Ayal Taitler, Ron Alford, Joan Espasa, Gregor Behnke, Daniel Fišer, Michael Gimelfarb, Florian Pommerening, Scott Sanner, Enrico Scala, Dominik Schreiber, Javier Segovia-Aguas, Jendrik Seipp
In this article, we present an overview of the 2023 International Planning Competition. It featured five distinct tracks designed to assess cutting-edge methods and explore the frontiers of planning within these settings: the classical (deterministic) track, the numeric track, the Hierarchical Task Networks (HTN) track, the learning track, and the probabilistic and reinforcement learning track. Each of these tracks evaluated planning methodologies through one or more subtracks, with the goal of pushing the boundaries of current planner performance. To achieve this objective, the competition introduced a combination of well-established challenges and entirely novel ones. Within this article, each track offers an exploration of its historical context, justifies its relevance within the planning landscape, discusses emerging domains and trends, elucidates the evaluation methodology, and ultimately presents the results.
{"title":"The 2023 International Planning Competition","authors":"Ayal Taitler, Ron Alford, Joan Espasa, Gregor Behnke, Daniel Fišer, Michael Gimelfarb, Florian Pommerening, Scott Sanner, Enrico Scala, Dominik Schreiber, Javier Segovia-Aguas, Jendrik Seipp","doi":"10.1002/aaai.12169","DOIUrl":"10.1002/aaai.12169","url":null,"abstract":"<p>In this article, we present an overview of the 2023 International Planning Competition. It featured five distinct tracks designed to assess cutting-edge methods and explore the frontiers of planning within these settings: the classical (deterministic) track, the numeric track, the Hierarchical Task Networks (HTN) track, the learning track, and the probabilistic and reinforcement learning track. Each of these tracks evaluated planning methodologies through one or more subtracks, with the goal of pushing the boundaries of current planner performance. To achieve this objective, the competition introduced a combination of well-established challenges and entirely novel ones. Within this article, each track offers an exploration of its historical context, justifies its relevance within the planning landscape, discusses emerging domains and trends, elucidates the evaluation methodology, and ultimately presents the results.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 2","pages":"280-296"},"PeriodicalIF":0.9,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12169","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140739094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The appearance of large language models (LLMs) and other forms of generative AI portend a new era of disruption and innovation for the news industry, this time focused on the production and consumption of news rather than on its distribution. Large news organizations, however, may be surprisingly well-prepared for at least some of this disruption because of earlier innovation work on automating workflows for personalized content and formats using structured techniques. This article reviews this work and uses examples from the British Broadcasting Corporation (BBC) and other large news providers to show how LLMs have recently been successfully applied to addressing significant barriers to the deployment of structured approaches in production, and how innovation using structured techniques has more generally framed significant editorial and product challenges that might now be more readily addressed using generative AI. Using the BBC's next-generation authoring and publishing stack as an example, the article also discusses how earlier innovation work has influenced the design of flexible infrastructure that can accommodate uncertainty in audience behavior and editorial workflows – capabilities that are likely to be well suited to the fast-approaching AI-mediated news ecosystem.
{"title":"Audiences, automation, and AI: From structured news to language models","authors":"David Caswell","doi":"10.1002/aaai.12168","DOIUrl":"10.1002/aaai.12168","url":null,"abstract":"<p>The appearance of large language models (LLMs) and other forms of generative AI portend a new era of disruption and innovation for the news industry, this time focused on the production and consumption of news rather than on its distribution. Large news organizations, however, may be surprisingly well-prepared for at least some of this disruption because of earlier innovation work on automating workflows for personalized content and formats using structured techniques. This article reviews this work and uses examples from the British Broadcasting Corporation (BBC) and other large news providers to show how LLMs have recently been successfully applied to addressing significant barriers to the deployment of structured approaches in production, and how innovation using structured techniques has more generally framed significant editorial and product challenges that might now be more readily addressed using generative AI. Using the BBC's next-generation authoring and publishing stack as an example, the article also discusses how earlier innovation work has influenced the design of flexible infrastructure that can accommodate uncertainty in audience behavior and editorial workflows – capabilities that are likely to be well suited to the fast-approaching AI-mediated news ecosystem.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 2","pages":"174-186"},"PeriodicalIF":0.9,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12168","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140740078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Earlier this year, OpenAI released their GPTs framework, allowing users to set up Large Language Model (LLM)-based personas, orchestrate them into a workflow and even offering their AI apps within an app store. This is the latest, and maybe the easiest to set up, in a string of agent-based LLM orchestration platforms in the past year, harkening a new age of agent-based engineering. But, like most breakthroughs, this one is also rooted in many years of research, and the reason the world is paying attention to it now is that, thanks to Generative AI and Large Language Models, we finally have artificial agents that are useful enough to scale to more serious problems.
{"title":"AI and agents","authors":"Babak Hodjat","doi":"10.1002/aaai.12170","DOIUrl":"10.1002/aaai.12170","url":null,"abstract":"<p>Earlier this year, OpenAI released their GPTs framework, allowing users to set up Large Language Model (LLM)-based personas, orchestrate them into a workflow and even offering their AI apps within an app store. This is the latest, and maybe the easiest to set up, in a string of agent-based LLM orchestration platforms in the past year, harkening a new age of agent-based engineering. But, like most breakthroughs, this one is also rooted in many years of research, and the reason the world is paying attention to it now is that, thanks to Generative AI and Large Language Models, we finally have artificial agents that are useful enough to scale to more serious problems.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 2","pages":"267-269"},"PeriodicalIF":0.9,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12170","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140743743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I argue that ensuring artificial intelligence (AI) retains alignment with human values over time is critical yet understudied. Most research focuses on static alignment, neglecting crucial retention dynamics enabling stability during learning and autonomy. This paper elucidates limitations constraining provable retention, arguing key gaps include formalizing dynamics, transparency of advanced systems, participatory scaling, and risks of uncontrolled recursive self-improvement. I synthesize technical and ethical perspectives into a conceptual framework grounded in control theory and philosophy to analyze dynamics. I argue priorities should shift towards capability modulation, participatory design, and advanced modeling to verify enduring alignment. Overall, I argue that realizing AI safely aligned throughout its lifetime necessitates translating principles into formal methods, demonstrations, and systems integrating technical and humanistic rigor.
{"title":"Engineering AI for provable retention of objectives over time","authors":"Adeniyi Fasoro","doi":"10.1002/aaai.12167","DOIUrl":"10.1002/aaai.12167","url":null,"abstract":"<p>I argue that ensuring artificial intelligence (AI) retains alignment with human values over time is critical yet understudied. Most research focuses on static alignment, neglecting crucial retention dynamics enabling stability during learning and autonomy. This paper elucidates limitations constraining provable retention, arguing key gaps include formalizing dynamics, transparency of advanced systems, participatory scaling, and risks of uncontrolled recursive self-improvement. I synthesize technical and ethical perspectives into a conceptual framework grounded in control theory and philosophy to analyze dynamics. I argue priorities should shift towards capability modulation, participatory design, and advanced modeling to verify enduring alignment. Overall, I argue that realizing AI safely aligned throughout its lifetime necessitates translating principles into formal methods, demonstrations, and systems integrating technical and humanistic rigor.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 2","pages":"256-266"},"PeriodicalIF":0.9,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12167","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140210520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adam Klivans, Alexandros G. Dimakis, Kristen Grauman, Jonathan I. Tamir, Daniel J. Diaz, Karen Davidson
The Institute for Foundations of Machine Learning (IFML) focuses on core foundational tools to power the next generation of machine learning models. Its research underpins the algorithms and data sets that make generative artificial intelligence (AI) more accurate and reliable. Headquartered at The University of Texas at Austin, IFML researchers collaborate across an ecosystem that spans University of Washington, Stanford, UCLA, Microsoft Research, the Santa Fe Institute, and Wichita State University. Over the past year, we have witnessed incredible breakthroughs in AI on topics that are at the heart of IFML's agenda, such as foundation models, LLMs, fine-tuning, and diffusion with game-changing applications influencing almost every area of science and technology. In this article, we seek to highlight seek to highlight the application of foundational machine learning research on key use-inspired topics:
{"title":"Institute for Foundations of Machine Learning (IFML): Advancing AI systems that will transform our world","authors":"Adam Klivans, Alexandros G. Dimakis, Kristen Grauman, Jonathan I. Tamir, Daniel J. Diaz, Karen Davidson","doi":"10.1002/aaai.12163","DOIUrl":"https://doi.org/10.1002/aaai.12163","url":null,"abstract":"<p>The Institute for Foundations of Machine Learning (IFML) focuses on core foundational tools to power the next generation of machine learning models. Its research underpins the algorithms and data sets that make generative artificial intelligence (AI) more accurate and reliable. Headquartered at The University of Texas at Austin, IFML researchers collaborate across an ecosystem that spans University of Washington, Stanford, UCLA, Microsoft Research, the Santa Fe Institute, and Wichita State University. Over the past year, we have witnessed incredible breakthroughs in AI on topics that are at the heart of IFML's agenda, such as foundation models, LLMs, fine-tuning, and diffusion with game-changing applications influencing almost every area of science and technology. In this article, we seek to highlight seek to highlight the application of foundational machine learning research on key use-inspired topics:\u0000\u0000 </p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 1","pages":"35-41"},"PeriodicalIF":0.9,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12163","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140164258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dhabaleswar K. Panda, Vipin Chaudhary, Eric Fosler-Lussier, Raghu Machiraju, Amit Majumdar, Beth Plale, Rajiv Ramnath, Ponnuswamy Sadayappan, Neelima Savardekar, Karen Tomko
Artificial intelligence (AI) has the potential for vast societal and economic gain; yet applications are developed in a largely ad hoc manner, lacking coherent, standardized, modular, and reusable infrastructures. The NSF-funded Intelligent CyberInfrastructure with Computational Learning in the Environment AI Institute (“ICICLE”) aims to fundamentally advance edge-to-center, AI-as-a-Service, achieved through intelligent cyberinfrastructure (CI) that spans the edge-cloud-HPC computing continuum, plug-and-play next-generation AI and intelligent CI services, and a commitment to design for broad accessibility and widespread benefit. This design is foundational to the institute's commitment to democratizing AI. The institute's CI activities are informed by three high-impact domains: animal ecology, digital agriculture, and smart foodsheds. The institute's workforce development and broadening participation in computing efforts reinforce the institute's commitment to democratizing AI. ICICLE seeks to serve as the national nexus for AI and intelligent CI, and welcomes engagement across its wide set of programs.
人工智能(AI)具有为社会和经济带来巨大收益的潜力,但其应用在很大程度上是临时开发的,缺乏连贯、标准化、模块化和可重复使用的基础设施。由国家自然科学基金资助的智能网络基础设施与环境中的计算学习人工智能研究所(ICICLE)旨在从根本上推进边缘到中心的人工智能即服务(AI-as-a-Service),通过跨越边缘-云-高性能计算连续体的智能网络基础设施(CI)、即插即用的下一代人工智能和智能 CI 服务,以及致力于实现广泛可及性和广泛效益的设计来实现。这种设计是研究所致力于实现人工智能民主化的基础。该研究所的 CI 活动以三个具有重大影响的领域为基础:动物生态学、数字农业和智能粮仓。研究所的劳动力发展和扩大计算工作的参与加强了研究所对人工智能民主化的承诺。国际集成电路创新中心致力于成为人工智能和智能 CI 的国家中心,并欢迎参与其广泛的项目。
{"title":"Creating intelligent cyberinfrastructure for democratizing AI","authors":"Dhabaleswar K. Panda, Vipin Chaudhary, Eric Fosler-Lussier, Raghu Machiraju, Amit Majumdar, Beth Plale, Rajiv Ramnath, Ponnuswamy Sadayappan, Neelima Savardekar, Karen Tomko","doi":"10.1002/aaai.12166","DOIUrl":"https://doi.org/10.1002/aaai.12166","url":null,"abstract":"<p>Artificial intelligence (AI) has the potential for vast societal and economic gain; yet applications are developed in a largely ad hoc manner, lacking coherent, standardized, modular, and reusable infrastructures. The NSF-funded Intelligent CyberInfrastructure with Computational Learning in the Environment AI Institute (“ICICLE”) aims to fundamentally advance <i>edge-to-center</i>, AI-as-a-Service, achieved through intelligent cyberinfrastructure (CI) that spans the edge-cloud-HPC <i>computing continuum</i>, <i>plug-and-play</i> next-generation AI and intelligent CI services, and a commitment to design for broad accessibility and widespread benefit. This design is foundational to the institute's commitment to democratizing AI. The institute's CI activities are informed by three high-impact domains: <i>animal ecology</i>, <i>digital agriculture</i>, and <i>smart foodsheds</i>. The institute's workforce development and broadening participation in computing efforts reinforce the institute's commitment to <i>democratizing AI</i>. ICICLE seeks to serve as <i>the national nexus for AI and intelligent CI</i>, and welcomes engagement across its wide set of programs.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 1","pages":"22-28"},"PeriodicalIF":0.9,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12166","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140164289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sonia Chernova, Elizabeth Mynatt, Agata Rozga, Reid Simmons, Holly Yanco
Over 13 million Americans aged 65 and older are currently living with a diagnosis of mild cognitive impairment (MCI), a common precursor to dementia. These individuals largely rely on a network of informal caregivers—family, friends, and community members—who work together with professional healthcare and social service providers to provide care and support in home settings. The AI-CARING Institute contributes foundational AI research focused on developing personalized collaborative AI systems that improve the quality of life and independence of aging adults living at home.
{"title":"AI-CARING: National AI Institute for Collaborative Assistance and Responsive Interaction for Networked Groups","authors":"Sonia Chernova, Elizabeth Mynatt, Agata Rozga, Reid Simmons, Holly Yanco","doi":"10.1002/aaai.12162","DOIUrl":"https://doi.org/10.1002/aaai.12162","url":null,"abstract":"<p>Over 13 million Americans aged 65 and older are currently living with a diagnosis of mild cognitive impairment (MCI), a common precursor to dementia. These individuals largely rely on a network of informal caregivers—family, friends, and community members—who work together with professional healthcare and social service providers to provide care and support in home settings. The AI-CARING Institute contributes foundational AI research focused on developing personalized collaborative AI systems that improve the quality of life and independence of aging adults living at home.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 1","pages":"124-130"},"PeriodicalIF":0.9,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12162","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140164491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ilias Tagkopoulos, Mason J. Earles, Danielle G. Lemay, Xin Liu, Nitin Nitin, Aaron D. Smith, Tarek I. Zohdi, Stephen F. Brown
Our food system is complex, multifaceted, and in need of an upgrade. Population growth, climate change, and socioeconomic disparities are some of the challenges that create a systemic threat to its sustainability and capacity to address the needs of an evolving planet. The mission of the AI Institute of Next Generation Food Systems (AIFS) is to leverage the latest advances in AI to help create a more sustainable, efficient, nutritious, safe, and resilient food system. Instead of using AI in isolation, AIFS views it as the connective tissue that can bring together interconnected solutions from farm to fork. From guiding molecular breeding and building autonomous robots for precision agriculture, to predicting pathogen outbreaks and recommending personalized diets, AIFS projects aspire to pave the way for infrastructure and systems that empower practitioners to build the food system of the next generation. Workforce education, outreach, and ethical considerations related to the emergence of AI solutions in this sector are an integral part of AIFS with several collaborative activities aiming to foster an open dialogue and bringing closer students, trainees, teachers, producers, farmers, workers, policy makers, and other professionals.
{"title":"The AIFS Institute: Building a better food system through AI","authors":"Ilias Tagkopoulos, Mason J. Earles, Danielle G. Lemay, Xin Liu, Nitin Nitin, Aaron D. Smith, Tarek I. Zohdi, Stephen F. Brown","doi":"10.1002/aaai.12164","DOIUrl":"https://doi.org/10.1002/aaai.12164","url":null,"abstract":"<p>Our food system is complex, multifaceted, and in need of an upgrade. Population growth, climate change, and socioeconomic disparities are some of the challenges that create a systemic threat to its sustainability and capacity to address the needs of an evolving planet. The mission of the AI Institute of Next Generation Food Systems (AIFS) is to leverage the latest advances in AI to help create a more sustainable, efficient, nutritious, safe, and resilient food system. Instead of using AI in isolation, AIFS views it as the connective tissue that can bring together interconnected solutions from farm to fork. From guiding molecular breeding and building autonomous robots for precision agriculture, to predicting pathogen outbreaks and recommending personalized diets, AIFS projects aspire to pave the way for infrastructure and systems that empower practitioners to build the food system of the next generation. Workforce education, outreach, and ethical considerations related to the emergence of AI solutions in this sector are an integral part of AIFS with several collaborative activities aiming to foster an open dialogue and bringing closer students, trainees, teachers, producers, farmers, workers, policy makers, and other professionals.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 1","pages":"89-93"},"PeriodicalIF":0.9,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12164","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140164490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vikram S. Adve, Jessica M. Wedow, Elizabeth A. Ainsworth, Girish Chowdhary, Angela Green-Miller, Christina Tucker
The AIFARMS Artificial Intelligence for Future Agricultural Resilience, Management, and Sustainability national AI institute brings together over 40 world-class AI and agriculture researchers, with the common mission to develop foundational advances in AI and use them to ensure that future agriculture is environmentally friendly, sustainable, affordable, and accessible to diverse farming communities. Since its establishment in 2020, AIFARMS has advanced the state of the art in autonomous farming, cover crop planting, machine learning for improved outcomes from remote sensing, dynamic estimation of yield loss from weeds, and livestock management. The institute has prioritized the creation and utilization of high-quality, openly available data sets for advancing foundational AI and tackling agricultural challenges. AIFARMS leverages a close partnership between UIUC and Tuskegee University to build programming for a skilled and diverse next-generation workforce in digital agriculture. We are expanding the reach of AIFARMS outside of the current partners to collaborate with national AI institutions and international partners.
{"title":"AIFARMS: Artificial intelligence for future agricultural resilience, management, and sustainability","authors":"Vikram S. Adve, Jessica M. Wedow, Elizabeth A. Ainsworth, Girish Chowdhary, Angela Green-Miller, Christina Tucker","doi":"10.1002/aaai.12152","DOIUrl":"10.1002/aaai.12152","url":null,"abstract":"<p>The AIFARMS Artificial Intelligence for Future Agricultural Resilience, Management, and Sustainability national AI institute brings together over 40 world-class AI and agriculture researchers, with the common mission to develop foundational advances in AI and use them to ensure that future agriculture is environmentally friendly, sustainable, affordable, and accessible to diverse farming communities. Since its establishment in 2020, AIFARMS has advanced the state of the art in autonomous farming, cover crop planting, machine learning for improved outcomes from remote sensing, dynamic estimation of yield loss from weeds, and livestock management. The institute has prioritized the creation and utilization of high-quality, openly available data sets for advancing foundational AI and tackling agricultural challenges. AIFARMS leverages a close partnership between UIUC and Tuskegee University to build programming for a skilled and diverse next-generation workforce in digital agriculture. We are expanding the reach of AIFARMS outside of the current partners to collaborate with national AI institutions and international partners.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 1","pages":"83-88"},"PeriodicalIF":0.9,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12152","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139957565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sidney K. D'Mello, Quentin Biddy, Thomas Breideband, Jeffrey Bush, Michael Chang, Arturo Cortez, Jeffrey Flanigan, Peter W. Foltz, Jamie C. Gorman, Leanne Hirshfield, Mon-Lin Monica Ko, Nikhil Krishnaswamy, Rachel Lieber, James Martin, Martha Palmer, William R. Penuel, Thomas Philip, Sadhana Puntambekar, James Pustejovsky, Jason G. Reitman, Tamara Sumner, Michael Tissenbaum, Lyn Walker, Jacob Whitehill
The Institute for Student-AI Teaming (iSAT) addresses the foundational question: how to promote deep conceptual learning via rich socio-collaborative learning experiences for all students?—a question that is ripe for AI-based facilitation and has the potential to transform classrooms. We advance research in speech, computer vision, human-agent teaming, computer-supported collaborative learning, expansive co-design, and the science of broadening participation to design and study next generation AI technologies (called AI Partners) embedded in student collaborative learning teams in coordination with teachers. Our institute ascribes to theoretical perspectives that aim to create a normative environment of widespread engagement through responsible design of technology, curriculum, and pedagogy in partnership with K–12 educators, racially diverse students, parents, and other community members.
{"title":"From learning optimization to learner flourishing: Reimagining AI in Education at the Institute for Student-AI Teaming (iSAT)","authors":"Sidney K. D'Mello, Quentin Biddy, Thomas Breideband, Jeffrey Bush, Michael Chang, Arturo Cortez, Jeffrey Flanigan, Peter W. Foltz, Jamie C. Gorman, Leanne Hirshfield, Mon-Lin Monica Ko, Nikhil Krishnaswamy, Rachel Lieber, James Martin, Martha Palmer, William R. Penuel, Thomas Philip, Sadhana Puntambekar, James Pustejovsky, Jason G. Reitman, Tamara Sumner, Michael Tissenbaum, Lyn Walker, Jacob Whitehill","doi":"10.1002/aaai.12158","DOIUrl":"https://doi.org/10.1002/aaai.12158","url":null,"abstract":"<p>The Institute for Student-AI Teaming (iSAT) addresses the foundational question: <i>how to promote deep conceptual learning via rich socio-collaborative learning experiences for all students</i>?—a question that is ripe for AI-based facilitation and has the potential to transform classrooms. We advance research in speech, computer vision, human-agent teaming, computer-supported collaborative learning, expansive co-design, and the science of broadening participation to design and study next generation AI technologies (called AI Partners) embedded in student collaborative learning teams in coordination with teachers. Our institute ascribes to theoretical perspectives that aim to create a normative environment of widespread engagement through responsible design of technology, curriculum, and pedagogy in partnership with K–12 educators, racially diverse students, parents, and other community members.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 1","pages":"61-68"},"PeriodicalIF":0.9,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12158","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140164369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}