Pub Date : 2023-07-15DOI: 10.1140/epjc/s10052-023-11697-3
Serena Giardino, Andrea Giusti, Valerio Faraoni
Stealth solutions of scalar-tensor gravity and less-known de Sitter spaces that generalize them are analyzed regarding their possible role as thermal equilibria at non-zero temperature in the new first-order thermodynamics of scalar-tensor gravity. No stable equilibria are found, further validating the special role of general relativity as an equilibrium state in the landscape of gravity theories, seen through the lens of first-order thermodynamics.
{"title":"Thermal stability of stealth and de Sitter spacetimes in scalar-tensor gravity","authors":"Serena Giardino, Andrea Giusti, Valerio Faraoni","doi":"10.1140/epjc/s10052-023-11697-3","DOIUrl":"10.1140/epjc/s10052-023-11697-3","url":null,"abstract":"<div><p>Stealth solutions of scalar-tensor gravity and less-known de Sitter spaces that generalize them are analyzed regarding their possible role as thermal equilibria at non-zero temperature in the new first-order thermodynamics of scalar-tensor gravity. No stable equilibria are found, further validating the special role of general relativity as an equilibrium state in the landscape of gravity theories, seen through the lens of first-order thermodynamics.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 7","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11697-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4612847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-15DOI: 10.1140/epjc/s10052-023-11781-8
Ehsan Hatefi, Armin Hatefi, Roberto J. López-Sastre
In this paper, we introduce a numerical method based on Artificial Neural Networks (ANNs) for the analysis of black hole solutions to the Einstein-axion-dilaton system in a high dimensional parabolic class. Leveraging a profile root-finding technique based on General Relativity we describe an ANN solver to directly tackle the system of ordinary differential equations. Through our extensive numerical analysis, we demonstrate, for the first time, that there is no self-similar critical solution for the parabolic class in the high dimensions of space-time. Specifically, we develop 95% ANN-based confidence intervals for all the solutions in their domains. At the 95% confidence level, our ANN estimators confirm that there is no black hole solution in higher dimensions, hence the gravitational collapse does not occur. Results provide some doubts about the universality of the Choptuik phenomena. Therefore, we conclude that the fastest-growing mode of the perturbations that determine the critical exponent does not exist for the parabolic class in the high dimensions.
{"title":"Analysis of black hole solutions in parabolic class using neural networks","authors":"Ehsan Hatefi, Armin Hatefi, Roberto J. López-Sastre","doi":"10.1140/epjc/s10052-023-11781-8","DOIUrl":"10.1140/epjc/s10052-023-11781-8","url":null,"abstract":"<div><p>In this paper, we introduce a numerical method based on Artificial Neural Networks (ANNs) for the analysis of black hole solutions to the Einstein-axion-dilaton system in a high dimensional parabolic class. Leveraging a profile root-finding technique based on General Relativity we describe an ANN solver to directly tackle the system of ordinary differential equations. Through our extensive numerical analysis, we demonstrate, for the first time, that there is no self-similar critical solution for the parabolic class in the high dimensions of space-time. Specifically, we develop 95% ANN-based confidence intervals for all the solutions in their domains. At the 95% confidence level, our ANN estimators confirm that there is no black hole solution in higher dimensions, hence the gravitational collapse does not occur. Results provide some doubts about the universality of the Choptuik phenomena. Therefore, we conclude that the fastest-growing mode of the perturbations that determine the critical exponent does not exist for the parabolic class in the high dimensions.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 7","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11781-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4609588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-15DOI: 10.1140/epjc/s10052-023-11800-8
Jinsong Yang, Cong Zhang, Yongge Ma
Recently the quantum Oppenheimer–Snyder gravitational collapse model has been proposed in loop quantum gravity, providing quantum-corrected Schwarzschild spacetimes as the exterior of the collapsing dust ball. In this paper, the quantum gravity effects on the black hole shadows in this model are studied, and the stability of the quantum-corrected black holes is also analyzed by calculating the quasinormal modes. It turns out that the quantum correction always shrinks the radius of shadows, and the quantum-corrected black holes are stable against the scalar and vector perturbations.
{"title":"Shadow and stability of quantum-corrected black holes","authors":"Jinsong Yang, Cong Zhang, Yongge Ma","doi":"10.1140/epjc/s10052-023-11800-8","DOIUrl":"10.1140/epjc/s10052-023-11800-8","url":null,"abstract":"<div><p>Recently the quantum Oppenheimer–Snyder gravitational collapse model has been proposed in loop quantum gravity, providing quantum-corrected Schwarzschild spacetimes as the exterior of the collapsing dust ball. In this paper, the quantum gravity effects on the black hole shadows in this model are studied, and the stability of the quantum-corrected black holes is also analyzed by calculating the quasinormal modes. It turns out that the quantum correction always shrinks the radius of shadows, and the quantum-corrected black holes are stable against the scalar and vector perturbations.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 7","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11800-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4609592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-15DOI: 10.1140/epjc/s10052-023-11804-4
Ahmad Al-Badawi
We investigate the behavior of the regular modified gravity (MOG) static spherically symmetric black hole (BH) under massless scalar perturbation, gravitational perturbation, and massless Dirac perturbation. The dimensionless parameter (left( alpha right) ) distinguishes this BH from a Schwarzschild BH. We derive the effective potential equations for three perturbations in the regular MOG BH. Using the derived potentials, we calculate the bounds of greybody factors (GFs). Next, we investigate the quasinormal mode (QNM) of the MOG BH by implementing the WKB method of sixth order. By analyzing the influence of the MOG parameter (alpha ) for the BH we study on GF and QNM, we found that as (alpha ) increases, the GFs increase proportionally. However, both gravitational wave oscillation frequency and damping decrease as (alpha ) increases. Moreover, we examine the behavior of QNMs by considering how their frequency changes with the shape of potentials. As a result, we found that the frequency behavior is like the quantum mechanical one. The faster the wave decays, the larger the potential.
{"title":"Probing regular MOG static spherically symmetric spacetime using greybody factors and quasinormal modes","authors":"Ahmad Al-Badawi","doi":"10.1140/epjc/s10052-023-11804-4","DOIUrl":"10.1140/epjc/s10052-023-11804-4","url":null,"abstract":"<div><p>We investigate the behavior of the regular modified gravity (MOG) static spherically symmetric black hole (BH) under massless scalar perturbation, gravitational perturbation, and massless Dirac perturbation. The dimensionless parameter <span>(left( alpha right) )</span> distinguishes this BH from a Schwarzschild BH. We derive the effective potential equations for three perturbations in the regular MOG BH. Using the derived potentials, we calculate the bounds of greybody factors (GFs). Next, we investigate the quasinormal mode (QNM) of the MOG BH by implementing the WKB method of sixth order. By analyzing the influence of the MOG parameter <span>(alpha )</span> for the BH we study on GF and QNM, we found that as <span>(alpha )</span> increases, the GFs increase proportionally. However, both gravitational wave oscillation frequency and damping decrease as <span>(alpha )</span> increases. Moreover, we examine the behavior of QNMs by considering how their frequency changes with the shape of potentials. As a result, we found that the frequency behavior is like the quantum mechanical one. The faster the wave decays, the larger the potential.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 7","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11804-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4609591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-15DOI: 10.1140/epjc/s10052-023-11809-z
Shikai Qiu, Shuo Han, Xiangyang Ju, Benjamin Nachman, Haichen Wang
Parton labeling methods are widely used when reconstructing collider events with top quarks or other massive particles. State-of-the-art techniques are based on machine learning and require training data with events that have been matched using simulations with truth information. In nature, there is no unique matching between partons and final state objects due to the properties of the strong force and due to acceptance effects. We propose a new approach to parton labeling that circumvents these challenges by recycling regression models. The final state objects that are most relevant for a regression model to predict the properties of a particular top quark are assigned to said parent particle without having any parton-matched training data. This approach is demonstrated using simulated events with top quarks and outperforms the widely-used (chi ^2) method.
{"title":"Parton labeling without matching: unveiling emergent labelling capabilities in regression models","authors":"Shikai Qiu, Shuo Han, Xiangyang Ju, Benjamin Nachman, Haichen Wang","doi":"10.1140/epjc/s10052-023-11809-z","DOIUrl":"10.1140/epjc/s10052-023-11809-z","url":null,"abstract":"<div><p>Parton labeling methods are widely used when reconstructing collider events with top quarks or other massive particles. State-of-the-art techniques are based on machine learning and require training data with events that have been matched using simulations with truth information. In nature, there is no unique matching between partons and final state objects due to the properties of the strong force and due to acceptance effects. We propose a new approach to parton labeling that circumvents these challenges by recycling regression models. The final state objects that are most relevant for a regression model to predict the properties of a particular top quark are assigned to said parent particle without having any parton-matched training data. This approach is demonstrated using simulated events with top quarks and outperforms the widely-used <span>(chi ^2)</span> method.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 7","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11809-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4609589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-14DOI: 10.1140/epjc/s10052-023-11733-2
A. Abed Abud, B. Abi, R. Acciarri, M. A. Acero, M. R. Adames, G. Adamov, M. Adamowski, D. Adams, M. Adinolfi, C. Adriano, A. Aduszkiewicz, J. Aguilar, Z. Ahmad, J. Ahmed, B. Aimard, F. Akbar, B. Ali-Mohammadzadeh, K. Allison, S. Alonso Monsalve, M. AlRashed, C. Alt, A. Alton, R. Alvarez, P. Amedo, J. Anderson, C. Andreopoulos, M. Andreotti, M. Andrews, F. Andrianala, S. Andringa, N. Anfimov, A. Ankowski, M. Antoniassi, M. Antonova, A. Antoshkin, S. Antusch, A. Aranda-Fernandez, L. Arellano, L. O. Arnold, M. A. Arroyave, J. Asaadi, L. Asquith, A. Aurisano, V. Aushev, D. Autiero, V. Ayala Lara, M. Ayala-Torres, F. Azfar, A. Back, H. Back, J. J. Back, C. Backhouse, I. Bagaturia, L. Bagby, N. Balashov, S. Balasubramanian, P. Baldi, B. Baller, B. Bambah, F. Barao, G. Barenboim, G. Barker, W. Barkhouse, C. Barnes, G. Barr, J. Barranco Monarca, A. Barros, N. Barros, J. L. Barrow, A. Basharina-Freshville, A. Bashyal, V. Basque, C. Batchelor, J. Battat, F. Battisti, F. Bay, M. C. Q. Bazetto, J. L. Bazo Alba, J. F. Beacom, E. Bechetoille, B. Behera, E. Belchior Batista das Chagas, L. Bellantoni, G. Bellettini, V. Bellini, O. Beltramello, N. Benekos, C. Benitez Montiel, F. Bento Neves, J. Berger, S. Berkman, P. Bernardini, R. M. Berner, A. Bersani, S. Bertolucci, M. Betancourt, A. Betancur Rodríguez, A. Bevan, Y. Bezawada, A. T. Bezerra, T. J. Bezerra, A. Bhardwaj, V. Bhatnagar, M. Bhattacharjee, D. Bhattarai, S. Bhuller, B. Bhuyan, S. Biagi, J. Bian, M. Biassoni, K. Biery, B. Bilki, M. Bishai, A. Bitadze, A. Blake, F. D. M. Blaszczyk, G. C. Blazey, E. Blucher, J. Boissevain, S. Bolognesi, T. Bolton, L. Bomben, M. Bonesini, C. Bonilla-Diaz, F. Bonini, A. Booth, F. Boran, S. Bordoni, A. Borkum, N. Bostan, P. Bour, D. Boyden, J. Bracinik, D. Braga, D. Brailsford, A. Branca, A. Brandt, J. Bremer, C. Brew, S. J. Brice, C. Brizzolari, C. Bromberg, J. Brooke, A. Bross, G. Brunetti, M. Brunetti, N. Buchanan, H. Budd, I. Butorov, I. Cagnoli, T. Cai, D. Caiulo, R. Calabrese, P. Calafiura, J. Calcutt, M. Calin, S. Calvez, E. Calvo, A. Caminata, A. Campos Benitez, D. Caratelli, D. Carber, J. M. Carceller, G. Carini, B. Carlus, M. F. Carneiro, P. Carniti, I. Caro Terrazas, H. Carranza, T. Carroll, J. F. Castaño Forero, A. Castillo, C. Castromonte, E. Catano-Mur, C. Cattadori, F. Cavalier, G. Cavallaro, F. Cavanna, S. Centro, G. Cerati, A. Cervelli, A. Cervera Villanueva, M. Chalifour, A. Chappell, E. Chardonnet, N. Charitonidis, A. Chatterjee, S. Chattopadhyay, M. S. Chavarry Neyra, H. Chen, M. Chen, Y. Chen, Z. Chen, Z. Chen-Wishart, Y. Cheon, D. Cherdack, C. Chi, S. Childress, R. Chirco, A. Chiriacescu, K. Cho, S. Choate, D. Chokheli, P. S. Chong, A. Christensen, D. Christian, G. Christodoulou, A. Chukanov, M. Chung, E. Church, V. Cicero, P. Clarke, G. Cline, T. E. Coan, A. G. Cocco, J. Coelho, J. Collot, N. Colton, E. Conley, R. Conley, J. Conrad, M. Convery, S. Copello, P. Cova, L. Cremaldi, L. Cremonesi, J. I. Crespo-Anadón, M. Crisler, E. Cristaldo, J. Crnkovic, R. Cross, A. Cudd, C. Cuesta, Y. Cui, D. Cussans, J. Dai, O. Dalager, H. Da Motta, L. Da Silva Peres, C. David, Q. David, G. S. Davies, S. Davini, J. Dawson, K. De, S. De, P. Debbins, I. De Bonis, M. Decowski, A. De Gouvea, P. C. De Holanda, I. L. De Icaza Astiz, A. Deisting, P. De Jong, A. Delbart, V. De Leo, D. Delepine, M. Delgado, A. Dell’Acqua, N. Delmonte, P. De Lurgio, J. R. De Mello Neto, D. M. DeMuth, S. Dennis, C. Densham, G. W. Deptuch, A. De Roeck, V. De Romeri, G. De Souza, R. Devi, R. Dharmapalan, M. Dias, J. Diaz, F. Díaz, F. Di Capua, A. Di Domenico, S. Di Domizio, L. Di Giulio, P. Ding, L. Di Noto, G. Dirkx, C. Distefano, R. Diurba, M. Diwan, Z. Djurcic, D. Doering, S. Dolan, F. Dolek, M. Dolinski, L. Domine, Y. Donon, D. Douglas, A. Dragone, G. Drake, F. Drielsma, L. Duarte, D. Duchesneau, K. Duffy, P. Dunne, B. Dutta, H. Duyang, O. Dvornikov, D. Dwyer, A. Dyshkant, M. Eads, A. Earle, D. Edmunds, J. Eisch, L. Emberger, S. Emery, P. Englezos, A. Ereditato, T. Erjavec, C. Escobar, L. Escudero Sanchez, G. Eurin, J. J. Evans, E. Ewart, A. C. Ezeribe, K. Fahey, A. Falcone, M. Fani’, C. Farnese, Y. Farzan, D. Fedoseev, J. Felix, Y. Feng, E. Fernandez-Martinez, P. Fernandez Menendez, F. Ferraro, L. Fields, P. Filip, F. Filthaut, R. Fine, G. Fiorillo, M. Fiorini, V. Fischer, R. S. Fitzpatrick, W. Flanagan, B. Fleming, R. Flight, S. Fogarty, W. Foreman, J. Fowler, W. Fox, J. Franc, K. Francis, D. Franco, J. Freeman, J. Freestone, J. Fried, A. Friedland, S. Fuess, I. K. Furic, K. Furman, A. P. Furmanski, A. Gabrielli, A. Gago, H. Gallagher, A. Gallas, A. Gallego-Ros, N. Gallice, V. Galymov, E. Gamberini, T. Gamble, F. Ganacim, R. Gandhi, S. Ganguly, F. Gao, S. Gao, D. Garcia-Gamez, M. Á. García-Peris, S. Gardiner, D. Gastler, J. Gauvreau, P. Gauzzi, G. Ge, N. Geffroy, B. Gelli, A. Gendotti, S. Gent, Z. Ghorbani-Moghaddam, P. Giammaria, T. Giammaria, N. Giangiacomi, D. Gibin, I. Gil-Botella, S. Gilligan, C. Girerd, A. Giri, D. Gnani, O. Gogota, M. Gold, S. Gollapinni, K. Gollwitzer, R. A. Gomes, L. Gomez Bermeo, L. S. Gomez Fajardo, F. Gonnella, D. González Caamaño, D. Gonzalez-Diaz, M. Gonzalez-Lopez, M. C. Goodman, O. Goodwin, S. Goswami, C. Gotti, E. Goudzovski, C. Grace, R. Gran, E. Granados, P. Granger, C. Grant, D. Gratieri, P. Green, S. Green, S. Greenberg, L. Greenler, J. Greer, J. Grenard, C. Griffith, M. Groh, J. Grudzinski, K. Grzelak, W. Gu, E. Guardincerri, V. Guarino, M. Guarise, R. Guenette, E. Guerard, M. Guerzoni, D. Guffanti, A. Guglielmi, B. Guo, A. Gupta, V. Gupta, K. Guthikonda, P. Guzowski, M. M. Guzzo, S. Gwon, C. Ha, K. Haaf, A. Habig, H. Hadavand, R. Haenni, A. Hahn, J. Haiston, P. Hamacher-Baumann, T. Hamernik, P. Hamilton, J. Han, D. A. Harris, J. Hartnell, T. Hartnett, J. Harton, T. Hasegawa, C. Hasnip, R. Hatcher, K. W. Hatfield, A. Hatzikoutelis, C. Hayes, K. Hayrapetyan, J. Hays, E. Hazen, M. He, A. Heavey, K. M. Heeger, J. Heise, S. Henry, M. Hernandez Morquecho, K. Herner, J. Hewes, C. Hilgenberg, T. Hill, S. J. Hillier, A. Himmel, E. Hinkle, L. R. Hirsch, J. Ho, J. Hoff, A. Holin, E. Hoppe, G. A. Horton-Smith, M. Hostert, A. Hourlier, B. Howard, R. Howell, I. Hristova, M. S. Hronek, J. Huang, Z. Hulcher, G. Iles, N. Ilic, A. M. Iliescu, R. Illingworth, G. Ingratta, A. Ioannisian, B. Irwin, L. Isenhower, R. Itay, C. M. Jackson, V. Jain, E. James, W. Jang, B. Jargowsky, F. Jediny, D. Jena, Y. Jeong, C. Jesús-Valls, X. Ji, J. Jiang, L. Jiang, S. Jiménez, A. Jipa, F. Joaquim, W. Johnson, N. Johnston, B. Jones, M. Judah, C. Jung, T. Junk, Y. Jwa, M. Kabirnezhad, A. Kaboth, I. Kadenko, I. Kakorin, A. Kalitkina, D. Kalra, F. Kamiya, D. M. Kaplan, G. Karagiorgi, G. Karaman, A. Karcher, M. Karolak, Y. Karyotakis, S. Kasai, S. P. Kasetti, L. Kashur, N. Kazaryan, E. Kearns, P. Keener, K. J. Kelly, E. Kemp, O. Kemularia, W. Ketchum, S. H. Kettell, M. Khabibullin, A. Khotjantsev, A. Khvedelidze, D. Kim, B. King, B. Kirby, M. Kirby, J. Klein, A. Klustova, T. Kobilarcik, K. Koehler, L. W. Koerner, D. H. Koh, S. Kohn, P. P. Koller, L. Kolupaeva, D. Korablev, M. Kordosky, T. Kosc, U. Kose, V. Kostelecky, K. Kothekar, R. Kralik, L. Kreczko, F. Krennrich, I. Kreslo, W. Kropp, T. Kroupova, S. Kubota, Y. Kudenko, V. A. Kudryavtsev, S. Kuhlmann, S. Kulagin, J. Kumar, P. Kumar, P. Kunze, R. Kuravi, N. Kurita, C. Kuruppu, V. Kus, T. Kutter, J. Kvasnicka, D. Kwak, A. Lambert, B. Land, C. E. Lane, K. Lang, T. Langford, M. Langstaff, J. Larkin, P. Lasorak, D. Last, A. Laundrie, G. Laurenti, A. Lawrence, I. Lazanu, R. LaZur, M. Lazzaroni, T. Le, S. Leardini, J. Learned, P. LeBrun, T. LeCompte, C. Lee, S. Lee, G. Lehmann Miotto, R. Lehnert, M. Leigui de Oliveira, M. Leitner, L. M. Lepin, S. Li, Y. Li, H. Liao, C. Lin, Q. Lin, S. Lin, R. A. Lineros, J. Ling, A. Lister, B. R. Littlejohn, J. Liu, Y. Liu, S. Lockwitz, T. Loew, M. Lokajicek, I. Lomidze, K. Long, T. Lord, J. LoSecco, W. C. Louis, X. Lu, K. Luk, B. Lunday, X. Luo, E. Luppi, T. Lux, V. P. Luzio, J. Maalmi, D. MacFarlane, A. Machado, P. Machado, C. Macias, J. Macier, A. Maddalena, A. Madera, P. Madigan, S. Magill, K. Mahn, A. Maio, A. Major, J. A. Maloney, G. Mandrioli, R. C. Mandujano, J. C. Maneira, L. Manenti, S. Manly, A. Mann, K. Manolopoulos, M. Manrique Plata, V. N. Manyam, M. Marchan, A. Marchionni, W. Marciano, D. Marfatia, C. Mariani, J. Maricic, R. Marie, F. Marinho, A. D. Marino, T. Markiewicz, D. Marsden, M. Marshak, C. Marshall, J. Marshall, J. Marteau, J. Martín-Albo, N. Martinez, D. A. Martinez Caicedo, P. Martínez Miravé, S. Martynenko, V. Mascagna, K. Mason, A. Mastbaum, F. Matichard, S. Matsuno, J. Matthews, C. Mauger, N. Mauri, K. Mavrokoridis, I. Mawby, R. Mazza, A. Mazzacane, E. Mazzucato, T. McAskill, E. McCluskey, N. McConkey, K. S. McFarland, C. McGrew, A. McNab, A. Mefodiev, P. Mehta, P. Melas, O. Mena, H. Mendez, P. Mendez, D. P. Méndez, A. Menegolli, G. Meng, M. Messier, W. Metcalf, M. Mewes, H. Meyer, T. Miao, G. Michna, V. Mikola, R. Milincic, G. Miller, W. Miller, J. Mills, O. Mineev, A. Minotti, O. G. Miranda, S. Miryala, C. Mishra, S. Mishra, A. Mislivec, M. Mitchell, D. Mladenov, I. Mocioiu, K. Moffat, N. Moggi, R. Mohanta, T. A. Mohayai, N. Mokhov, J. A. Molina, L. Molina Bueno, E. Montagna, A. Montanari, C. Montanari, D. Montanari, D. Montanino, L. M. Montaño Zetina, S. Moon, M. Mooney, A. F. Moor, D. Moreno, D. Moretti, C. Morris, C. Mossey, M. Mote, E. Motuk, C. A. Moura, J. Mousseau, G. Mouster, W. Mu, L. Mualem, J. Mueller, M. Muether, S. Mufson, F. Muheim, A. Muir, M. Mulhearn, D. Munford, H. Muramatsu, M. Murphy, S. Murphy, J. Musser, J. Nachtman, Y. Nagai, S. Nagu, M. Nalbandyan, R. Nandakumar, D. Naples, S. Narita, A. Nath, A. Navrer-Agasson, N. Nayak, M. Nebot-Guinot, K. Negishi, J. K. Nelson, J. Nesbit, M. Nessi, D. Newbold, M. Newcomer, H. Newton, R. Nichol, F. Nicolas-Arnaldos, A. Nikolica, E. Niner, K. Nishimura, A. Norman, A. Norrick, R. Northrop, P. Novella, J. A. Nowak, M. Oberling, J. Ochoa-Ricoux, A. Olivier, A. Olshevskiy, Y. Onel, Y. Onishchuk, J. Ott, L. Pagani, G. Palacio, O. Palamara, S. Palestini, J. M. Paley, M. Pallavicini, C. Palomares, W. Panduro Vazquez, E. Pantic, V. Paolone, V. Papadimitriou, R. Papaleo, A. Papanestis, S. Paramesvaran, S. Parke, E. Parozzi, Z. Parsa, M. Parvu, S. Pascoli, L. Pasqualini, J. Pasternak, J. Pater, C. Patrick, L. Patrizii, R. B. Patterson, S. Patton, T. Patzak, A. Paudel, B. Paulos, L. Paulucci, Z. Pavlovic, G. Pawloski, D. Payne, V. Pec, S. J. Peeters, A. Pena Perez, E. Pennacchio, A. Penzo, O. L. Peres, J. Perry, D. Pershey, G. Pessina, G. Petrillo, C. Petta, R. Petti, V. Pia, F. Piastra, L. Pickering, F. Pietropaolo, V. L. Pimentel, G. Pinaroli, K. Plows, R. Plunkett, F. Pompa, X. Pons, N. Poonthottathil, F. Poppi, S. Pordes, J. Porter, S. Porzio, M. Potekhin, R. Potenza, B. V. Potukuchi, J. Pozimski, M. Pozzato, S. Prakash, T. Prakash, M. Prest, S. Prince, F. Psihas, D. Pugnere, X. Qian, J. Raaf, V. Radeka, J. Rademacker, B. Radics, A. Rafique, E. Raguzin, M. Rai, M. Rajaoalisoa, I. Rakhno, A. Rakotonandrasana, L. Rakotondravohitra, R. Rameika, M. Ramirez Delgado, B. Ramson, A. Rappoldi, G. Raselli, P. Ratoff, S. Raut, H. Razafinime, R. Razakamiandra, E. M. Rea, J. S. Real, B. Rebel, R. Rechenmacher, M. Reggiani-Guzzo, J. Reichenbacher, S. D. Reitzner, H. Rejeb Sfar, A. Renshaw, S. Rescia, F. Resnati, M. Ribas, S. Riboldi, C. Riccio, G. Riccobene, L. C. Rice, J. S. Ricol, A. Rigamonti, Y. Rigaut, E. V. Rincón, H. Ritchie-Yates, D. Rivera, A. Robert, J. Rocabado Rocha, L. Rochester, M. Roda, P. Rodrigues, J. V. Rodrigues da Silva Leite, M. J. Rodriguez Alonso, J. Rodriguez Rondon, S. Rosauro-Alcaraz, P. Rosier, B. Roskovec, M. Rossella, M. Rossi, J. Rout, P. Roy, A. Rubbia, C. Rubbia, B. Russell, D. Ruterbories, A. Rybnikov, A. Saa-Hernandez, R. Saakyan, S. Sacerdoti, N. Sahu, P. Sala, N. Samios, O. Samoylov, M. Sanchez, V. Sandberg, D. A. Sanders, D. Sankey, N. Saoulidou, P. Sapienza, C. Sarasty, I. Sarcevic, G. Savage, V. Savinov, A. Scaramelli, A. Scarff, A. Scarpelli, T. Schefke, H. Schellman, S. Schifano, P. Schlabach, D. Schmitz, A. W. Schneider, K. Scholberg, A. Schukraft, E. Segreto, A. Selyunin, C. R. Senise Jr., J. Sensenig, D. Sgalaberna, M. Shaevitz, S. Shafaq, F. Shaker, M. Shamma, R. Sharankova, H. R. Sharma, R. Sharma, R. K. Sharma, K. Shaw, T. Shaw, K. Shchablo, C. Shepherd-Themistocleous, A. Sheshukov, S. Shin, I. Shoemaker, D. Shooltz, R. Shrock, H. Siegel, L. Simard, J. Sinclair, G. Sinev, J. Singh, J. Singh, L. Singh, P. Singh, V. Singh, R. Sipos, F. Sippach, G. Sirri, A. Sitraka, K. Siyeon, K. Skarpaas, E. Smith, P. Smith, J. Smolik, M. Smy, E. Snider, P. Snopok, D. Snowden-Ifft, M. Soares Nunes, H. Sobel, M. Soderberg, S. Sokolov, C. J. Solano Salinas, S. Söldner-Rembold, S. Soleti, N. Solomey, V. Solovov, W. E. Sondheim, M. Sorel, A. Sotnikov, J. Soto-Oton, F. Soto Ugaldi, A. Sousa, K. Soustruznik, F. Spagliardi, M. Spanu, J. Spitz, N. J. C. Spooner, K. Spurgeon, M. Stancari, L. Stanco, C. Stanford, R. Stein, H. Steiner, A. F. Steklain Lisbôa, J. Stewart, B. Stillwell, J. Stock, F. Stocker, T. Stokes, M. Strait, T. Strauss, L. Strigari, A. Stuart, J. G. Suarez, J. Suárez Sunción, H. Sullivan, A. Surdo, V. Susic, L. Suter, C. Sutera, Y. Suvorov, R. Svoboda, B. Szczerbinska, A. M. Szelc, N. Talukdar, H. Tanaka, S. Tang, B. Tapia Oregui, A. Tapper, S. Tariq, E. Tarpara, N. Tata, E. Tatar, R. Tayloe, A. Teklu, P. Tennessen, M. Tenti, K. Terao, C. A. Ternes, F. Terranova, G. Testera, T. Thakore, A. Thea, C. Thorn, S. Timm, V. Tishchenko, L. Tomassetti, A. Tonazzo, D. Torbunov, M. Torti, M. Tortola, F. Tortorici, N. Tosi, D. Totani, M. Toups, C. Touramanis, R. Travaglini, J. Trevor, S. Trilov, W. H. Trzaska, Y. Tsai, Y. Tsai, Z. Tsamalaidze, K. Tsang, N. Tsverava, S. Z. Tu, S. Tufanli, C. Tull, J. Tyler, E. Tyley, M. Tzanov, L. Uboldi, M. A. Uchida, J. Urheim, T. Usher, S. Uzunyan, M. R. Vagins, P. Vahle, S. Valder, G. D. Valdiviesso, E. Valencia, R. Valentim, Z. Vallari, E. Vallazza, J. W. Valle, S. Vallecorsa, R. Van Berg, R. G. Van de Water, D. Vanegas Forero, D. Vannerom, F. Varanini, D. Vargas Oliva, G. Varner, J. Vasel, S. Vasina, G. Vasseur, N. Vaughan, K. Vaziri, S. Ventura, A. Verdugo, S. Vergani, M. A. Vermeulen, M. Verzocchi, M. Vicenzi, H. Vieira de Souza, C. Vignoli, C. Vilela, B. Viren, T. Vrba, T. Wachala, A. V. Waldron, M. Wallbank, C. Wallis, T. Walton, H. Wang, J. Wang, L. Wang, M. H. Wang, X. Wang, Y. Wang, Y. Wang, K. Warburton, D. Warner, M. Wascko, D. Waters, A. Watson, K. Wawrowska, P. Weatherly, A. Weber, M. Weber, H. Wei, A. Weinstein, D. Wenman, M. Wetstein, A. White, L. H. Whitehead, D. Whittington, M. J. Wilking, A. Wilkinson, C. Wilkinson, Z. Williams, F. Wilson, R. J. Wilson, W. Wisniewski, J. Wolcott, T. Wongjirad, A. Wood, K. Wood, E. Worcester, M. Worcester, K. Wresilo, C. Wret, W. Wu, W. Wu, Y. Xiao, B. Yaeggy, E. Yandel, G. Yang, K. Yang, T. Yang, A. Yankelevich, N. Yershov, K. Yonehara, Y. Yoon, T. Young, B. Yu, H. Yu, H. Yu, J. Yu, Y. Yu, W. Yuan, R. Zaki, J. Zalesak, L. Zambelli, B. Zamorano, A. Zani, L. Zazueta, G. Zeller, J. Zennamo, K. Zeug, C. Zhang, S. Zhang, Y. Zhang, M. Zhao, E. Zhivun, G. Zhu, E. D. Zimmerman, S. Zucchelli, J. Zuklin, V. Zutshi, R. Zwaska, DUNE Collaboration
The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1(pm 0.6)% and 84.1(pm 0.6)%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation.
潘多拉软件开发工具包和算法库提供模式识别逻辑必不可少的重建粒子相互作用在液态氩时间投影室探测器。潘多拉是ProtoDUNE-SP使用的主要事件重建软件,ProtoDUNE-SP是深地下中微子实验远探测器的原型。位于欧洲核子研究中心的ProtoDUNE-SP暴露在带电粒子测试束中。本文给出了潘多拉重建算法的概述,以及它们是如何被定制用于ProtoDUNE-SP的。在具有大量宇宙射线和光束背景粒子的复杂事件中,触发测试束粒子的模拟重建和识别效率在80以上% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1(pm 0.6)% and 84.1(pm 0.6)%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation.
{"title":"Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora","authors":"A. Abed Abud, B. Abi, R. Acciarri, M. A. Acero, M. R. Adames, G. Adamov, M. Adamowski, D. Adams, M. Adinolfi, C. Adriano, A. Aduszkiewicz, J. Aguilar, Z. Ahmad, J. Ahmed, B. Aimard, F. Akbar, B. Ali-Mohammadzadeh, K. Allison, S. Alonso Monsalve, M. AlRashed, C. Alt, A. Alton, R. Alvarez, P. Amedo, J. Anderson, C. Andreopoulos, M. Andreotti, M. Andrews, F. Andrianala, S. Andringa, N. Anfimov, A. Ankowski, M. Antoniassi, M. Antonova, A. Antoshkin, S. Antusch, A. Aranda-Fernandez, L. Arellano, L. O. Arnold, M. A. Arroyave, J. Asaadi, L. Asquith, A. Aurisano, V. Aushev, D. Autiero, V. Ayala Lara, M. Ayala-Torres, F. Azfar, A. Back, H. Back, J. J. Back, C. Backhouse, I. Bagaturia, L. Bagby, N. Balashov, S. Balasubramanian, P. Baldi, B. Baller, B. Bambah, F. Barao, G. Barenboim, G. Barker, W. Barkhouse, C. Barnes, G. Barr, J. Barranco Monarca, A. Barros, N. Barros, J. L. Barrow, A. Basharina-Freshville, A. Bashyal, V. Basque, C. Batchelor, J. Battat, F. Battisti, F. Bay, M. C. Q. Bazetto, J. L. Bazo Alba, J. F. Beacom, E. Bechetoille, B. Behera, E. Belchior Batista das Chagas, L. Bellantoni, G. Bellettini, V. Bellini, O. Beltramello, N. Benekos, C. Benitez Montiel, F. Bento Neves, J. Berger, S. Berkman, P. Bernardini, R. M. Berner, A. Bersani, S. Bertolucci, M. Betancourt, A. Betancur Rodríguez, A. Bevan, Y. Bezawada, A. T. Bezerra, T. J. Bezerra, A. Bhardwaj, V. Bhatnagar, M. Bhattacharjee, D. Bhattarai, S. Bhuller, B. Bhuyan, S. Biagi, J. Bian, M. Biassoni, K. Biery, B. Bilki, M. Bishai, A. Bitadze, A. Blake, F. D. M. Blaszczyk, G. C. Blazey, E. Blucher, J. Boissevain, S. Bolognesi, T. Bolton, L. Bomben, M. Bonesini, C. Bonilla-Diaz, F. Bonini, A. Booth, F. Boran, S. Bordoni, A. Borkum, N. Bostan, P. Bour, D. Boyden, J. Bracinik, D. Braga, D. Brailsford, A. Branca, A. Brandt, J. Bremer, C. Brew, S. J. Brice, C. Brizzolari, C. Bromberg, J. Brooke, A. Bross, G. Brunetti, M. Brunetti, N. Buchanan, H. Budd, I. Butorov, I. Cagnoli, T. Cai, D. Caiulo, R. Calabrese, P. Calafiura, J. Calcutt, M. Calin, S. Calvez, E. Calvo, A. Caminata, A. Campos Benitez, D. Caratelli, D. Carber, J. M. Carceller, G. Carini, B. Carlus, M. F. Carneiro, P. Carniti, I. Caro Terrazas, H. Carranza, T. Carroll, J. F. Castaño Forero, A. Castillo, C. Castromonte, E. Catano-Mur, C. Cattadori, F. Cavalier, G. Cavallaro, F. Cavanna, S. Centro, G. Cerati, A. Cervelli, A. Cervera Villanueva, M. Chalifour, A. Chappell, E. Chardonnet, N. Charitonidis, A. Chatterjee, S. Chattopadhyay, M. S. Chavarry Neyra, H. Chen, M. Chen, Y. Chen, Z. Chen, Z. Chen-Wishart, Y. Cheon, D. Cherdack, C. Chi, S. Childress, R. Chirco, A. Chiriacescu, K. Cho, S. Choate, D. Chokheli, P. S. Chong, A. Christensen, D. Christian, G. Christodoulou, A. Chukanov, M. Chung, E. Church, V. Cicero, P. Clarke, G. Cline, T. E. Coan, A. G. Cocco, J. Coelho, J. Collot, N. Colton, E. Conley, R. Conley, J. Conrad, M. Convery, S. Copello, P. Cova, L. Cremaldi, L. Cremonesi, J. I. Crespo-Anadón, M. Crisler, E. Cristaldo, J. Crnkovic, R. Cross, A. Cudd, C. Cuesta, Y. Cui, D. Cussans, J. Dai, O. Dalager, H. Da Motta, L. Da Silva Peres, C. David, Q. David, G. S. Davies, S. Davini, J. Dawson, K. De, S. De, P. Debbins, I. De Bonis, M. Decowski, A. De Gouvea, P. C. De Holanda, I. L. De Icaza Astiz, A. Deisting, P. De Jong, A. Delbart, V. De Leo, D. Delepine, M. Delgado, A. Dell’Acqua, N. Delmonte, P. De Lurgio, J. R. De Mello Neto, D. M. DeMuth, S. Dennis, C. Densham, G. W. Deptuch, A. De Roeck, V. De Romeri, G. De Souza, R. Devi, R. Dharmapalan, M. Dias, J. Diaz, F. Díaz, F. Di Capua, A. Di Domenico, S. Di Domizio, L. Di Giulio, P. Ding, L. Di Noto, G. Dirkx, C. Distefano, R. Diurba, M. Diwan, Z. Djurcic, D. Doering, S. Dolan, F. Dolek, M. Dolinski, L. Domine, Y. Donon, D. Douglas, A. Dragone, G. Drake, F. Drielsma, L. Duarte, D. Duchesneau, K. Duffy, P. Dunne, B. Dutta, H. Duyang, O. Dvornikov, D. Dwyer, A. Dyshkant, M. Eads, A. Earle, D. Edmunds, J. Eisch, L. Emberger, S. Emery, P. Englezos, A. Ereditato, T. Erjavec, C. Escobar, L. Escudero Sanchez, G. Eurin, J. J. Evans, E. Ewart, A. C. Ezeribe, K. Fahey, A. Falcone, M. Fani’, C. Farnese, Y. Farzan, D. Fedoseev, J. Felix, Y. Feng, E. Fernandez-Martinez, P. Fernandez Menendez, F. Ferraro, L. Fields, P. Filip, F. Filthaut, R. Fine, G. Fiorillo, M. Fiorini, V. Fischer, R. S. Fitzpatrick, W. Flanagan, B. Fleming, R. Flight, S. Fogarty, W. Foreman, J. Fowler, W. Fox, J. Franc, K. Francis, D. Franco, J. Freeman, J. Freestone, J. Fried, A. Friedland, S. Fuess, I. K. Furic, K. Furman, A. P. Furmanski, A. Gabrielli, A. Gago, H. Gallagher, A. Gallas, A. Gallego-Ros, N. Gallice, V. Galymov, E. Gamberini, T. Gamble, F. Ganacim, R. Gandhi, S. Ganguly, F. Gao, S. Gao, D. Garcia-Gamez, M. Á. García-Peris, S. Gardiner, D. Gastler, J. Gauvreau, P. Gauzzi, G. Ge, N. Geffroy, B. Gelli, A. Gendotti, S. Gent, Z. Ghorbani-Moghaddam, P. Giammaria, T. Giammaria, N. Giangiacomi, D. Gibin, I. Gil-Botella, S. Gilligan, C. Girerd, A. Giri, D. Gnani, O. Gogota, M. Gold, S. Gollapinni, K. Gollwitzer, R. A. Gomes, L. Gomez Bermeo, L. S. Gomez Fajardo, F. Gonnella, D. González Caamaño, D. Gonzalez-Diaz, M. Gonzalez-Lopez, M. C. Goodman, O. Goodwin, S. Goswami, C. Gotti, E. Goudzovski, C. Grace, R. Gran, E. Granados, P. Granger, C. Grant, D. Gratieri, P. Green, S. Green, S. Greenberg, L. Greenler, J. Greer, J. Grenard, C. Griffith, M. Groh, J. Grudzinski, K. Grzelak, W. Gu, E. Guardincerri, V. Guarino, M. Guarise, R. Guenette, E. Guerard, M. Guerzoni, D. Guffanti, A. Guglielmi, B. Guo, A. Gupta, V. Gupta, K. Guthikonda, P. Guzowski, M. M. Guzzo, S. Gwon, C. Ha, K. Haaf, A. Habig, H. Hadavand, R. Haenni, A. Hahn, J. Haiston, P. Hamacher-Baumann, T. Hamernik, P. Hamilton, J. Han, D. A. Harris, J. Hartnell, T. Hartnett, J. Harton, T. Hasegawa, C. Hasnip, R. Hatcher, K. W. Hatfield, A. Hatzikoutelis, C. Hayes, K. Hayrapetyan, J. Hays, E. Hazen, M. He, A. Heavey, K. M. Heeger, J. Heise, S. Henry, M. Hernandez Morquecho, K. Herner, J. Hewes, C. Hilgenberg, T. Hill, S. J. Hillier, A. Himmel, E. Hinkle, L. R. Hirsch, J. Ho, J. Hoff, A. Holin, E. Hoppe, G. A. Horton-Smith, M. Hostert, A. Hourlier, B. Howard, R. Howell, I. Hristova, M. S. Hronek, J. Huang, Z. Hulcher, G. Iles, N. Ilic, A. M. Iliescu, R. Illingworth, G. Ingratta, A. Ioannisian, B. Irwin, L. Isenhower, R. Itay, C. M. Jackson, V. Jain, E. James, W. Jang, B. Jargowsky, F. Jediny, D. Jena, Y. Jeong, C. Jesús-Valls, X. Ji, J. Jiang, L. Jiang, S. Jiménez, A. Jipa, F. Joaquim, W. Johnson, N. Johnston, B. Jones, M. Judah, C. Jung, T. Junk, Y. Jwa, M. Kabirnezhad, A. Kaboth, I. Kadenko, I. Kakorin, A. Kalitkina, D. Kalra, F. Kamiya, D. M. Kaplan, G. Karagiorgi, G. Karaman, A. Karcher, M. Karolak, Y. Karyotakis, S. Kasai, S. P. Kasetti, L. Kashur, N. Kazaryan, E. Kearns, P. Keener, K. J. Kelly, E. Kemp, O. Kemularia, W. Ketchum, S. H. Kettell, M. Khabibullin, A. Khotjantsev, A. Khvedelidze, D. Kim, B. King, B. Kirby, M. Kirby, J. Klein, A. Klustova, T. Kobilarcik, K. Koehler, L. W. Koerner, D. H. Koh, S. Kohn, P. P. Koller, L. Kolupaeva, D. Korablev, M. Kordosky, T. Kosc, U. Kose, V. Kostelecky, K. Kothekar, R. Kralik, L. Kreczko, F. Krennrich, I. Kreslo, W. Kropp, T. Kroupova, S. Kubota, Y. Kudenko, V. A. Kudryavtsev, S. Kuhlmann, S. Kulagin, J. Kumar, P. Kumar, P. Kunze, R. Kuravi, N. Kurita, C. Kuruppu, V. Kus, T. Kutter, J. Kvasnicka, D. Kwak, A. Lambert, B. Land, C. E. Lane, K. Lang, T. Langford, M. Langstaff, J. Larkin, P. Lasorak, D. Last, A. Laundrie, G. Laurenti, A. Lawrence, I. Lazanu, R. LaZur, M. Lazzaroni, T. Le, S. Leardini, J. Learned, P. LeBrun, T. LeCompte, C. Lee, S. Lee, G. Lehmann Miotto, R. Lehnert, M. Leigui de Oliveira, M. Leitner, L. M. Lepin, S. Li, Y. Li, H. Liao, C. Lin, Q. Lin, S. Lin, R. A. Lineros, J. Ling, A. Lister, B. R. Littlejohn, J. Liu, Y. Liu, S. Lockwitz, T. Loew, M. Lokajicek, I. Lomidze, K. Long, T. Lord, J. LoSecco, W. C. Louis, X. Lu, K. Luk, B. Lunday, X. Luo, E. Luppi, T. Lux, V. P. Luzio, J. Maalmi, D. MacFarlane, A. Machado, P. Machado, C. Macias, J. Macier, A. Maddalena, A. Madera, P. Madigan, S. Magill, K. Mahn, A. Maio, A. Major, J. A. Maloney, G. Mandrioli, R. C. Mandujano, J. C. Maneira, L. Manenti, S. Manly, A. Mann, K. Manolopoulos, M. Manrique Plata, V. N. Manyam, M. Marchan, A. Marchionni, W. Marciano, D. Marfatia, C. Mariani, J. Maricic, R. Marie, F. Marinho, A. D. Marino, T. Markiewicz, D. Marsden, M. Marshak, C. Marshall, J. Marshall, J. Marteau, J. Martín-Albo, N. Martinez, D. A. Martinez Caicedo, P. Martínez Miravé, S. Martynenko, V. Mascagna, K. Mason, A. Mastbaum, F. Matichard, S. Matsuno, J. Matthews, C. Mauger, N. Mauri, K. Mavrokoridis, I. Mawby, R. Mazza, A. Mazzacane, E. Mazzucato, T. McAskill, E. McCluskey, N. McConkey, K. S. McFarland, C. McGrew, A. McNab, A. Mefodiev, P. Mehta, P. Melas, O. Mena, H. Mendez, P. Mendez, D. P. Méndez, A. Menegolli, G. Meng, M. Messier, W. Metcalf, M. Mewes, H. Meyer, T. Miao, G. Michna, V. Mikola, R. Milincic, G. Miller, W. Miller, J. Mills, O. Mineev, A. Minotti, O. G. Miranda, S. Miryala, C. Mishra, S. Mishra, A. Mislivec, M. Mitchell, D. Mladenov, I. Mocioiu, K. Moffat, N. Moggi, R. Mohanta, T. A. Mohayai, N. Mokhov, J. A. Molina, L. Molina Bueno, E. Montagna, A. Montanari, C. Montanari, D. Montanari, D. Montanino, L. M. Montaño Zetina, S. Moon, M. Mooney, A. F. Moor, D. Moreno, D. Moretti, C. Morris, C. Mossey, M. Mote, E. Motuk, C. A. Moura, J. Mousseau, G. Mouster, W. Mu, L. Mualem, J. Mueller, M. Muether, S. Mufson, F. Muheim, A. Muir, M. Mulhearn, D. Munford, H. Muramatsu, M. Murphy, S. Murphy, J. Musser, J. Nachtman, Y. Nagai, S. Nagu, M. Nalbandyan, R. Nandakumar, D. Naples, S. Narita, A. Nath, A. Navrer-Agasson, N. Nayak, M. Nebot-Guinot, K. Negishi, J. K. Nelson, J. Nesbit, M. Nessi, D. Newbold, M. Newcomer, H. Newton, R. Nichol, F. Nicolas-Arnaldos, A. Nikolica, E. Niner, K. Nishimura, A. Norman, A. Norrick, R. Northrop, P. Novella, J. A. Nowak, M. Oberling, J. Ochoa-Ricoux, A. Olivier, A. Olshevskiy, Y. Onel, Y. Onishchuk, J. Ott, L. Pagani, G. Palacio, O. Palamara, S. Palestini, J. M. Paley, M. Pallavicini, C. Palomares, W. Panduro Vazquez, E. Pantic, V. Paolone, V. Papadimitriou, R. Papaleo, A. Papanestis, S. Paramesvaran, S. Parke, E. Parozzi, Z. Parsa, M. Parvu, S. Pascoli, L. Pasqualini, J. Pasternak, J. Pater, C. Patrick, L. Patrizii, R. B. Patterson, S. Patton, T. Patzak, A. Paudel, B. Paulos, L. Paulucci, Z. Pavlovic, G. Pawloski, D. Payne, V. Pec, S. J. Peeters, A. Pena Perez, E. Pennacchio, A. Penzo, O. L. Peres, J. Perry, D. Pershey, G. Pessina, G. Petrillo, C. Petta, R. Petti, V. Pia, F. Piastra, L. Pickering, F. Pietropaolo, V. L. Pimentel, G. Pinaroli, K. Plows, R. Plunkett, F. Pompa, X. Pons, N. Poonthottathil, F. Poppi, S. Pordes, J. Porter, S. Porzio, M. Potekhin, R. Potenza, B. V. Potukuchi, J. Pozimski, M. Pozzato, S. Prakash, T. Prakash, M. Prest, S. Prince, F. Psihas, D. Pugnere, X. Qian, J. Raaf, V. Radeka, J. Rademacker, B. Radics, A. Rafique, E. Raguzin, M. Rai, M. Rajaoalisoa, I. Rakhno, A. Rakotonandrasana, L. Rakotondravohitra, R. Rameika, M. Ramirez Delgado, B. Ramson, A. Rappoldi, G. Raselli, P. Ratoff, S. Raut, H. Razafinime, R. Razakamiandra, E. M. Rea, J. S. Real, B. Rebel, R. Rechenmacher, M. Reggiani-Guzzo, J. Reichenbacher, S. D. Reitzner, H. Rejeb Sfar, A. Renshaw, S. Rescia, F. Resnati, M. Ribas, S. Riboldi, C. Riccio, G. Riccobene, L. C. Rice, J. S. Ricol, A. Rigamonti, Y. Rigaut, E. V. Rincón, H. Ritchie-Yates, D. Rivera, A. Robert, J. Rocabado Rocha, L. Rochester, M. Roda, P. Rodrigues, J. V. Rodrigues da Silva Leite, M. J. Rodriguez Alonso, J. Rodriguez Rondon, S. Rosauro-Alcaraz, P. Rosier, B. Roskovec, M. Rossella, M. Rossi, J. Rout, P. Roy, A. Rubbia, C. Rubbia, B. Russell, D. Ruterbories, A. Rybnikov, A. Saa-Hernandez, R. Saakyan, S. Sacerdoti, N. Sahu, P. Sala, N. Samios, O. Samoylov, M. Sanchez, V. Sandberg, D. A. Sanders, D. Sankey, N. Saoulidou, P. Sapienza, C. Sarasty, I. Sarcevic, G. Savage, V. Savinov, A. Scaramelli, A. Scarff, A. Scarpelli, T. Schefke, H. Schellman, S. Schifano, P. Schlabach, D. Schmitz, A. W. Schneider, K. Scholberg, A. Schukraft, E. Segreto, A. Selyunin, C. R. Senise Jr., J. Sensenig, D. Sgalaberna, M. Shaevitz, S. Shafaq, F. Shaker, M. Shamma, R. Sharankova, H. R. Sharma, R. Sharma, R. K. Sharma, K. Shaw, T. Shaw, K. Shchablo, C. Shepherd-Themistocleous, A. Sheshukov, S. Shin, I. Shoemaker, D. Shooltz, R. Shrock, H. Siegel, L. Simard, J. Sinclair, G. Sinev, J. Singh, J. Singh, L. Singh, P. Singh, V. Singh, R. Sipos, F. Sippach, G. Sirri, A. Sitraka, K. Siyeon, K. Skarpaas, E. Smith, P. Smith, J. Smolik, M. Smy, E. Snider, P. Snopok, D. Snowden-Ifft, M. Soares Nunes, H. Sobel, M. Soderberg, S. Sokolov, C. J. Solano Salinas, S. Söldner-Rembold, S. Soleti, N. Solomey, V. Solovov, W. E. Sondheim, M. Sorel, A. Sotnikov, J. Soto-Oton, F. Soto Ugaldi, A. Sousa, K. Soustruznik, F. Spagliardi, M. Spanu, J. Spitz, N. J. C. Spooner, K. Spurgeon, M. Stancari, L. Stanco, C. Stanford, R. Stein, H. Steiner, A. F. Steklain Lisbôa, J. Stewart, B. Stillwell, J. Stock, F. Stocker, T. Stokes, M. Strait, T. Strauss, L. Strigari, A. Stuart, J. G. Suarez, J. Suárez Sunción, H. Sullivan, A. Surdo, V. Susic, L. Suter, C. Sutera, Y. Suvorov, R. Svoboda, B. Szczerbinska, A. M. Szelc, N. Talukdar, H. Tanaka, S. Tang, B. Tapia Oregui, A. Tapper, S. Tariq, E. Tarpara, N. Tata, E. Tatar, R. Tayloe, A. Teklu, P. Tennessen, M. Tenti, K. Terao, C. A. Ternes, F. Terranova, G. Testera, T. Thakore, A. Thea, C. Thorn, S. Timm, V. Tishchenko, L. Tomassetti, A. Tonazzo, D. Torbunov, M. Torti, M. Tortola, F. Tortorici, N. Tosi, D. Totani, M. Toups, C. Touramanis, R. Travaglini, J. Trevor, S. Trilov, W. H. Trzaska, Y. Tsai, Y. Tsai, Z. Tsamalaidze, K. Tsang, N. Tsverava, S. Z. Tu, S. Tufanli, C. Tull, J. Tyler, E. Tyley, M. Tzanov, L. Uboldi, M. A. Uchida, J. Urheim, T. Usher, S. Uzunyan, M. R. Vagins, P. Vahle, S. Valder, G. D. Valdiviesso, E. Valencia, R. Valentim, Z. Vallari, E. Vallazza, J. W. Valle, S. Vallecorsa, R. Van Berg, R. G. Van de Water, D. Vanegas Forero, D. Vannerom, F. Varanini, D. Vargas Oliva, G. Varner, J. Vasel, S. Vasina, G. Vasseur, N. Vaughan, K. Vaziri, S. Ventura, A. Verdugo, S. Vergani, M. A. Vermeulen, M. Verzocchi, M. Vicenzi, H. Vieira de Souza, C. Vignoli, C. Vilela, B. Viren, T. Vrba, T. Wachala, A. V. Waldron, M. Wallbank, C. Wallis, T. Walton, H. Wang, J. Wang, L. Wang, M. H. Wang, X. Wang, Y. Wang, Y. Wang, K. Warburton, D. Warner, M. Wascko, D. Waters, A. Watson, K. Wawrowska, P. Weatherly, A. Weber, M. Weber, H. Wei, A. Weinstein, D. Wenman, M. Wetstein, A. White, L. H. Whitehead, D. Whittington, M. J. Wilking, A. Wilkinson, C. Wilkinson, Z. Williams, F. Wilson, R. J. Wilson, W. Wisniewski, J. Wolcott, T. Wongjirad, A. Wood, K. Wood, E. Worcester, M. Worcester, K. Wresilo, C. Wret, W. Wu, W. Wu, Y. Xiao, B. Yaeggy, E. Yandel, G. Yang, K. Yang, T. Yang, A. Yankelevich, N. Yershov, K. Yonehara, Y. Yoon, T. Young, B. Yu, H. Yu, H. Yu, J. Yu, Y. Yu, W. Yuan, R. Zaki, J. Zalesak, L. Zambelli, B. Zamorano, A. Zani, L. Zazueta, G. Zeller, J. Zennamo, K. Zeug, C. Zhang, S. Zhang, Y. Zhang, M. Zhao, E. Zhivun, G. Zhu, E. D. Zimmerman, S. Zucchelli, J. Zuklin, V. Zutshi, R. Zwaska, DUNE Collaboration","doi":"10.1140/epjc/s10052-023-11733-2","DOIUrl":"10.1140/epjc/s10052-023-11733-2","url":null,"abstract":"<div><p>The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/<i>c</i> charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1<span>(pm 0.6)</span>% and 84.1<span>(pm 0.6)</span>%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 7","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11733-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4576733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-14DOI: 10.1140/epjc/s10052-023-11698-2
Fang-Stars Wei, Kang Zhou
We provide a new derivation of the fundamental BCJ relation among double-color-ordered tree amplitudes of bi-adjoint scalar theory, based on the leading soft theorem for external scalars. Then, we generalize the fundamental BCJ relation to 1-loop Feynman integrands. We also use the fundamental BCJ relation to understand Adler’s zero for tree amplitudes of the nonlinear sigma model and Born–Infeld theory.
{"title":"Tree and 1-loop fundamental BCJ relations from soft theorems","authors":"Fang-Stars Wei, Kang Zhou","doi":"10.1140/epjc/s10052-023-11698-2","DOIUrl":"10.1140/epjc/s10052-023-11698-2","url":null,"abstract":"<div><p>We provide a new derivation of the fundamental BCJ relation among double-color-ordered tree amplitudes of bi-adjoint scalar theory, based on the leading soft theorem for external scalars. Then, we generalize the fundamental BCJ relation to 1-loop Feynman integrands. We also use the fundamental BCJ relation to understand Adler’s zero for tree amplitudes of the nonlinear sigma model and Born–Infeld theory.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 7","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11698-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4576745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-14DOI: 10.1140/epjc/s10052-023-11766-7
Haximjan Abdusattar
In this work, we investigate the thermodynamic stability and phase structure of AdS black holes with either a Maxwell field (where we revisit past studies) or a phantom field. We conduct a comprehensive analysis of the free energy and temperature of these systems in both the canonical and grand canonical ensembles. Our findings reveal the occurrence of a phase transition in the grand canonical ensemble, resembling the Hawking-Page-like phase transition observed between the thermal radiation of AdS spacetime and thermodynamically stable large black holes. We present graphical representations of these phase transitions on free energy-temperature diagrams for the black holes. Completing our study, we obtain the transition temperature, minimum temperature and their dual relations.
{"title":"Stability and Hawking-Page-like phase transition of phantom AdS black holes","authors":"Haximjan Abdusattar","doi":"10.1140/epjc/s10052-023-11766-7","DOIUrl":"10.1140/epjc/s10052-023-11766-7","url":null,"abstract":"<div><p>In this work, we investigate the thermodynamic stability and phase structure of AdS black holes with either a Maxwell field (where we revisit past studies) or a phantom field. We conduct a comprehensive analysis of the free energy and temperature of these systems in both the canonical and grand canonical ensembles. Our findings reveal the occurrence of a phase transition in the grand canonical ensemble, resembling the Hawking-Page-like phase transition observed between the thermal radiation of AdS spacetime and thermodynamically stable large black holes. We present graphical representations of these phase transitions on free energy-temperature diagrams for the black holes. Completing our study, we obtain the transition temperature, minimum temperature and their dual relations.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 7","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11766-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4573295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-14DOI: 10.1140/epjc/s10052-023-11792-5
L. K. Duchaniya, B. Mishra, Jackson Levi Said
The Noether Symmetry approach is applied to study an extended teleparallel (f(T,phi )) gravity that contains the torsion scalar T and the scalar field (phi ) in the context of an Friedmann–Lemaître–Robertson–Walker space-time. We investigate the Noether symmetry approach in (f(T,phi )) gravity formalism with the specific form of (f(T,phi )) and analyze how to demonstrate a nontrivial Noether vector. The Noether symmetry method is a helpful resource for generating models and finding out the exact solution of the Lagrangian. In this article, we go through how the Noether symmetry approach enables us to define the form of the function (f(T,phi )) and obtain exact cosmological solutions. We also find the analytical cosmological solutions to the field equations, that is consistent with the Noether symmetry. Our results demonstrate that the obtained solutions enable an accelerated expansion of the Universe. We have also obtained the present value of the Hubble parameter, deceleration parameter, and effective equation of state parameter, which is fit in the range of current cosmological observations.
{"title":"Noether symmetry approach in scalar-torsion (f(T,phi )) gravity","authors":"L. K. Duchaniya, B. Mishra, Jackson Levi Said","doi":"10.1140/epjc/s10052-023-11792-5","DOIUrl":"10.1140/epjc/s10052-023-11792-5","url":null,"abstract":"<div><p>The Noether Symmetry approach is applied to study an extended teleparallel <span>(f(T,phi ))</span> gravity that contains the torsion scalar <i>T</i> and the scalar field <span>(phi )</span> in the context of an Friedmann–Lemaître–Robertson–Walker space-time. We investigate the Noether symmetry approach in <span>(f(T,phi ))</span> gravity formalism with the specific form of <span>(f(T,phi ))</span> and analyze how to demonstrate a nontrivial Noether vector. The Noether symmetry method is a helpful resource for generating models and finding out the exact solution of the Lagrangian. In this article, we go through how the Noether symmetry approach enables us to define the form of the function <span>(f(T,phi ))</span> and obtain exact cosmological solutions. We also find the analytical cosmological solutions to the field equations, that is consistent with the Noether symmetry. Our results demonstrate that the obtained solutions enable an accelerated expansion of the Universe. We have also obtained the present value of the Hubble parameter, deceleration parameter, and effective equation of state parameter, which is fit in the range of current cosmological observations.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 7","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11792-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4573302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-14DOI: 10.1140/epjc/s10052-023-11752-z
Changhyun Ahn
For the vanishing deformation parameter (lambda ), the full structure of the (anti)commutator relations in the (mathcal{N}=4) supersymmetric linear (W_{infty }[lambda =0]) algebra is obtained for arbitrary weights (h_1) and (h_2) of the currents appearing on the left hand sides in these (anti)commutators. The (w_{1+infty }) algebra can be seen from this by taking the vanishing limit of other deformation parameter q with the proper contractions of the currents. For the nonzero (lambda ), the complete structure of the (mathcal{N}=4) supersymmetric linear (W_{infty }[lambda ]) algebra is determined for the arbitrary weight (h_1) together with the constraint (h_1-3 le h_2 le h_1+1). The additional structures on the right hand sides in the (anti)commutators, compared to the above (lambda =0) case, arise for the arbitrary weights (h_1) and (h_2) where the weight (h_2) is outside of above region.
对于消失变形参数(lambda ),对于出现在这些(反)换向子左侧的电流的任意权值(h_1)和(h_2),获得了(mathcal{N}=4)超对称线性(W_{infty }[lambda =0])代数中(反)换向子关系的完整结构。通过取其他变形参数q随电流适当收缩的消失极限,可以得到(w_{1+infty })代数。对于非零(lambda ),对于任意权值(h_1)和约束(h_1-3 le h_2 le h_1+1),确定了(mathcal{N}=4)超对称线性(W_{infty }[lambda ])代数的完整结构。与上述(lambda =0)情况相比,(反)换向器右侧的附加结构出现在任意权值(h_1)和(h_2)中,其中权值(h_2)在上述区域之外。
{"title":"The structure of the (mathcal{N}=4) supersymmetric linear (W_{infty }[lambda ]) algebra","authors":"Changhyun Ahn","doi":"10.1140/epjc/s10052-023-11752-z","DOIUrl":"10.1140/epjc/s10052-023-11752-z","url":null,"abstract":"<div><p>For the vanishing deformation parameter <span>(lambda )</span>, the full structure of the (anti)commutator relations in the <span>(mathcal{N}=4)</span> supersymmetric linear <span>(W_{infty }[lambda =0])</span> algebra is obtained for arbitrary weights <span>(h_1)</span> and <span>(h_2)</span> of the currents appearing on the left hand sides in these (anti)commutators. The <span>(w_{1+infty })</span> algebra can be seen from this by taking the vanishing limit of other deformation parameter <i>q</i> with the proper contractions of the currents. For the nonzero <span>(lambda )</span>, the complete structure of the <span>(mathcal{N}=4)</span> supersymmetric linear <span>(W_{infty }[lambda ])</span> algebra is determined for the arbitrary weight <span>(h_1)</span> together with the constraint <span>(h_1-3 le h_2 le h_1+1)</span>. The additional structures on the right hand sides in the (anti)commutators, compared to the above <span>(lambda =0)</span> case, arise for the arbitrary weights <span>(h_1)</span> and <span>(h_2)</span> where the weight <span>(h_2)</span> is outside of above region.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 7","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11752-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4576734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}