramic under ramp wave and shock compression loading up to 20 GPa","authors":"K. Bao, X. Zhang, G. Wang, J. Deng, T. Chong, D. Han, L. Bingqiang, M. Tan","doi":"10.1007/s00193-023-01152-3","DOIUrl":"10.1007/s00193-023-01152-3","url":null,"abstract":"<div><p>YAG transparent ceramic has great potential in the applications to transparent armour protection modules. To study the dynamic behaviour and obtain the parameters for the equation of state of YAG under the load of longitudinal stress ranging from 0 to 20 GPa, ramp wave and shock compression experiments were conducted based on the electromagnetic loading test platform. The Hugoniot data, isentropic data, dynamic strength, and elastic limit of YAG were obtained. The results showed that the relationship between the longitudinal wave speed and the particle velocity of YAG was linear when the longitudinal stress was lower than the elastic limit. The quasi-isentropic compression and shock Hugoniot compression curves were coincident when the stress in YAG was below 10 GPa; however, a separation of the two curves occurred when the stress in YAG ranged from 10 GPa to the elastic limit. Moreover, the effect of strain rate on the fracture stress of YAG under a moderate strain rate of 10<span>(^{textrm{5}})</span>–10<span>(^{textrm{6}})</span> <span>(hbox {s}^{mathrm {-1}})</span> was more evident than in other strain rate ranges. The amplitude of the precursor wave decayed with increasing sample thickness.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 7-8","pages":"585 - 596"},"PeriodicalIF":1.7,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139956009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-27DOI: 10.1007/s00193-023-01151-4
T. Sato, K. Matsuoka, A. Kawasaki, N. Itouyama, H. Watanabe, J. Kasahara
As a method of initiating detonation in a short distance with a small amount of energy, the combination of laser ignition and shock focusing in an elliptical cavity was proposed and experimentally demonstrated with a (hbox {C}_{2}hbox {H}_{4}{-}hbox {O}_{2}) mixture at 100 kPa and 297 K. In the experiment, an elliptical cavity and single rectangular cavities of different heights were used, and their flow-field patterns were visualized using high-speed schlieren imaging. Detonation initiation was achieved in the case of the elliptical cavity, and based on the Mach number change of the leading shock wave, two propagation phases were verified: the deceleration and acceleration phases. The deceleration phase was driven merely by the gasdynamic effect, wherein the initial shock wave (ISW) expanded spherically, and the acceleration phase began when the ISW shifted to planar propagation. In the acceleration phase, although gradual acceleration was observed in rectangular cavities, rapid acceleration occurred in the elliptical cavity. From the schlieren images, the second acceleration was caused not only by the concave reflected shock wave’s catching up with the ISW, but also by the fast-flames that were generated along the cavity corners and engulfed the ISW in the converging section of the elliptical cavity.
{"title":"Experimental demonstration on detonation initiation by laser ignition and shock focusing in elliptical cavity","authors":"T. Sato, K. Matsuoka, A. Kawasaki, N. Itouyama, H. Watanabe, J. Kasahara","doi":"10.1007/s00193-023-01151-4","DOIUrl":"10.1007/s00193-023-01151-4","url":null,"abstract":"<div><p>As a method of initiating detonation in a short distance with a small amount of energy, the combination of laser ignition and shock focusing in an elliptical cavity was proposed and experimentally demonstrated with a <span>(hbox {C}_{2}hbox {H}_{4}{-}hbox {O}_{2})</span> mixture at 100 kPa and 297 K. In the experiment, an elliptical cavity and single rectangular cavities of different heights were used, and their flow-field patterns were visualized using high-speed schlieren imaging. Detonation initiation was achieved in the case of the elliptical cavity, and based on the Mach number change of the leading shock wave, two propagation phases were verified: the deceleration and acceleration phases. The deceleration phase was driven merely by the gasdynamic effect, wherein the initial shock wave (ISW) expanded spherically, and the acceleration phase began when the ISW shifted to planar propagation. In the acceleration phase, although gradual acceleration was observed in rectangular cavities, rapid acceleration occurred in the elliptical cavity. From the schlieren images, the second acceleration was caused not only by the concave reflected shock wave’s catching up with the ISW, but also by the fast-flames that were generated along the cavity corners and engulfed the ISW in the converging section of the elliptical cavity.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 7-8","pages":"521 - 531"},"PeriodicalIF":1.7,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-023-01151-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139585470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-02DOI: 10.1007/s00193-023-01150-5
K. A. Byrdin, S. M. Frolov, P. A. Storozhenko, S. L. Guseinov
Contrary to the conventional chemical propulsion systems based on the controlled relatively slow (subsonic) combustion of fuel in a combustor, the operation process in pulsed detonation engines (PDEs) and rotating detonation engines (RDEs) is based on the controlled fast (supersonic) combustion of fuel in pulsed and continuous detonation waves, respectively. One of the most important issues for such propulsion systems is the choice of fuel with proper reactivity and exothermicity required for a sustained and energy-efficient operation process. Presented in the paper are the results of thermodynamic calculations of the detonation parameters of boron- and aluminum-containing compounds (B, B(_{{2}})H(_{{6}}), B(_{{5}})H(_{{9}}), B(_{{10}})H(_{{14}}), Al, AlH(_{{3}}), Al(C(_{{2}})H(_{{5}})_{{3}}), and Al(CH(_{{3}})_{{3}})) in air and water. The results demonstrate the potential feasibility of using the considered compounds as fuels for both air- and water-breathing transportation vehicles powered with PDEs and RDEs. As a verification of the reliability of the calculated results, the detonation parameters of diborane, aluminum, and isopropyl nitrate in air were compared with experimental data available in the literature.
与传统的化学推进系统基于燃料在燃烧室中相对缓慢(亚音速)的受控燃烧不同,脉冲爆震发动机(PDEs)和旋转爆震发动机(RDEs)的运行过程分别基于燃料在脉冲爆震波和连续爆震波中的受控快速(超音速)燃烧。对于这种推进系统来说,最重要的问题之一是选择具有适当反应性和放热性的燃料,以实现持续和节能的运行过程。本文给出了含硼和含铝化合物(B, B (_{{2}}) H (_{{6}}), B (_{{5}}) H (_{{9}}), B (_{{10}}) H (_{{14}}), Al, AlH (_{{3}}), Al(C (_{{2}}) H (_{{5}})_{{3}}))和Al(CH (_{{3}})_{{3}})))在空气和水中的爆轰参数的热力学计算结果。结果表明,将所考虑的化合物用作以pde和rde为动力的空气和水呼吸运输车辆的燃料的潜在可行性。为了验证计算结果的可靠性,将二硼烷、铝和硝酸异丙基在空气中的爆轰参数与文献中已有的实验数据进行了比较。
{"title":"Thermochemical study of the detonation properties of boron- and aluminum-containing compounds in air and water","authors":"K. A. Byrdin, S. M. Frolov, P. A. Storozhenko, S. L. Guseinov","doi":"10.1007/s00193-023-01150-5","DOIUrl":"10.1007/s00193-023-01150-5","url":null,"abstract":"<div><p>Contrary to the conventional chemical propulsion systems based on the controlled relatively slow (subsonic) combustion of fuel in a combustor, the operation process in pulsed detonation engines (PDEs) and rotating detonation engines (RDEs) is based on the controlled fast (supersonic) combustion of fuel in pulsed and continuous detonation waves, respectively. One of the most important issues for such propulsion systems is the choice of fuel with proper reactivity and exothermicity required for a sustained and energy-efficient operation process. Presented in the paper are the results of thermodynamic calculations of the detonation parameters of boron- and aluminum-containing compounds (B, B<span>(_{{2}})</span>H<span>(_{{6}})</span>, B<span>(_{{5}})</span>H<span>(_{{9}})</span>, B<span>(_{{10}})</span>H<span>(_{{14}})</span>, Al, AlH<span>(_{{3}})</span>, Al(C<span>(_{{2}})</span>H<span>(_{{5}})_{{3}})</span>, and Al(CH<span>(_{{3}})_{{3}}))</span> in air and water. The results demonstrate the potential feasibility of using the considered compounds as fuels for both air- and water-breathing transportation vehicles powered with PDEs and RDEs. As a verification of the reliability of the calculated results, the detonation parameters of diborane, aluminum, and isopropyl nitrate in air were compared with experimental data available in the literature.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 6","pages":"501 - 520"},"PeriodicalIF":2.2,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135934267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-24DOI: 10.1007/s00193-023-01146-1
A. V. Pinaev, P. A. Pinaev
A study of shock and detonation waves propagating in gaseous two-fuel (hbox {CH}_{{4}}/hbox {H}_{{2}})/air mixtures and heterogeneous three-fuel (hbox {CH}_{{4}}/hbox {H}_{{2}})/air/coal mixtures with the mean bulk density of the coal dust suspension equal to (95{-}560,hbox {g/m}^{{3}}) and with a particle size of (0{-}200,upmu hbox {m}) is performed. The experiments are conducted in a vertical shock tube with a length of 6.75 m and a diameter of 70 mm. The detonation parameters measured in the experiments are compared with the calculated equilibrium thermodynamic values. It is found that the detonation wave parameters are mainly affected by methane and hydrogen rather than by the coal dust suspension. Decaying shock waves are as dangerous as detonation waves because blast wave reflections can initiate detonation. An increase in the hydrogen fraction in the mixture decreases the energy of initiation of (hbox {CH}_{{4}}/hbox {H}_{{2}})/air and (hbox {CH}_{{4}}/hbox {H}_{{2}})/air/coal mixtures, resulting in a greater hazard for the generation of shock and detonation waves in these mixtures.
{"title":"Structure of shock and detonation waves propagating in hybrid methane/hydrogen/air/coal dust mixtures","authors":"A. V. Pinaev, P. A. Pinaev","doi":"10.1007/s00193-023-01146-1","DOIUrl":"10.1007/s00193-023-01146-1","url":null,"abstract":"<div><p>A study of shock and detonation waves propagating in gaseous two-fuel <span>(hbox {CH}_{{4}}/hbox {H}_{{2}})</span>/air mixtures and heterogeneous three-fuel <span>(hbox {CH}_{{4}}/hbox {H}_{{2}})</span>/air/coal mixtures with the mean bulk density of the coal dust suspension equal to <span>(95{-}560,hbox {g/m}^{{3}})</span> and with a particle size of <span>(0{-}200,upmu hbox {m})</span> is performed. The experiments are conducted in a vertical shock tube with a length of 6.75 m and a diameter of 70 mm. The detonation parameters measured in the experiments are compared with the calculated equilibrium thermodynamic values. It is found that the detonation wave parameters are mainly affected by methane and hydrogen rather than by the coal dust suspension. Decaying shock waves are as dangerous as detonation waves because blast wave reflections can initiate detonation. An increase in the hydrogen fraction in the mixture decreases the energy of initiation of <span>(hbox {CH}_{{4}}/hbox {H}_{{2}})</span>/air and <span>(hbox {CH}_{{4}}/hbox {H}_{{2}})</span>/air/coal mixtures, resulting in a greater hazard for the generation of shock and detonation waves in these mixtures.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"33 6","pages":"473 - 482"},"PeriodicalIF":2.2,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135267557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}