首页 > 最新文献

The European Physical Journal C最新文献

英文 中文
Gravitational Larmor precession 引力拉莫尔进动
IF 4.4 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-08-09 DOI: 10.1140/epjc/s10052-023-11858-4
Chandrachur Chakraborty, Parthasarathi Majumdar

Inspired by the reported existence of substantive magnetic fields in the vicinity of the central supermassive black holes in Sagittarius A* and Messier 87*, we consider test particle motion in the spacetime close to a generic spherical black hole in the presence of magnetic fields in its vicinity. Modelling such a spacetime in terms of an axisymmetric, non-rotating Ernst–Melvin–Schwarzschild black hole geometry with appropriate parameters, we compute the geodesic nodal-plane precession frequency for a test particle with mass, for such a spacetime, and obtain a non-vanishing result, surpassing earlier folklore that only axisymmetric spacetimes with rotation (non-vanishing Kerr parameter) can generate such a precession. We call this magnetic field-generated phenomenon Gravitational Larmor Precession. What we present here is a Proof of Concept incipient assay, rather than a detailed analysis of supermassive black holes with magnetic fields in their neighbourhood. However, for completeness, we briefly discuss observational prospects of this precession in terms of available magnetic field strengths close to central black holes in galaxies.

受人马座A*和Messier 87*中心超大质量黑洞附近存在实质性磁场的报道启发,我们考虑了在其附近存在磁场的一般球形黑洞附近的时空中测试粒子运动。我们以轴对称、非旋转的Ernst-Melvin-Schwarzschild黑洞几何形状和适当的参数对这样的时空进行建模,计算了具有质量的测试粒子在这样的时空中的测地节面进动频率,并获得了一个不消失的结果,超越了之前只有轴对称的旋转时空(非消失的Kerr参数)才能产生这样的进动的民间说法。我们称这种磁场产生的现象为引力拉莫尔进动。我们在这里展示的是一个概念验证的初步分析,而不是对周围有磁场的超大质量黑洞的详细分析。然而,为了完整起见,我们从星系中心黑洞附近的可用磁场强度的角度简要地讨论了这种进动的观测前景。
{"title":"Gravitational Larmor precession","authors":"Chandrachur Chakraborty,&nbsp;Parthasarathi Majumdar","doi":"10.1140/epjc/s10052-023-11858-4","DOIUrl":"10.1140/epjc/s10052-023-11858-4","url":null,"abstract":"<div><p>Inspired by the reported existence of substantive magnetic fields in the vicinity of the central supermassive black holes in Sagittarius A* and Messier 87*, we consider test particle motion in the spacetime close to a generic spherical black hole in the presence of magnetic fields in its vicinity. Modelling such a spacetime in terms of an axisymmetric, non-rotating Ernst–Melvin–Schwarzschild black hole geometry with appropriate parameters, we compute the geodesic nodal-plane precession frequency for a test particle with mass, for such a spacetime, and obtain a non-vanishing result, surpassing earlier folklore that only axisymmetric spacetimes with rotation (non-vanishing Kerr parameter) can generate such a precession. We call this magnetic field-generated phenomenon Gravitational Larmor Precession. What we present here is a Proof of Concept incipient assay, rather than a detailed analysis of supermassive black holes with magnetic fields in their neighbourhood. However, for completeness, we briefly discuss observational prospects of this precession in terms of available magnetic field strengths close to central black holes in galaxies.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11858-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4681215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Precision CMB constraints on eV-scale bosons coupled to neutrinos ev尺度玻色子与中微子耦合的精确CMB约束
IF 4.4 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-08-09 DOI: 10.1140/epjc/s10052-023-11864-6
Stefan Sandner, Miguel Escudero, Samuel J. Witte

The cosmic microwave background (CMB) has proven to be an invaluable tool for studying the properties and interactions of neutrinos, providing insight not only into the sum of neutrino masses but also the free streaming nature of neutrinos prior to recombination. The CMB is a particularly powerful probe of new eV-scale bosons interacting with neutrinos, as these particles can thermalize with neutrinos via the inverse decay process, (nu bar{nu } rightarrow X), and suppress neutrino free streaming near recombination – even for couplings as small as (lambda _{nu } sim {mathcal {O}}(10^{-13})). Here, we revisit CMB constraints on such bosons, improving upon a number of approximations previously adopted in the literature and generalizing the constraints to a broader class of models. This includes scenarios in which the boson is either spin-0 or spin-1, the number of interacting neutrinos is either (N_{textrm{int}} = 1,2 ) or 3, and the case in which a primordial abundance of the species is present. We apply these bounds to well-motivated models, such as the singlet majoron model or a light (U(1)_{L_{mu }-L_{tau }}) gauge boson, and find that they represent the leading constraints for masses (m_Xsim 1, {textrm{eV}}). Finally, we revisit the extent to which neutrino-philic bosons can ameliorate the Hubble tension, and find that recent improvements in the understanding of how such bosons damp neutrino free streaming reduces the previously found success of this proposal.

宇宙微波背景(CMB)已被证明是研究中微子性质和相互作用的宝贵工具,不仅提供了对中微子质量总和的见解,而且还提供了中微子在重组之前的自由流动性质。CMB是一个特别强大的新型ev尺度玻色子与中微子相互作用的探测器,因为这些粒子可以通过逆衰变过程((nu bar{nu } rightarrow X))与中微子一起热化,并且在重组附近抑制中微子的自由流动——即使耦合小到(lambda _{nu } sim {mathcal {O}}(10^{-13}))。在这里,我们重新审视了这些玻色子的CMB约束,改进了以前文献中采用的一些近似,并将约束推广到更广泛的模型类别。这包括玻色子自旋为0或自旋为1的情况,相互作用的中微子的数量为(N_{textrm{int}} = 1,2 )或3,以及存在原始丰度的情况。我们将这些边界应用于良好激励的模型,如单重态majoron模型或轻(U(1)_{L_{mu }-L_{tau }})规范玻色子,并发现它们代表了质量(m_Xsim 1, {textrm{eV}})的主要约束。最后,我们重新审视了亲中微子玻色子在多大程度上可以改善哈勃张力,并发现最近对这种玻色子如何抑制中微子自由流的理解的改进减少了先前发现的这一建议的成功。
{"title":"Precision CMB constraints on eV-scale bosons coupled to neutrinos","authors":"Stefan Sandner,&nbsp;Miguel Escudero,&nbsp;Samuel J. Witte","doi":"10.1140/epjc/s10052-023-11864-6","DOIUrl":"10.1140/epjc/s10052-023-11864-6","url":null,"abstract":"<div><p>The cosmic microwave background (CMB) has proven to be an invaluable tool for studying the properties and interactions of neutrinos, providing insight not only into the sum of neutrino masses but also the free streaming nature of neutrinos prior to recombination. The CMB is a particularly powerful probe of new eV-scale bosons interacting with neutrinos, as these particles can thermalize with neutrinos via the inverse decay process, <span>(nu bar{nu } rightarrow X)</span>, and suppress neutrino free streaming near recombination – even for couplings as small as <span>(lambda _{nu } sim {mathcal {O}}(10^{-13}))</span>. Here, we revisit CMB constraints on such bosons, improving upon a number of approximations previously adopted in the literature and generalizing the constraints to a broader class of models. This includes scenarios in which the boson is either spin-0 or spin-1, the number of interacting neutrinos is either <span>(N_{textrm{int}} = 1,2 )</span> or 3, and the case in which a primordial abundance of the species is present. We apply these bounds to well-motivated models, such as the singlet majoron model or a light <span>(U(1)_{L_{mu }-L_{tau }})</span> gauge boson, and find that they represent the leading constraints for masses <span>(m_Xsim 1, {textrm{eV}})</span>. Finally, we revisit the extent to which neutrino-philic bosons can ameliorate the Hubble tension, and find that recent improvements in the understanding of how such bosons damp neutrino free streaming reduces the previously found success of this proposal.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11864-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4681216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Unified inflation and dark energy with accelerated particle holographic model 统一膨胀和暗能量与加速粒子全息模型
IF 4.4 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-08-09 DOI: 10.1140/epjc/s10052-023-11896-y
H. R. Fazlollahi

In this paper and in the follows of the holographic approach to describe the primary acceleration and the late-time acceleration eras, we have considered and unified inflation and dark energy while accelerated particle holographic (APHM) density is used (Fazlollahi in Chin Phys C 47:035101, 2023). As discussed, establishing holographic model for constant roll inflation during the very early Universe leads one to explicit form of Hubble parameter which satisfies inflationary era. The validity of such holographic constant roll inflation with respect to the Planck data puts a certain bound on the infrared cut-off at the time of horizon crossing. Beside the mere inflation, the Hubble parameter gives explicit form for density of accelerated particle holographic model. It is shown such density due to inflationary bound condition on infrared cut-off could present late-time acceleration epoch. Consequently, inflation and late time expansion era unified in unique infrared cut-off model. Moreover, such corresponding fractional density gives more matter regimes during matter era. Nevertheless, studying matter structure formation during matter era reveals the model is not in conflict with ({Lambda })CDM model.

在本文及后续描述主加速和晚时间加速时代的全息方法中,我们考虑并统一了暴胀和暗能量,同时使用了加速粒子全息(APHM)密度(Fazlollahi In Chin Phys C 47:035101, 2023)。如前所述,建立宇宙早期恒定滚动暴胀的全息模型可以得到满足暴胀时代的哈勃参数的明确形式。相对于普朗克数据,这种全息恒定滚动膨胀的有效性对视界穿越时的红外截止点有一定的限制。除了单纯的膨胀外,哈勃参数给出了加速粒子密度全息模型的显式形式。结果表明,由于红外截止点的膨胀约束条件,这样的密度可以出现晚时间的加速纪元。因此,暴胀和晚时间膨胀时代统一在一个独特的红外截止模型中。此外,这种相应的分数密度在物质时代给出了更多的物质状态。然而,对物质时代物质结构形成的研究表明,该模型与({Lambda }) CDM模型并不冲突。
{"title":"Unified inflation and dark energy with accelerated particle holographic model","authors":"H. R. Fazlollahi","doi":"10.1140/epjc/s10052-023-11896-y","DOIUrl":"10.1140/epjc/s10052-023-11896-y","url":null,"abstract":"<div><p>In this paper and in the follows of the holographic approach to describe the primary acceleration and the late-time acceleration eras, we have considered and unified inflation and dark energy while accelerated particle holographic (APHM) density is used (Fazlollahi in Chin Phys C 47:035101, 2023). As discussed, establishing holographic model for constant roll inflation during the very early Universe leads one to explicit form of Hubble parameter which satisfies inflationary era. The validity of such holographic constant roll inflation with respect to the Planck data puts a certain bound on the infrared cut-off at the time of horizon crossing. Beside the mere inflation, the Hubble parameter gives explicit form for density of accelerated particle holographic model. It is shown such density due to inflationary bound condition on infrared cut-off could present late-time acceleration epoch. Consequently, inflation and late time expansion era unified in unique infrared cut-off model. Moreover, such corresponding fractional density gives more matter regimes during matter era. Nevertheless, studying matter structure formation during matter era reveals the model is not in conflict with <span>({Lambda })</span>CDM model.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11896-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4369573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of barrow entropy on geometrothermodynamics of specific black holes 巴罗熵对特定黑洞几何热力学的影响
IF 4.4 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-08-09 DOI: 10.1140/epjc/s10052-023-11857-5
Shamaila Rani, Abdul Jawad, Mazhar Hussain

In this paper, we study the effect of Barrow entropy on the thermodynamic properties and geometry of specific black holes along with the nonlinear source. We investigate the mass, temperature, thermodynamic variable, and electric potential of the black hole as well. Furthermore, we examine the behavior of heat capacity to check the stability of a black hole. Geometrothermodynamics allows us to describe interactions between thermodynamics, critical points, and phase transitions by considering the geometric characteristics of the thermodynamic equilibrium space. Our analysis demonstrates that these findings are consistent with the results derived from the classical thermodynamics of black holes.

在本文中,我们研究了巴罗熵对特定黑洞的热力学性质和几何形状的影响以及非线性源。我们还研究了黑洞的质量、温度、热力学变量和电势。此外,我们还检验了热容的行为来检验黑洞的稳定性。几何热力学允许我们通过考虑热力学平衡空间的几何特征来描述热力学、临界点和相变之间的相互作用。我们的分析表明,这些发现与经典黑洞热力学的结果是一致的。
{"title":"Impact of barrow entropy on geometrothermodynamics of specific black holes","authors":"Shamaila Rani,&nbsp;Abdul Jawad,&nbsp;Mazhar Hussain","doi":"10.1140/epjc/s10052-023-11857-5","DOIUrl":"10.1140/epjc/s10052-023-11857-5","url":null,"abstract":"<div><p>In this paper, we study the effect of Barrow entropy on the thermodynamic properties and geometry of specific black holes along with the nonlinear source. We investigate the mass, temperature, thermodynamic variable, and electric potential of the black hole as well. Furthermore, we examine the behavior of heat capacity to check the stability of a black hole. Geometrothermodynamics allows us to describe interactions between thermodynamics, critical points, and phase transitions by considering the geometric characteristics of the thermodynamic equilibrium space. Our analysis demonstrates that these findings are consistent with the results derived from the classical thermodynamics of black holes.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11857-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4371933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
(nu ) Electroweak baryogenesis: the scalar singlet strikes back (nu ) 电弱重子发生:标量单重态反冲
IF 4.4 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-08-09 DOI: 10.1140/epjc/s10052-023-11887-z
E. Fernández-Martínez, J. López-Pavón, J. M. No, T. Ota, S. Rosauro-Alcaraz

We perform a comprehensive scan of the parameter space of a general singlet scalar extension of the Standard Model to identify the regions which can lead to a strong first-order phase transition, as required by the electroweak baryogenesis mechanism. We find that taking into account bubble nucleation is a fundamental constraint on the parameter space and present a conservative and fast estimate for it so as to enable efficient parameter space scanning. The allowed regions turn out to be already significantly probed by constraints on the scalar mixing from Higgs signal strength measurements. We also consider the addition of new neutrino singlet fields with Yukawa couplings to both scalars and forming heavy (pseudo)-Dirac pairs, as in the linear or inverse Seesaw mechanisms for neutrino mass generation. We find that their inclusion does not alter the allowed parameter space from early universe phenomenology in a significant way. Conversely, there are allowed regions of the parameter space where the presence of the neutrino singlets would remarkably modify the collider phenomenology, yielding interesting new signatures in Higgs and singlet scalar decays.

我们对标准模型的一般单重态标量扩展的参数空间进行了全面扫描,以确定可能导致强一阶相变的区域,这是电弱重子发生机制所要求的。我们发现考虑气泡成核是参数空间的一个基本约束,并给出了一个保守的快速估计,从而实现了有效的参数空间扫描。事实证明,希格斯信号强度测量对标量混合的限制已经对允许的区域进行了重大探测。我们还考虑添加新的具有Yukawa耦合的中微子单线场到标量和形成重(伪)-Dirac对,如在中微子质量产生的线性或逆跷跷板机制中。我们发现它们的包含并没有在很大程度上改变早期宇宙现象学所允许的参数空间。相反,在参数空间的某些允许区域中,中微子单重态的存在会显著地改变对撞机的现象,在希格斯和单重态标量衰变中产生有趣的新特征。
{"title":"(nu ) Electroweak baryogenesis: the scalar singlet strikes back","authors":"E. Fernández-Martínez,&nbsp;J. López-Pavón,&nbsp;J. M. No,&nbsp;T. Ota,&nbsp;S. Rosauro-Alcaraz","doi":"10.1140/epjc/s10052-023-11887-z","DOIUrl":"10.1140/epjc/s10052-023-11887-z","url":null,"abstract":"<div><p>We perform a comprehensive scan of the parameter space of a general singlet scalar extension of the Standard Model to identify the regions which can lead to a strong first-order phase transition, as required by the electroweak baryogenesis mechanism. We find that taking into account bubble nucleation is a fundamental constraint on the parameter space and present a conservative and fast estimate for it so as to enable efficient parameter space scanning. The allowed regions turn out to be already significantly probed by constraints on the scalar mixing from Higgs signal strength measurements. We also consider the addition of new neutrino singlet fields with Yukawa couplings to both scalars and forming heavy (pseudo)-Dirac pairs, as in the linear or inverse Seesaw mechanisms for neutrino mass generation. We find that their inclusion does not alter the allowed parameter space from early universe phenomenology in a significant way. Conversely, there are allowed regions of the parameter space where the presence of the neutrino singlets would remarkably modify the collider phenomenology, yielding interesting new signatures in Higgs and singlet scalar decays.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11887-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4372990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Publisher Erratum: Open charm production and asymmetry in pNe collisions at (sqrt{s_{scriptscriptstyle {text {NN}}}} = 68.5) GeV 在(sqrt{s_{scriptscriptstyle {text {NN}}}} = 68.5) GeV的pNe碰撞中的开放粲子产生和不对称性
IF 4.4 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-08-08 DOI: 10.1140/epjc/s10052-023-11815-1
R. Aaij, A. S. W. Abdelmotteleb, C. Abellan Beteta, F. Abudinén, T. Ackernley, B. Adeva, M. Adinolfi, P. Adlarson, H. Afsharnia, C. Agapopoulou, C. A. Aidala, Z. Ajaltouni, S. Akar, K. Akiba, J. Albrecht, F. Alessio, M. Alexander, A. Alfonso Albero, Z. Aliouche, P. Alvarez Cartelle, R. Amalric, S. Amato, J. L. Amey, Y. Amhis, L. An, L. Anderlini, M. Andersson, A. Andreianov, M. Andreotti, D. Andreou, D. Ao, F. Archilli, A. Artamonov, M. Artuso, E. Aslanides, M. Atzeni, B. Audurier, S. Bachmann, M. Bachmayer, J. J. Back, A. Bailly-reyre, P. Baladron Rodriguez, V. Balagura, W. Baldini, J. Baptista de Souza Leite, M. Barbetti, R. J. Barlow, S. Barsuk, W. Barter, M. Bartolini, F. Baryshnikov, J. M. Basels, G. Bassi, B. Batsukh, A. Battig, A. Bay, A. Beck, M. Becker, F. Bedeschi, I. B. Bediaga, A. Beiter, V. Belavin, S. Belin, V. Bellee, K. Belous, I. Belov, I. Belyaev, G. Benane, G. Bencivenni, E. Ben-Haim, A. Berezhnoy, R. Bernet, S. Bernet Andres, D. Berninghoff, H. C. Bernstein, C. Bertella, A. Bertolin, C. Betancourt, F. Betti, Ia. Bezshyiko, S. Bhasin, J. Bhom, L. Bian, M. S. Bieker, N. V. Biesuz, S. Bifani, P. Billoir, A. Biolchini, M. Birch, F. C. R. Bishop, A. Bitadze, A. Bizzeti, M. P. Blago, T. Blake, F. Blanc, J. E. Blank, S. Blusk, D. Bobulska, J. A. Boelhauve, O. Boente Garcia, T. Boettcher, A. Boldyrev, C. S. Bolognani, R. Bolzonella, N. Bondar, F. Borgato, S. Borghi, M. Borsato, J. T. Borsuk, S. A. Bouchiba, T. J. V. Bowcock, A. Boyer, C. Bozzi, M. J. Bradley, S. Braun, A. Brea Rodriguez, J. Brodzicka, A. Brossa Gonzalo, J. Brown, D. Brundu, A. Buonaura, L. Buonincontri, A. T. Burke, C. Burr, A. Bursche, A. Butkevich, J. S. Butter, J. Buytaert, W. Byczynski, S. Cadeddu, H. Cai, R. Calabrese, L. Calefice, S. Cali, R. Calladine, M. Calvi, M. Calvo Gomez, P. Campana, D. H. Campora Perez, A. F. Campoverde Quezada, S. Capelli, L. Capriotti, A. Carbone, G. Carboni, R. Cardinale, A. Cardini, P. Carniti, L. Carus, A. Casais Vidal, R. Caspary, G. Casse, M. Cattaneo, G. Cavallero, V. Cavallini, S. Celani, J. Cerasoli, D. Cervenkov, A. J. Chadwick, M. G. Chapman, M. Charles, Ph. Charpentier, C. A. Chavez Barajas, M. Chefdeville, C. Chen, S. Chen, A. Chernov, S. Chernyshenko, V. Chobanova, S. Cholak, M. Chrzaszcz, A. Chubykin, V. Chulikov, P. Ciambrone, M. F. Cicala, X. Cid Vidal, G. Ciezarek, G. Ciullo, P. E. L. Clarke, M. Clemencic, H. V. Cliff, J. Closier, J. L. Cobbledick, V. Coco, J. A. B. Coelho, J. Cogan, E. Cogneras, L. Cojocariu, P. Collins, T. Colombo, L. Congedo, A. Contu, N. Cooke, I. Corredoira, G. Corti, B. Couturier, D. C. Craik, M. Cruz Torres, R. Currie, C. L. Da Silva, S. Dadabaev, L. Dai, X. Dai, E. Dall’Occo, J. Dalseno, C. D’Ambrosio, J. Daniel, A. Danilina, P. d’Argent, J. E. Davies, A. Davis, O. De Aguiar Francisco, J. de Boer, K. De Bruyn, S. De Capua, M. De Cian, U. De Freitas Carneiro Da Graca, E. De Lucia, J. M. De Miranda, L. De Paula, M. De Serio, D. De Simone, P. De Simone, F. De Vellis, J. A. de Vries, C. T. Dean, F. Debernardis, D. Decamp, V. Dedu, L. Del Buono, B. Delaney, H.-P. Dembinski, V. Denysenko, O. Deschamps, F. Dettori, B. Dey, P. Di Nezza, I. Diachkov, S. Didenko, L. Dieste Maronas, S. Ding, V. Dobishuk, A. Dolmatov, C. Dong, A. M. Donohoe, F. Dordei, A. C. dos Reis, L. Douglas, A. G. Downes, P. Duda, M. W. Dudek, L. Dufour, V. Duk, P. Durante, M. M. Duras, J. M. Durham, D. Dutta, A. Dziurda, A. Dzyuba, S. Easo, U. Egede, V. Egorychev, S. Eidelman, C. Eirea Orro, S. Eisenhardt, E. Ejopu, S. Ek-In, L. Eklund, S. Ely, A. Ene, E. Epple, S. Escher, J. Eschle, S. Esen, T. Evans, F. Fabiano, L. N. Falcao, Y. Fan, B. Fang, L. Fantini, M. Faria, S. Farry, D. Fazzini, L. F. Felkowski, M. Feo, M. Fernandez Gomez, A. D. Fernez, F. Ferrari, L. Ferreira Lopes, F. Ferreira Rodrigues, S. Ferreres Sole, M. Ferrillo, M. Ferro-Luzzi, S. Filippov, R. A. Fini, M. Fiorini, M. Firlej, K. M. Fischer, D. S. Fitzgerald, C. Fitzpatrick, T. Fiutowski, F. Fleuret, M. Fontana, F. Fontanelli, R. Forty, D. Foulds-Holt, V. Franco Lima, M. Franco Sevilla, M. Frank, E. Franzoso, G. Frau, C. Frei, D. A. Friday, J. Fu, Q. Fuehring, T. Fulghesu, E. Gabriel, G. Galati, M. D. Galati, A. Gallas Torreira, D. Galli, S. Gambetta, Y. Gan, M. Gandelman, P. Gandini, Y. Gao, Y. Gao, M. Garau, L. M. Garcia Martin, P. Garcia Moreno, J. García Pardiñas, B. Garcia Plana, F. A. Garcia Rosales, L. Garrido, C. Gaspar, R. E. Geertsema, D. Gerick, L. L. Gerken, E. Gersabeck, M. Gersabeck, T. Gershon, L. Giambastiani, V. Gibson, H. K. Giemza, A. L. Gilman, M. Giovannetti, A. Gioventù, P. Gironella Gironell, C. Giugliano, M. A. Giza, K. Gizdov, E. L. Gkougkousis, V. V. Gligorov, C. Göbel, E. Golobardes, D. Golubkov, A. Golutvin, A. Gomes, S. Gomez Fernandez, F. Goncalves Abrantes, M. Goncerz, G. Gong, I. V. Gorelov, C. Gotti, J. P. Grabowski, T. Grammatico, L. A. Granado Cardoso, E. Graugés, E. Graverini, G. Graziani, A. T. Grecu, L. M. Greeven, N. A. Grieser, L. Grillo, S. Gromov, B. R. Gruberg Cazon, C. Gu, M. Guarise, M. Guittiere, P. A. Günther, E. Gushchin, A. Guth, Y. Guz, T. Gys, T. Hadavizadeh, C. Hadjivasiliou, G. Haefeli, C. Haen, J. Haimberger, S. C. Haines, T. Halewood-leagas, M. M. Halvorsen, P. M. Hamilton, J. Hammerich, Q. Han, X. Han, E. B. Hansen, S. Hansmann-Menzemer, L. Hao, N. Harnew, T. Harrison, C. Hasse, M. Hatch, J. He, K. Heijhoff, C. Henderson, R. D. L. Henderson, A. M. Hennequin, K. Hennessy, L. Henry, J. Herd, J. Heuel, A. Hicheur, D. Hill, M. Hilton, S. E. Hollitt, J. Horswill, R. Hou, Y. Hou, J. Hu, J. Hu, W. Hu, X. Hu, W. Huang, X. Huang, W. Hulsbergen, R. J. Hunter, M. Hushchyn, D. Hutchcroft, P. Ibis, M. Idzik, D. Ilin, P. Ilten, A. Inglessi, A. Iniukhin, A. Ishteev, K. Ivshin, R. Jacobsson, H. Jage, S. J. Jaimes Elles, S. Jakobsen, E. Jans, B. K. Jashal, A. Jawahery, V. Jevtic, E. Jiang, X. Jiang, Y. Jiang, M. John, D. Johnson, C. R. Jones, T. P. Jones, B. Jost, N. Jurik, I. Juszczak, S. Kandybei, Y. Kang, M. Karacson, D. Karpenkov, M. Karpov, J. W. Kautz, F. Keizer, D. M. Keller, M. Kenzie, T. Ketel, B. Khanji, A. Kharisova, S. Kholodenko, G. Khreich, T. Kirn, V. S. Kirsebom, O. Kitouni, S. Klaver, N. Kleijne, K. Klimaszewski, M. R. Kmiec, S. Koliiev, A. Kondybayeva, A. Konoplyannikov, P. Kopciewicz, R. Kopecna, P. Koppenburg, M. Korolev, I. Kostiuk, O. Kot, S. Kotriakhova, A. Kozachuk, P. Kravchenko, L. Kravchuk, R. D. Krawczyk, M. Kreps, S. Kretzschmar, P. Krokovny, W. Krupa, W. Krzemien, J. Kubat, S. Kubis, W. Kucewicz, M. Kucharczyk, V. Kudryavtsev, A. Kupsc, D. Lacarrere, G. Lafferty, A. Lai, A. Lampis, D. Lancierini, C. Landesa Gomez, J. J. Lane, R. Lane, G. Lanfranchi, C. Langenbruch, J. Langer, O. Lantwin, T. Latham, F. Lazzari, M. Lazzaroni, R. Le Gac, S. H. Lee, R. Lefèvre, A. Leflat, S. Legotin, P. Lenisa, O. Leroy, T. Lesiak, B. Leverington, A. Li, H. Li, K. Li, P. Li, P.-R. Li, S. Li, T. Li, T. Li, Y. Li, Z. Li, X. Liang, C. Lin, T. Lin, R. Lindner, V. Lisovskyi, R. Litvinov, G. Liu, H. Liu, Q. Liu, S. Liu, A. Lobo Salvia, A. Loi, R. Lollini, J. Lomba Castro, I. Longstaff, J. H. Lopes, A. Lopez Huertas, S. L.ópez Soliño, G. H. Lovell, Y. Lu, C. Lucarelli, D. Lucchesi, S. Luchuk, M. Lucio Martinez, V. Lukashenko, Y. Luo, A. Lupato, E. Luppi, A. Lusiani, K. Lynch, X.-R. Lyu, L. Ma, R. Ma, S. Maccolini, F. Machefert, F. Maciuc, I. Mackay, V. Macko, P. Mackowiak, L. R. Madhan Mohan, A. Maevskiy, D. Maisuzenko, M. W. Majewski, J. J. Malczewski, S. Malde, B. Malecki, A. Malinin, T. Maltsev, G. Manca, G. Mancinelli, C. Mancuso, D. Manuzzi, C. A. Manzari, D. Marangotto, J. M. Maratas, J. F. Marchand, U. Marconi, S. Mariani, C. Marin Benito, J. Marks, A. M. Marshall, P. J. Marshall, G. Martelli, G. Martellotti, L. Martinazzoli, M. Martinelli, D. Martinez Santos, F. Martinez Vidal, A. Massafferri, M. Materok, R. Matev, A. Mathad, V. Matiunin, C. Matteuzzi, K. R. Mattioli, A. Mauri, E. Maurice, J. Mauricio, M. Mazurek, M. McCann, L. Mcconnell, T. H. McGrath, N. T. McHugh, A. McNab, R. McNulty, J. V. Mead, B. Meadows, G. Meier, D. Melnychuk, S. Meloni, M. Merk, A. Merli, L. Meyer Garcia, D. Miao, M. Mikhasenko, D. A. Milanes, E. Millard, M. Milovanovic, M.-N. Minard, A. Minotti, T. Miralles, S. E. Mitchell, B. Mitreska, D. S. Mitzel, A. Mödden, R. A. Mohammed, R. D. Moise, S. Mokhnenko, T. Mombächer, M. Monk, I. A. Monroy, S. Monteil, M. Morandin, G. Morello, M. J. Morello, J. Moron, A. B. Morris, A. G. Morris, R. Mountain, H. Mu, E. Muhammad, F. Muheim, M. Mulder, K. Müller, C. H. Murphy, D. Murray, R. Murta, P. Muzzetto, P. Naik, T. Nakada, R. Nandakumar, T. Nanut, I. Nasteva, M. Needham, N. Neri, S. Neubert, N. Neufeld, P. Neustroev, R. Newcombe, J. Nicolini, E. M. Niel, S. Nieswand, N. Nikitin, N. S. Nolte, C. Normand, J. Novoa Fernandez, C. Nunez, A. Oblakowska-Mucha, V. Obraztsov, T. Oeser, D. P. O’Hanlon, S. Okamura, R. Oldeman, F. Oliva, C. J. G. Onderwater, R. H. O’Neil, J. M. Otalora Goicochea, T. Ovsiannikova, P. Owen, A. Oyanguren, O. Ozcelik, K. O. Padeken, B. Pagare, P. R. Pais, T. Pajero, A. Palano, M. Palutan, Y. Pan, G. Panshin, L. Paolucci, A. Papanestis, M. Pappagallo, L. L. Pappalardo, C. Pappenheimer, W. Parker, C. Parkes, B. Passalacqua, G. Passaleva, A. Pastore, M. Patel, C. Patrignani, C. J. Pawley, A. Pearce, A. Pellegrino, M. Pepe Altarelli, S. Perazzini, D. Pereima, A. Pereiro Castro, P. Perret, M. Petric, K. Petridis, A. Petrolini, A. Petrov, S. Petrucci, M. Petruzzo, H. Pham, A. Philippov, R. Piandani, L. Pica, M. Piccini, B. Pietrzyk, G. Pietrzyk, M. Pili, D. Pinci, F. Pisani, M. Pizzichemi, V. Placinta, J. Plews, M. Plo Casasus, F. Polci, M. Poli Lener, M. Poliakova, A. Poluektov, N. Polukhina, I. Polyakov, E. Polycarpo, S. Ponce, D. Popov, S. Popov, S. Poslavskii, K. Prasanth, L. Promberger, C. Prouve, V. Pugatch, V. Puill, G. Punzi, H. R. Qi, W. Qian, N. Qin, S. Qu, R. Quagliani, N. V. Raab, R. I. Rabadan Trejo, B. Rachwal, J. H. Rademacker, R. Rajagopalan, M. Rama, M. Ramos Pernas, M. S. Rangel, F. Ratnikov, G. Raven, M. Rebollo De Miguel, F. Redi, J. Reich, F. Reiss, C. Remon Alepuz, Z. Ren, P. K. Resmi, R. Ribatti, A. M. Ricci, S. Ricciardi, K. Richardson, M. Richardson-Slipper, K. Rinnert, P. Robbe, G. Robertson, A. B. Rodrigues, E. Rodrigues, E. Rodriguez Fernandez, J. A. Rodriguez Lopez, E. Rodriguez Rodriguez, D. L. Rolf, A. Rollings, P. Roloff, V. Romanovskiy, M. Romero Lamas, A. Romero Vidal, J. D. Roth, M. Rotondo, M. S. Rudolph, T. Ruf, R. A. Ruiz Fernandez, J. Ruiz Vidal, A. Ryzhikov, J. Ryzka, J. J. Saborido Silva, N. Sagidova, N. Sahoo, B. Saitta, M. Salomoni, C. Sanchez Gras, I. Sanderswood, R. Santacesaria, C. Santamarina Rios, M. Santimaria, E. Santovetti, D. Saranin, G. Sarpis, M. Sarpis, A. Sarti, C. Satriano, A. Satta, M. Saur, D. Savrina, H. Sazak, L. G. Scantlebury Smead, A. Scarabotto, S. Schael, S. Scherl, M. Schiller, H. Schindler, M. Schmelling, B. Schmidt, S. Schmitt, O. Schneider, A. Schopper, M. Schubiger, S. Schulte, M. H. Schune, R. Schwemmer, B. Sciascia, A. Sciuccati, S. Sellam, A. Semennikov, M. Senghi Soares, A. Sergi, N. Serra, L. Sestini, A. Seuthe, Y. Shang, D. M. Shangase, M. Shapkin, I. Shchemerov, L. Shchutska, T. Shears, L. Shekhtman, Z. Shen, S. Sheng, V. Shevchenko, B. Shi, E. B. Shields, Y. Shimizu, E. Shmanin, R. Shorkin, J. D. Shupperd, B. G. Siddi, R. Silva Coutinho, G. Simi, S. Simone, M. Singla, N. Skidmore, R. Skuza, T. Skwarnicki, M. W. Slater, J. C. Smallwood, J. G. Smeaton, E. Smith, K. Smith, M. Smith, A. Snoch, L. Soares Lavra, M. D. Sokoloff, F. J. P. Soler, A. Solomin, A. Solovev, I. Solovyev, R. Song, F. L. Souza De Almeida, B. Souza De Paula, B. Spaan, E. Spadaro Norella, E. Spedicato, E. Spiridenkov, P. Spradlin, V. Sriskaran, F. Stagni, M. Stahl, S. Stahl, S. Stanislaus, E. N. Stein, O. Steinkamp, O. Stenyakin, H. Stevens, S. Stone, D. Strekalina, Y. S. Su, F. Suljik, J. Sun, L. Sun, Y. Sun, P. Svihra, P. N. Swallow, K. Swientek, A. Szabelski, T. Szumlak, M. Szymanski, Y. Tan, S. Taneja, M. D. Tat, A. Terentev, F. Teubert, E. Thomas, D. J. D. Thompson, K. A. Thomson, H. Tilquin, V. Tisserand, S. T’Jampens, M. Tobin, L. Tomassetti, G. Tonani, X. Tong, D. Torres Machado, D. Y. Tou, S. M. Trilov, C. Trippl, G. Tuci, A. Tully, N. Tuning, A. Ukleja, D. J. Unverzagt, A. Usachov, A. Ustyuzhanin, U. Uwer, A. Vagner, V. Vagnoni, A. Valassi, G. Valenti, N. Valls Canudas, M. van Beuzekom, M. Van Dijk, H. Van Hecke, E. van Herwijnen, C. B. Van Hulse, M. van Veghel, R. Vazquez Gomez, P. Vazquez Regueiro, C. Vázquez Sierra, S. Vecchi, J. J. Velthuis, M. Veltri, A. Venkateswaran, M. Veronesi, M. Vesterinen, D. Vieira, M. Vieites Diaz, X. Vilasis-Cardona, E. Vilella Figueras, A. Villa, P. Vincent, F. C. Volle, D. vom Bruch, A. Vorobyev, V. Vorobyev, N. Voropaev, K. Vos, C. Vrahas, R. Waldi, J. Walsh, G. Wan, C. Wang, G. Wang, J. Wang, J. Wang, J. Wang, J. Wang, M. Wang, R. Wang, X. Wang, Y. Wang, Z. Wang, Z. Wang, Z. Wang, J. A. Ward, N. K. Watson, D. Websdale, Y. Wei, C. Weisser, B. D. C. Westhenry, D. J. White, M. Whitehead, A. R. Wiederhold, D. Wiedner, G. Wilkinson, M. K. Wilkinson, I. Williams, M. Williams, M. R. J. Williams, R. Williams, F. F. Wilson, W. Wislicki, M. Witek, L. Witola, C. P. Wong, G. Wormser, S. A. Wotton, H. Wu, J. Wu, K. Wyllie, Z. Xiang, D. Xiao, Y. Xie, A. Xu, J. Xu, L. Xu, L. Xu, M. Xu, Q. Xu, Z. Xu, Z. Xu, D. Yang, S. Yang, X. Yang, Y. Yang, Z. Yang, Z. Yang, L. E. Yeomans, V. Yeroshenko, H. Yeung, H. Yin, J. Yu, X. Yuan, E. Zaffaroni, M. Zavertyaev, M. Zdybal, O. Zenaiev, M. Zeng, C. Zhang, D. Zhang, L. Zhang, S. Zhang, S. Zhang, Y. Zhang, Y. Zhang, A. Zharkova, A. Zhelezov, Y. Zheng, T. Zhou, X. Zhou, Y. Zhou, V. Zhovkovska, X. Zhu, X. Zhu, Z. Zhu, V. Zhukov, Q. Zou, S. Zucchelli, D. Zuliani, G. Zunica, LHCb Collaboration
{"title":"Publisher Erratum: Open charm production and asymmetry in pNe collisions at (sqrt{s_{scriptscriptstyle {text {NN}}}} = 68.5) GeV","authors":"R. Aaij,&nbsp;A. S. W. Abdelmotteleb,&nbsp;C. Abellan Beteta,&nbsp;F. Abudinén,&nbsp;T. Ackernley,&nbsp;B. Adeva,&nbsp;M. Adinolfi,&nbsp;P. Adlarson,&nbsp;H. Afsharnia,&nbsp;C. Agapopoulou,&nbsp;C. A. Aidala,&nbsp;Z. Ajaltouni,&nbsp;S. Akar,&nbsp;K. Akiba,&nbsp;J. Albrecht,&nbsp;F. Alessio,&nbsp;M. Alexander,&nbsp;A. Alfonso Albero,&nbsp;Z. Aliouche,&nbsp;P. Alvarez Cartelle,&nbsp;R. Amalric,&nbsp;S. Amato,&nbsp;J. L. Amey,&nbsp;Y. Amhis,&nbsp;L. An,&nbsp;L. Anderlini,&nbsp;M. Andersson,&nbsp;A. Andreianov,&nbsp;M. Andreotti,&nbsp;D. Andreou,&nbsp;D. Ao,&nbsp;F. Archilli,&nbsp;A. Artamonov,&nbsp;M. Artuso,&nbsp;E. Aslanides,&nbsp;M. Atzeni,&nbsp;B. Audurier,&nbsp;S. Bachmann,&nbsp;M. Bachmayer,&nbsp;J. J. Back,&nbsp;A. Bailly-reyre,&nbsp;P. Baladron Rodriguez,&nbsp;V. Balagura,&nbsp;W. Baldini,&nbsp;J. Baptista de Souza Leite,&nbsp;M. Barbetti,&nbsp;R. J. Barlow,&nbsp;S. Barsuk,&nbsp;W. Barter,&nbsp;M. Bartolini,&nbsp;F. Baryshnikov,&nbsp;J. M. Basels,&nbsp;G. Bassi,&nbsp;B. Batsukh,&nbsp;A. Battig,&nbsp;A. Bay,&nbsp;A. Beck,&nbsp;M. Becker,&nbsp;F. Bedeschi,&nbsp;I. B. Bediaga,&nbsp;A. Beiter,&nbsp;V. Belavin,&nbsp;S. Belin,&nbsp;V. Bellee,&nbsp;K. Belous,&nbsp;I. Belov,&nbsp;I. Belyaev,&nbsp;G. Benane,&nbsp;G. Bencivenni,&nbsp;E. Ben-Haim,&nbsp;A. Berezhnoy,&nbsp;R. Bernet,&nbsp;S. Bernet Andres,&nbsp;D. Berninghoff,&nbsp;H. C. Bernstein,&nbsp;C. Bertella,&nbsp;A. Bertolin,&nbsp;C. Betancourt,&nbsp;F. Betti,&nbsp;Ia. Bezshyiko,&nbsp;S. Bhasin,&nbsp;J. Bhom,&nbsp;L. Bian,&nbsp;M. S. Bieker,&nbsp;N. V. Biesuz,&nbsp;S. Bifani,&nbsp;P. Billoir,&nbsp;A. Biolchini,&nbsp;M. Birch,&nbsp;F. C. R. Bishop,&nbsp;A. Bitadze,&nbsp;A. Bizzeti,&nbsp;M. P. Blago,&nbsp;T. Blake,&nbsp;F. Blanc,&nbsp;J. E. Blank,&nbsp;S. Blusk,&nbsp;D. Bobulska,&nbsp;J. A. Boelhauve,&nbsp;O. Boente Garcia,&nbsp;T. Boettcher,&nbsp;A. Boldyrev,&nbsp;C. S. Bolognani,&nbsp;R. Bolzonella,&nbsp;N. Bondar,&nbsp;F. Borgato,&nbsp;S. Borghi,&nbsp;M. Borsato,&nbsp;J. T. Borsuk,&nbsp;S. A. Bouchiba,&nbsp;T. J. V. Bowcock,&nbsp;A. Boyer,&nbsp;C. Bozzi,&nbsp;M. J. Bradley,&nbsp;S. Braun,&nbsp;A. Brea Rodriguez,&nbsp;J. Brodzicka,&nbsp;A. Brossa Gonzalo,&nbsp;J. Brown,&nbsp;D. Brundu,&nbsp;A. Buonaura,&nbsp;L. Buonincontri,&nbsp;A. T. Burke,&nbsp;C. Burr,&nbsp;A. Bursche,&nbsp;A. Butkevich,&nbsp;J. S. Butter,&nbsp;J. Buytaert,&nbsp;W. Byczynski,&nbsp;S. Cadeddu,&nbsp;H. Cai,&nbsp;R. Calabrese,&nbsp;L. Calefice,&nbsp;S. Cali,&nbsp;R. Calladine,&nbsp;M. Calvi,&nbsp;M. Calvo Gomez,&nbsp;P. Campana,&nbsp;D. H. Campora Perez,&nbsp;A. F. Campoverde Quezada,&nbsp;S. Capelli,&nbsp;L. Capriotti,&nbsp;A. Carbone,&nbsp;G. Carboni,&nbsp;R. Cardinale,&nbsp;A. Cardini,&nbsp;P. Carniti,&nbsp;L. Carus,&nbsp;A. Casais Vidal,&nbsp;R. Caspary,&nbsp;G. Casse,&nbsp;M. Cattaneo,&nbsp;G. Cavallero,&nbsp;V. Cavallini,&nbsp;S. Celani,&nbsp;J. Cerasoli,&nbsp;D. Cervenkov,&nbsp;A. J. Chadwick,&nbsp;M. G. Chapman,&nbsp;M. Charles,&nbsp;Ph. Charpentier,&nbsp;C. A. Chavez Barajas,&nbsp;M. Chefdeville,&nbsp;C. Chen,&nbsp;S. Chen,&nbsp;A. Chernov,&nbsp;S. Chernyshenko,&nbsp;V. Chobanova,&nbsp;S. Cholak,&nbsp;M. Chrzaszcz,&nbsp;A. Chubykin,&nbsp;V. Chulikov,&nbsp;P. Ciambrone,&nbsp;M. F. Cicala,&nbsp;X. Cid Vidal,&nbsp;G. Ciezarek,&nbsp;G. Ciullo,&nbsp;P. E. L. Clarke,&nbsp;M. Clemencic,&nbsp;H. V. Cliff,&nbsp;J. Closier,&nbsp;J. L. Cobbledick,&nbsp;V. Coco,&nbsp;J. A. B. Coelho,&nbsp;J. Cogan,&nbsp;E. Cogneras,&nbsp;L. Cojocariu,&nbsp;P. Collins,&nbsp;T. Colombo,&nbsp;L. Congedo,&nbsp;A. Contu,&nbsp;N. Cooke,&nbsp;I. Corredoira,&nbsp;G. Corti,&nbsp;B. Couturier,&nbsp;D. C. Craik,&nbsp;M. Cruz Torres,&nbsp;R. Currie,&nbsp;C. L. Da Silva,&nbsp;S. Dadabaev,&nbsp;L. Dai,&nbsp;X. Dai,&nbsp;E. Dall’Occo,&nbsp;J. Dalseno,&nbsp;C. D’Ambrosio,&nbsp;J. Daniel,&nbsp;A. Danilina,&nbsp;P. d’Argent,&nbsp;J. E. Davies,&nbsp;A. Davis,&nbsp;O. De Aguiar Francisco,&nbsp;J. de Boer,&nbsp;K. De Bruyn,&nbsp;S. De Capua,&nbsp;M. De Cian,&nbsp;U. De Freitas Carneiro Da Graca,&nbsp;E. De Lucia,&nbsp;J. M. De Miranda,&nbsp;L. De Paula,&nbsp;M. De Serio,&nbsp;D. De Simone,&nbsp;P. De Simone,&nbsp;F. De Vellis,&nbsp;J. A. de Vries,&nbsp;C. T. Dean,&nbsp;F. Debernardis,&nbsp;D. Decamp,&nbsp;V. Dedu,&nbsp;L. Del Buono,&nbsp;B. Delaney,&nbsp;H.-P. Dembinski,&nbsp;V. Denysenko,&nbsp;O. Deschamps,&nbsp;F. Dettori,&nbsp;B. Dey,&nbsp;P. Di Nezza,&nbsp;I. Diachkov,&nbsp;S. Didenko,&nbsp;L. Dieste Maronas,&nbsp;S. Ding,&nbsp;V. Dobishuk,&nbsp;A. Dolmatov,&nbsp;C. Dong,&nbsp;A. M. Donohoe,&nbsp;F. Dordei,&nbsp;A. C. dos Reis,&nbsp;L. Douglas,&nbsp;A. G. Downes,&nbsp;P. Duda,&nbsp;M. W. Dudek,&nbsp;L. Dufour,&nbsp;V. Duk,&nbsp;P. Durante,&nbsp;M. M. Duras,&nbsp;J. M. Durham,&nbsp;D. Dutta,&nbsp;A. Dziurda,&nbsp;A. Dzyuba,&nbsp;S. Easo,&nbsp;U. Egede,&nbsp;V. Egorychev,&nbsp;S. Eidelman,&nbsp;C. Eirea Orro,&nbsp;S. Eisenhardt,&nbsp;E. Ejopu,&nbsp;S. Ek-In,&nbsp;L. Eklund,&nbsp;S. Ely,&nbsp;A. Ene,&nbsp;E. Epple,&nbsp;S. Escher,&nbsp;J. Eschle,&nbsp;S. Esen,&nbsp;T. Evans,&nbsp;F. Fabiano,&nbsp;L. N. Falcao,&nbsp;Y. Fan,&nbsp;B. Fang,&nbsp;L. Fantini,&nbsp;M. Faria,&nbsp;S. Farry,&nbsp;D. Fazzini,&nbsp;L. F. Felkowski,&nbsp;M. Feo,&nbsp;M. Fernandez Gomez,&nbsp;A. D. Fernez,&nbsp;F. Ferrari,&nbsp;L. Ferreira Lopes,&nbsp;F. Ferreira Rodrigues,&nbsp;S. Ferreres Sole,&nbsp;M. Ferrillo,&nbsp;M. Ferro-Luzzi,&nbsp;S. Filippov,&nbsp;R. A. Fini,&nbsp;M. Fiorini,&nbsp;M. Firlej,&nbsp;K. M. Fischer,&nbsp;D. S. Fitzgerald,&nbsp;C. Fitzpatrick,&nbsp;T. Fiutowski,&nbsp;F. Fleuret,&nbsp;M. Fontana,&nbsp;F. Fontanelli,&nbsp;R. Forty,&nbsp;D. Foulds-Holt,&nbsp;V. Franco Lima,&nbsp;M. Franco Sevilla,&nbsp;M. Frank,&nbsp;E. Franzoso,&nbsp;G. Frau,&nbsp;C. Frei,&nbsp;D. A. Friday,&nbsp;J. Fu,&nbsp;Q. Fuehring,&nbsp;T. Fulghesu,&nbsp;E. Gabriel,&nbsp;G. Galati,&nbsp;M. D. Galati,&nbsp;A. Gallas Torreira,&nbsp;D. Galli,&nbsp;S. Gambetta,&nbsp;Y. Gan,&nbsp;M. Gandelman,&nbsp;P. Gandini,&nbsp;Y. Gao,&nbsp;Y. Gao,&nbsp;M. Garau,&nbsp;L. M. Garcia Martin,&nbsp;P. Garcia Moreno,&nbsp;J. García Pardiñas,&nbsp;B. Garcia Plana,&nbsp;F. A. Garcia Rosales,&nbsp;L. Garrido,&nbsp;C. Gaspar,&nbsp;R. E. Geertsema,&nbsp;D. Gerick,&nbsp;L. L. Gerken,&nbsp;E. Gersabeck,&nbsp;M. Gersabeck,&nbsp;T. Gershon,&nbsp;L. Giambastiani,&nbsp;V. Gibson,&nbsp;H. K. Giemza,&nbsp;A. L. Gilman,&nbsp;M. Giovannetti,&nbsp;A. Gioventù,&nbsp;P. Gironella Gironell,&nbsp;C. Giugliano,&nbsp;M. A. Giza,&nbsp;K. Gizdov,&nbsp;E. L. Gkougkousis,&nbsp;V. V. Gligorov,&nbsp;C. Göbel,&nbsp;E. Golobardes,&nbsp;D. Golubkov,&nbsp;A. Golutvin,&nbsp;A. Gomes,&nbsp;S. Gomez Fernandez,&nbsp;F. Goncalves Abrantes,&nbsp;M. Goncerz,&nbsp;G. Gong,&nbsp;I. V. Gorelov,&nbsp;C. Gotti,&nbsp;J. P. Grabowski,&nbsp;T. Grammatico,&nbsp;L. A. Granado Cardoso,&nbsp;E. Graugés,&nbsp;E. Graverini,&nbsp;G. Graziani,&nbsp;A. T. Grecu,&nbsp;L. M. Greeven,&nbsp;N. A. Grieser,&nbsp;L. Grillo,&nbsp;S. Gromov,&nbsp;B. R. Gruberg Cazon,&nbsp;C. Gu,&nbsp;M. Guarise,&nbsp;M. Guittiere,&nbsp;P. A. Günther,&nbsp;E. Gushchin,&nbsp;A. Guth,&nbsp;Y. Guz,&nbsp;T. Gys,&nbsp;T. Hadavizadeh,&nbsp;C. Hadjivasiliou,&nbsp;G. Haefeli,&nbsp;C. Haen,&nbsp;J. Haimberger,&nbsp;S. C. Haines,&nbsp;T. Halewood-leagas,&nbsp;M. M. Halvorsen,&nbsp;P. M. Hamilton,&nbsp;J. Hammerich,&nbsp;Q. Han,&nbsp;X. Han,&nbsp;E. B. Hansen,&nbsp;S. Hansmann-Menzemer,&nbsp;L. Hao,&nbsp;N. Harnew,&nbsp;T. Harrison,&nbsp;C. Hasse,&nbsp;M. Hatch,&nbsp;J. He,&nbsp;K. Heijhoff,&nbsp;C. Henderson,&nbsp;R. D. L. Henderson,&nbsp;A. M. Hennequin,&nbsp;K. Hennessy,&nbsp;L. Henry,&nbsp;J. Herd,&nbsp;J. Heuel,&nbsp;A. Hicheur,&nbsp;D. Hill,&nbsp;M. Hilton,&nbsp;S. E. Hollitt,&nbsp;J. Horswill,&nbsp;R. Hou,&nbsp;Y. Hou,&nbsp;J. Hu,&nbsp;J. Hu,&nbsp;W. Hu,&nbsp;X. Hu,&nbsp;W. Huang,&nbsp;X. Huang,&nbsp;W. Hulsbergen,&nbsp;R. J. Hunter,&nbsp;M. Hushchyn,&nbsp;D. Hutchcroft,&nbsp;P. Ibis,&nbsp;M. Idzik,&nbsp;D. Ilin,&nbsp;P. Ilten,&nbsp;A. Inglessi,&nbsp;A. Iniukhin,&nbsp;A. Ishteev,&nbsp;K. Ivshin,&nbsp;R. Jacobsson,&nbsp;H. Jage,&nbsp;S. J. Jaimes Elles,&nbsp;S. Jakobsen,&nbsp;E. Jans,&nbsp;B. K. Jashal,&nbsp;A. Jawahery,&nbsp;V. Jevtic,&nbsp;E. Jiang,&nbsp;X. Jiang,&nbsp;Y. Jiang,&nbsp;M. John,&nbsp;D. Johnson,&nbsp;C. R. Jones,&nbsp;T. P. Jones,&nbsp;B. Jost,&nbsp;N. Jurik,&nbsp;I. Juszczak,&nbsp;S. Kandybei,&nbsp;Y. Kang,&nbsp;M. Karacson,&nbsp;D. Karpenkov,&nbsp;M. Karpov,&nbsp;J. W. Kautz,&nbsp;F. Keizer,&nbsp;D. M. Keller,&nbsp;M. Kenzie,&nbsp;T. Ketel,&nbsp;B. Khanji,&nbsp;A. Kharisova,&nbsp;S. Kholodenko,&nbsp;G. Khreich,&nbsp;T. Kirn,&nbsp;V. S. Kirsebom,&nbsp;O. Kitouni,&nbsp;S. Klaver,&nbsp;N. Kleijne,&nbsp;K. Klimaszewski,&nbsp;M. R. Kmiec,&nbsp;S. Koliiev,&nbsp;A. Kondybayeva,&nbsp;A. Konoplyannikov,&nbsp;P. Kopciewicz,&nbsp;R. Kopecna,&nbsp;P. Koppenburg,&nbsp;M. Korolev,&nbsp;I. Kostiuk,&nbsp;O. Kot,&nbsp;S. Kotriakhova,&nbsp;A. Kozachuk,&nbsp;P. Kravchenko,&nbsp;L. Kravchuk,&nbsp;R. D. Krawczyk,&nbsp;M. Kreps,&nbsp;S. Kretzschmar,&nbsp;P. Krokovny,&nbsp;W. Krupa,&nbsp;W. Krzemien,&nbsp;J. Kubat,&nbsp;S. Kubis,&nbsp;W. Kucewicz,&nbsp;M. Kucharczyk,&nbsp;V. Kudryavtsev,&nbsp;A. Kupsc,&nbsp;D. Lacarrere,&nbsp;G. Lafferty,&nbsp;A. Lai,&nbsp;A. Lampis,&nbsp;D. Lancierini,&nbsp;C. Landesa Gomez,&nbsp;J. J. Lane,&nbsp;R. Lane,&nbsp;G. Lanfranchi,&nbsp;C. Langenbruch,&nbsp;J. Langer,&nbsp;O. Lantwin,&nbsp;T. Latham,&nbsp;F. Lazzari,&nbsp;M. Lazzaroni,&nbsp;R. Le Gac,&nbsp;S. H. Lee,&nbsp;R. Lefèvre,&nbsp;A. Leflat,&nbsp;S. Legotin,&nbsp;P. Lenisa,&nbsp;O. Leroy,&nbsp;T. Lesiak,&nbsp;B. Leverington,&nbsp;A. Li,&nbsp;H. Li,&nbsp;K. Li,&nbsp;P. Li,&nbsp;P.-R. Li,&nbsp;S. Li,&nbsp;T. Li,&nbsp;T. Li,&nbsp;Y. Li,&nbsp;Z. Li,&nbsp;X. Liang,&nbsp;C. Lin,&nbsp;T. Lin,&nbsp;R. Lindner,&nbsp;V. Lisovskyi,&nbsp;R. Litvinov,&nbsp;G. Liu,&nbsp;H. Liu,&nbsp;Q. Liu,&nbsp;S. Liu,&nbsp;A. Lobo Salvia,&nbsp;A. Loi,&nbsp;R. Lollini,&nbsp;J. Lomba Castro,&nbsp;I. Longstaff,&nbsp;J. H. Lopes,&nbsp;A. Lopez Huertas,&nbsp;S. L.ópez Soliño,&nbsp;G. H. Lovell,&nbsp;Y. Lu,&nbsp;C. Lucarelli,&nbsp;D. Lucchesi,&nbsp;S. Luchuk,&nbsp;M. Lucio Martinez,&nbsp;V. Lukashenko,&nbsp;Y. Luo,&nbsp;A. Lupato,&nbsp;E. Luppi,&nbsp;A. Lusiani,&nbsp;K. Lynch,&nbsp;X.-R. Lyu,&nbsp;L. Ma,&nbsp;R. Ma,&nbsp;S. Maccolini,&nbsp;F. Machefert,&nbsp;F. Maciuc,&nbsp;I. Mackay,&nbsp;V. Macko,&nbsp;P. Mackowiak,&nbsp;L. R. Madhan Mohan,&nbsp;A. Maevskiy,&nbsp;D. Maisuzenko,&nbsp;M. W. Majewski,&nbsp;J. J. Malczewski,&nbsp;S. Malde,&nbsp;B. Malecki,&nbsp;A. Malinin,&nbsp;T. Maltsev,&nbsp;G. Manca,&nbsp;G. Mancinelli,&nbsp;C. Mancuso,&nbsp;D. Manuzzi,&nbsp;C. A. Manzari,&nbsp;D. Marangotto,&nbsp;J. M. Maratas,&nbsp;J. F. Marchand,&nbsp;U. Marconi,&nbsp;S. Mariani,&nbsp;C. Marin Benito,&nbsp;J. Marks,&nbsp;A. M. Marshall,&nbsp;P. J. Marshall,&nbsp;G. Martelli,&nbsp;G. Martellotti,&nbsp;L. Martinazzoli,&nbsp;M. Martinelli,&nbsp;D. Martinez Santos,&nbsp;F. Martinez Vidal,&nbsp;A. Massafferri,&nbsp;M. Materok,&nbsp;R. Matev,&nbsp;A. Mathad,&nbsp;V. Matiunin,&nbsp;C. Matteuzzi,&nbsp;K. R. Mattioli,&nbsp;A. Mauri,&nbsp;E. Maurice,&nbsp;J. Mauricio,&nbsp;M. Mazurek,&nbsp;M. McCann,&nbsp;L. Mcconnell,&nbsp;T. H. McGrath,&nbsp;N. T. McHugh,&nbsp;A. McNab,&nbsp;R. McNulty,&nbsp;J. V. Mead,&nbsp;B. Meadows,&nbsp;G. Meier,&nbsp;D. Melnychuk,&nbsp;S. Meloni,&nbsp;M. Merk,&nbsp;A. Merli,&nbsp;L. Meyer Garcia,&nbsp;D. Miao,&nbsp;M. Mikhasenko,&nbsp;D. A. Milanes,&nbsp;E. Millard,&nbsp;M. Milovanovic,&nbsp;M.-N. Minard,&nbsp;A. Minotti,&nbsp;T. Miralles,&nbsp;S. E. Mitchell,&nbsp;B. Mitreska,&nbsp;D. S. Mitzel,&nbsp;A. Mödden,&nbsp;R. A. Mohammed,&nbsp;R. D. Moise,&nbsp;S. Mokhnenko,&nbsp;T. Mombächer,&nbsp;M. Monk,&nbsp;I. A. Monroy,&nbsp;S. Monteil,&nbsp;M. Morandin,&nbsp;G. Morello,&nbsp;M. J. Morello,&nbsp;J. Moron,&nbsp;A. B. Morris,&nbsp;A. G. Morris,&nbsp;R. Mountain,&nbsp;H. Mu,&nbsp;E. Muhammad,&nbsp;F. Muheim,&nbsp;M. Mulder,&nbsp;K. Müller,&nbsp;C. H. Murphy,&nbsp;D. Murray,&nbsp;R. Murta,&nbsp;P. Muzzetto,&nbsp;P. Naik,&nbsp;T. Nakada,&nbsp;R. Nandakumar,&nbsp;T. Nanut,&nbsp;I. Nasteva,&nbsp;M. Needham,&nbsp;N. Neri,&nbsp;S. Neubert,&nbsp;N. Neufeld,&nbsp;P. Neustroev,&nbsp;R. Newcombe,&nbsp;J. Nicolini,&nbsp;E. M. Niel,&nbsp;S. Nieswand,&nbsp;N. Nikitin,&nbsp;N. S. Nolte,&nbsp;C. Normand,&nbsp;J. Novoa Fernandez,&nbsp;C. Nunez,&nbsp;A. Oblakowska-Mucha,&nbsp;V. Obraztsov,&nbsp;T. Oeser,&nbsp;D. P. O’Hanlon,&nbsp;S. Okamura,&nbsp;R. Oldeman,&nbsp;F. Oliva,&nbsp;C. J. G. Onderwater,&nbsp;R. H. O’Neil,&nbsp;J. M. Otalora Goicochea,&nbsp;T. Ovsiannikova,&nbsp;P. Owen,&nbsp;A. Oyanguren,&nbsp;O. Ozcelik,&nbsp;K. O. Padeken,&nbsp;B. Pagare,&nbsp;P. R. Pais,&nbsp;T. Pajero,&nbsp;A. Palano,&nbsp;M. Palutan,&nbsp;Y. Pan,&nbsp;G. Panshin,&nbsp;L. Paolucci,&nbsp;A. Papanestis,&nbsp;M. Pappagallo,&nbsp;L. L. Pappalardo,&nbsp;C. Pappenheimer,&nbsp;W. Parker,&nbsp;C. Parkes,&nbsp;B. Passalacqua,&nbsp;G. Passaleva,&nbsp;A. Pastore,&nbsp;M. Patel,&nbsp;C. Patrignani,&nbsp;C. J. Pawley,&nbsp;A. Pearce,&nbsp;A. Pellegrino,&nbsp;M. Pepe Altarelli,&nbsp;S. Perazzini,&nbsp;D. Pereima,&nbsp;A. Pereiro Castro,&nbsp;P. Perret,&nbsp;M. Petric,&nbsp;K. Petridis,&nbsp;A. Petrolini,&nbsp;A. Petrov,&nbsp;S. Petrucci,&nbsp;M. Petruzzo,&nbsp;H. Pham,&nbsp;A. Philippov,&nbsp;R. Piandani,&nbsp;L. Pica,&nbsp;M. Piccini,&nbsp;B. Pietrzyk,&nbsp;G. Pietrzyk,&nbsp;M. Pili,&nbsp;D. Pinci,&nbsp;F. Pisani,&nbsp;M. Pizzichemi,&nbsp;V. Placinta,&nbsp;J. Plews,&nbsp;M. Plo Casasus,&nbsp;F. Polci,&nbsp;M. Poli Lener,&nbsp;M. Poliakova,&nbsp;A. Poluektov,&nbsp;N. Polukhina,&nbsp;I. Polyakov,&nbsp;E. Polycarpo,&nbsp;S. Ponce,&nbsp;D. Popov,&nbsp;S. Popov,&nbsp;S. Poslavskii,&nbsp;K. Prasanth,&nbsp;L. Promberger,&nbsp;C. Prouve,&nbsp;V. Pugatch,&nbsp;V. Puill,&nbsp;G. Punzi,&nbsp;H. R. Qi,&nbsp;W. Qian,&nbsp;N. Qin,&nbsp;S. Qu,&nbsp;R. Quagliani,&nbsp;N. V. Raab,&nbsp;R. I. Rabadan Trejo,&nbsp;B. Rachwal,&nbsp;J. H. Rademacker,&nbsp;R. Rajagopalan,&nbsp;M. Rama,&nbsp;M. Ramos Pernas,&nbsp;M. S. Rangel,&nbsp;F. Ratnikov,&nbsp;G. Raven,&nbsp;M. Rebollo De Miguel,&nbsp;F. Redi,&nbsp;J. Reich,&nbsp;F. Reiss,&nbsp;C. Remon Alepuz,&nbsp;Z. Ren,&nbsp;P. K. Resmi,&nbsp;R. Ribatti,&nbsp;A. M. Ricci,&nbsp;S. Ricciardi,&nbsp;K. Richardson,&nbsp;M. Richardson-Slipper,&nbsp;K. Rinnert,&nbsp;P. Robbe,&nbsp;G. Robertson,&nbsp;A. B. Rodrigues,&nbsp;E. Rodrigues,&nbsp;E. Rodriguez Fernandez,&nbsp;J. A. Rodriguez Lopez,&nbsp;E. Rodriguez Rodriguez,&nbsp;D. L. Rolf,&nbsp;A. Rollings,&nbsp;P. Roloff,&nbsp;V. Romanovskiy,&nbsp;M. Romero Lamas,&nbsp;A. Romero Vidal,&nbsp;J. D. Roth,&nbsp;M. Rotondo,&nbsp;M. S. Rudolph,&nbsp;T. Ruf,&nbsp;R. A. Ruiz Fernandez,&nbsp;J. Ruiz Vidal,&nbsp;A. Ryzhikov,&nbsp;J. Ryzka,&nbsp;J. J. Saborido Silva,&nbsp;N. Sagidova,&nbsp;N. Sahoo,&nbsp;B. Saitta,&nbsp;M. Salomoni,&nbsp;C. Sanchez Gras,&nbsp;I. Sanderswood,&nbsp;R. Santacesaria,&nbsp;C. Santamarina Rios,&nbsp;M. Santimaria,&nbsp;E. Santovetti,&nbsp;D. Saranin,&nbsp;G. Sarpis,&nbsp;M. Sarpis,&nbsp;A. Sarti,&nbsp;C. Satriano,&nbsp;A. Satta,&nbsp;M. Saur,&nbsp;D. Savrina,&nbsp;H. Sazak,&nbsp;L. G. Scantlebury Smead,&nbsp;A. Scarabotto,&nbsp;S. Schael,&nbsp;S. Scherl,&nbsp;M. Schiller,&nbsp;H. Schindler,&nbsp;M. Schmelling,&nbsp;B. Schmidt,&nbsp;S. Schmitt,&nbsp;O. Schneider,&nbsp;A. Schopper,&nbsp;M. Schubiger,&nbsp;S. Schulte,&nbsp;M. H. Schune,&nbsp;R. Schwemmer,&nbsp;B. Sciascia,&nbsp;A. Sciuccati,&nbsp;S. Sellam,&nbsp;A. Semennikov,&nbsp;M. Senghi Soares,&nbsp;A. Sergi,&nbsp;N. Serra,&nbsp;L. Sestini,&nbsp;A. Seuthe,&nbsp;Y. Shang,&nbsp;D. M. Shangase,&nbsp;M. Shapkin,&nbsp;I. Shchemerov,&nbsp;L. Shchutska,&nbsp;T. Shears,&nbsp;L. Shekhtman,&nbsp;Z. Shen,&nbsp;S. Sheng,&nbsp;V. Shevchenko,&nbsp;B. Shi,&nbsp;E. B. Shields,&nbsp;Y. Shimizu,&nbsp;E. Shmanin,&nbsp;R. Shorkin,&nbsp;J. D. Shupperd,&nbsp;B. G. Siddi,&nbsp;R. Silva Coutinho,&nbsp;G. Simi,&nbsp;S. Simone,&nbsp;M. Singla,&nbsp;N. Skidmore,&nbsp;R. Skuza,&nbsp;T. Skwarnicki,&nbsp;M. W. Slater,&nbsp;J. C. Smallwood,&nbsp;J. G. Smeaton,&nbsp;E. Smith,&nbsp;K. Smith,&nbsp;M. Smith,&nbsp;A. Snoch,&nbsp;L. Soares Lavra,&nbsp;M. D. Sokoloff,&nbsp;F. J. P. Soler,&nbsp;A. Solomin,&nbsp;A. Solovev,&nbsp;I. Solovyev,&nbsp;R. Song,&nbsp;F. L. Souza De Almeida,&nbsp;B. Souza De Paula,&nbsp;B. Spaan,&nbsp;E. Spadaro Norella,&nbsp;E. Spedicato,&nbsp;E. Spiridenkov,&nbsp;P. Spradlin,&nbsp;V. Sriskaran,&nbsp;F. Stagni,&nbsp;M. Stahl,&nbsp;S. Stahl,&nbsp;S. Stanislaus,&nbsp;E. N. Stein,&nbsp;O. Steinkamp,&nbsp;O. Stenyakin,&nbsp;H. Stevens,&nbsp;S. Stone,&nbsp;D. Strekalina,&nbsp;Y. S. Su,&nbsp;F. Suljik,&nbsp;J. Sun,&nbsp;L. Sun,&nbsp;Y. Sun,&nbsp;P. Svihra,&nbsp;P. N. Swallow,&nbsp;K. Swientek,&nbsp;A. Szabelski,&nbsp;T. Szumlak,&nbsp;M. Szymanski,&nbsp;Y. Tan,&nbsp;S. Taneja,&nbsp;M. D. Tat,&nbsp;A. Terentev,&nbsp;F. Teubert,&nbsp;E. Thomas,&nbsp;D. J. D. Thompson,&nbsp;K. A. Thomson,&nbsp;H. Tilquin,&nbsp;V. Tisserand,&nbsp;S. T’Jampens,&nbsp;M. Tobin,&nbsp;L. Tomassetti,&nbsp;G. Tonani,&nbsp;X. Tong,&nbsp;D. Torres Machado,&nbsp;D. Y. Tou,&nbsp;S. M. Trilov,&nbsp;C. Trippl,&nbsp;G. Tuci,&nbsp;A. Tully,&nbsp;N. Tuning,&nbsp;A. Ukleja,&nbsp;D. J. Unverzagt,&nbsp;A. Usachov,&nbsp;A. Ustyuzhanin,&nbsp;U. Uwer,&nbsp;A. Vagner,&nbsp;V. Vagnoni,&nbsp;A. Valassi,&nbsp;G. Valenti,&nbsp;N. Valls Canudas,&nbsp;M. van Beuzekom,&nbsp;M. Van Dijk,&nbsp;H. Van Hecke,&nbsp;E. van Herwijnen,&nbsp;C. B. Van Hulse,&nbsp;M. van Veghel,&nbsp;R. Vazquez Gomez,&nbsp;P. Vazquez Regueiro,&nbsp;C. Vázquez Sierra,&nbsp;S. Vecchi,&nbsp;J. J. Velthuis,&nbsp;M. Veltri,&nbsp;A. Venkateswaran,&nbsp;M. Veronesi,&nbsp;M. Vesterinen,&nbsp;D. Vieira,&nbsp;M. Vieites Diaz,&nbsp;X. Vilasis-Cardona,&nbsp;E. Vilella Figueras,&nbsp;A. Villa,&nbsp;P. Vincent,&nbsp;F. C. Volle,&nbsp;D. vom Bruch,&nbsp;A. Vorobyev,&nbsp;V. Vorobyev,&nbsp;N. Voropaev,&nbsp;K. Vos,&nbsp;C. Vrahas,&nbsp;R. Waldi,&nbsp;J. Walsh,&nbsp;G. Wan,&nbsp;C. Wang,&nbsp;G. Wang,&nbsp;J. Wang,&nbsp;J. Wang,&nbsp;J. Wang,&nbsp;J. Wang,&nbsp;M. Wang,&nbsp;R. Wang,&nbsp;X. Wang,&nbsp;Y. Wang,&nbsp;Z. Wang,&nbsp;Z. Wang,&nbsp;Z. Wang,&nbsp;J. A. Ward,&nbsp;N. K. Watson,&nbsp;D. Websdale,&nbsp;Y. Wei,&nbsp;C. Weisser,&nbsp;B. D. C. Westhenry,&nbsp;D. J. White,&nbsp;M. Whitehead,&nbsp;A. R. Wiederhold,&nbsp;D. Wiedner,&nbsp;G. Wilkinson,&nbsp;M. K. Wilkinson,&nbsp;I. Williams,&nbsp;M. Williams,&nbsp;M. R. J. Williams,&nbsp;R. Williams,&nbsp;F. F. Wilson,&nbsp;W. Wislicki,&nbsp;M. Witek,&nbsp;L. Witola,&nbsp;C. P. Wong,&nbsp;G. Wormser,&nbsp;S. A. Wotton,&nbsp;H. Wu,&nbsp;J. Wu,&nbsp;K. Wyllie,&nbsp;Z. Xiang,&nbsp;D. Xiao,&nbsp;Y. Xie,&nbsp;A. Xu,&nbsp;J. Xu,&nbsp;L. Xu,&nbsp;L. Xu,&nbsp;M. Xu,&nbsp;Q. Xu,&nbsp;Z. Xu,&nbsp;Z. Xu,&nbsp;D. Yang,&nbsp;S. Yang,&nbsp;X. Yang,&nbsp;Y. Yang,&nbsp;Z. Yang,&nbsp;Z. Yang,&nbsp;L. E. Yeomans,&nbsp;V. Yeroshenko,&nbsp;H. Yeung,&nbsp;H. Yin,&nbsp;J. Yu,&nbsp;X. Yuan,&nbsp;E. Zaffaroni,&nbsp;M. Zavertyaev,&nbsp;M. Zdybal,&nbsp;O. Zenaiev,&nbsp;M. Zeng,&nbsp;C. Zhang,&nbsp;D. Zhang,&nbsp;L. Zhang,&nbsp;S. Zhang,&nbsp;S. Zhang,&nbsp;Y. Zhang,&nbsp;Y. Zhang,&nbsp;A. Zharkova,&nbsp;A. Zhelezov,&nbsp;Y. Zheng,&nbsp;T. Zhou,&nbsp;X. Zhou,&nbsp;Y. Zhou,&nbsp;V. Zhovkovska,&nbsp;X. Zhu,&nbsp;X. Zhu,&nbsp;Z. Zhu,&nbsp;V. Zhukov,&nbsp;Q. Zou,&nbsp;S. Zucchelli,&nbsp;D. Zuliani,&nbsp;G. Zunica,&nbsp;LHCb Collaboration","doi":"10.1140/epjc/s10052-023-11815-1","DOIUrl":"10.1140/epjc/s10052-023-11815-1","url":null,"abstract":"","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11815-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4326402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinks in cuscuton-like models with two scalar fields 具有两个标量场的类cuson模型中的扭结
IF 4.4 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-08-08 DOI: 10.1140/epjc/s10052-023-11878-0
I. Andrade, R. Menezes

This work deals with the presence of localized structures in relativistic systems described by two real scalar fields in two-dimensional spacetime. We consider the usual two-field model with the inclusion of the cuscuton term, which couples the fields regardless the potential. First we follow the steps of previous work to show that the system supports a first-order framework, allowing us to obtain the energy of solutions without knowing their explicit form. The cuscuton term brings versatility into the first-order equations, which gives rise to interesting modifications in the profiles of topological configurations, such as the smooth control over their slope and the internal structure of the energy density.

本文研究了二维时空中由两个实标量场描述的相对论系统中局域结构的存在。我们考虑通常的包含cuscuton项的双场模型,它将场耦合,而不考虑势。首先,我们遵循之前工作的步骤来证明系统支持一阶框架,允许我们在不知道解的显式形式的情况下获得解的能量。cuscuton项为一阶方程带来了通用性,从而在拓扑构型的轮廓中产生了有趣的修改,例如对其斜率的平滑控制和能量密度的内部结构。
{"title":"Kinks in cuscuton-like models with two scalar fields","authors":"I. Andrade,&nbsp;R. Menezes","doi":"10.1140/epjc/s10052-023-11878-0","DOIUrl":"10.1140/epjc/s10052-023-11878-0","url":null,"abstract":"<div><p>This work deals with the presence of localized structures in relativistic systems described by two real scalar fields in two-dimensional spacetime. We consider the usual two-field model with the inclusion of the cuscuton term, which couples the fields regardless the potential. First we follow the steps of previous work to show that the system supports a first-order framework, allowing us to obtain the energy of solutions without knowing their explicit form. The cuscuton term brings versatility into the first-order equations, which gives rise to interesting modifications in the profiles of topological configurations, such as the smooth control over their slope and the internal structure of the energy density.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11878-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4332492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electroweak superpartner production at 13.6 Tev with Resummino 用resume生产13.6 Tev的电弱超级伙伴
IF 4.4 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-08-08 DOI: 10.1140/epjc/s10052-023-11888-y
Juri Fiaschi, Benjamin Fuks, Michael Klasen, Alexander Neuwirth

Due to the greater experimental precision expected from the currently ongoing LHC Run 3, equally accurate theoretical predictions are essential. We update the documentation of the Resummino package, a program dedicated to precision cross section calculations for the production of a pair of sleptons, electroweakinos, and leptons in the presence of extra gauge bosons, and for the production of an associated electroweakino-squark or electroweakino-gluino pair. We detail different additions that have been released since the initial version of the program a decade ago, and then use the code to investigate the impact of threshold resummation corrections at the next-to-next-to-leading-logarithmic accuracy. As an illustration of the code we consider the production of pairs of electroweakinos and sleptons at the LHC for centre-of-mass energies ranging up to 13.6 TeV and in simplified model scenarios. We find slightly increased total cross section values, accompanied by a significant decrease of the associated theoretical uncertainties. Furthermore, we explore the dependence of the results on the squark masses.

由于目前正在进行的LHC运行3的实验精度更高,同样准确的理论预测是必不可少的。我们更新了Resummino包的文档,这是一个专门用于在额外规范玻色子存在下产生一对睡眠子、电弱子和轻子的精确截面计算的程序,以及用于产生相关的电弱子-夸克或电弱子-胶子对的程序。我们详细介绍了自十年前该程序的初始版本发布以来所添加的不同内容,然后使用代码来研究阈值恢复更正在倒数第二到倒数第一对数精度上的影响。为了说明代码,我们考虑了在简化模型情景下,在质心能量高达13.6 TeV的大型强子对撞机中产生电弱子和睡眠子对的情况。我们发现总横截面值略有增加,伴随着相关理论不确定度的显著降低。此外,我们还探讨了结果与夸克质量的关系。
{"title":"Electroweak superpartner production at 13.6 Tev with Resummino","authors":"Juri Fiaschi,&nbsp;Benjamin Fuks,&nbsp;Michael Klasen,&nbsp;Alexander Neuwirth","doi":"10.1140/epjc/s10052-023-11888-y","DOIUrl":"10.1140/epjc/s10052-023-11888-y","url":null,"abstract":"<div><p>Due to the greater experimental precision expected from the currently ongoing LHC Run 3, equally accurate theoretical predictions are essential. We update the documentation of the <i>Resummino</i> package, a program dedicated to precision cross section calculations for the production of a pair of sleptons, electroweakinos, and leptons in the presence of extra gauge bosons, and for the production of an associated electroweakino-squark or electroweakino-gluino pair. We detail different additions that have been released since the initial version of the program a decade ago, and then use the code to investigate the impact of threshold resummation corrections at the next-to-next-to-leading-logarithmic accuracy. As an illustration of the code we consider the production of pairs of electroweakinos and sleptons at the LHC for centre-of-mass energies ranging up to 13.6 TeV and in simplified model scenarios. We find slightly increased total cross section values, accompanied by a significant decrease of the associated theoretical uncertainties. Furthermore, we explore the dependence of the results on the squark masses.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11888-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4331121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Charged particle dynamics in black hole split monopole magnetosphere 黑洞分裂单极磁层中的带电粒子动力学
IF 4.4 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-08-07 DOI: 10.1140/epjc/s10052-023-11897-x
Saeed Ullah Khan, Zhi-Min Chen

This article examines particle dynamics and acceleration in the magnetic Penrose process (MPP) around Kerr black hole (BH) in a split monopole magnetic field. The characteristics of charged particle motion around magnetized BHs reveal four differen feasible regimes of ionized Keplerian disk behaviour: survival in regular epicyclic motion; changing into a chaotic toroidal state; collapse due to escaping along magnetic field lines and collapse due to falling into the BHs. By making use of the effective potential, we have investigated the position of stable circular orbits for both in- and off-equatorial planes. We observed that the positive magnetic field ({{mathcal {P}}}>0) increases the stability of effective potential, whereas ({{mathcal {P}}}<0) diminishes its stability. We show that ultra-efficient energy extraction from spinning supermassive BH controlled by the MPP can pay the bill. We anticipate neutral particle ionization, such as neutron beta-decay, edging closer to the BH horizon, charging protons to more than (10^{20})eV for a supermassive BH of mass (10^9M_{odot }) and a magnetic field of strength (10^4)G.

本文研究了分裂单极磁场中克尔黑洞(BH)周围磁彭罗斯过程(MPP)中的粒子动力学和加速度。磁化黑洞周围带电粒子运动的特征揭示了电离开普勒盘行为的四种不同可行模式:在规则的周转运动中存活;变为混沌环面态;由于沿磁力线逃逸而坍缩,由于落入黑洞而坍缩。利用有效势,我们研究了赤道内和赤道外平面稳定圆轨道的位置。我们观察到,正磁场({{mathcal {P}}}>0)增加了有效电位的稳定性,而({{mathcal {P}}}<0)降低了有效电位的稳定性。我们的研究表明,由MPP控制的旋转超大质量黑洞的超高效能量提取可以支付账单。我们预计中性粒子电离,如中子β衰变,会逐渐靠近黑洞视界,在质量为(10^9M_{odot })的超大质量黑洞和强度为(10^4) G的磁场中,质子的电荷超过(10^{20}) eV。
{"title":"Charged particle dynamics in black hole split monopole magnetosphere","authors":"Saeed Ullah Khan,&nbsp;Zhi-Min Chen","doi":"10.1140/epjc/s10052-023-11897-x","DOIUrl":"10.1140/epjc/s10052-023-11897-x","url":null,"abstract":"<div><p>This article examines particle dynamics and acceleration in the magnetic Penrose process (MPP) around Kerr black hole (BH) in a split monopole magnetic field. The characteristics of charged particle motion around magnetized BHs reveal four differen feasible regimes of ionized Keplerian disk behaviour: survival in regular epicyclic motion; changing into a chaotic toroidal state; collapse due to escaping along magnetic field lines and collapse due to falling into the BHs. By making use of the effective potential, we have investigated the position of stable circular orbits for both in- and off-equatorial planes. We observed that the positive magnetic field <span>({{mathcal {P}}}&gt;0)</span> increases the stability of effective potential, whereas <span>({{mathcal {P}}}&lt;0)</span> diminishes its stability. We show that ultra-efficient energy extraction from spinning supermassive BH controlled by the MPP can pay the bill. We anticipate neutral particle ionization, such as neutron beta-decay, edging closer to the BH horizon, charging protons to more than <span>(10^{20})</span>eV for a supermassive BH of mass <span>(10^9M_{odot })</span> and a magnetic field of strength <span>(10^4)</span>G.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11897-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4609163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analogue gravity and the island prescription 模拟重力和海岛处方
IF 4.4 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-08-07 DOI: 10.1140/epjc/s10052-023-11874-4
Shahrokh Parvizi, Mojtaba Shahbazi

Analogue gravity succeeded to simulate Hawking radiation and test it in laboratories. In this setting, the black hole is simulated by an area in a fluid, say water, where no sound wave can escape the event horizon and phonon oscillations are detected as Hawking radiation. This means that the analogue simulations can provide an alternative description, and consequently, a new insight to the high energy physics problems. Now it would be interesting to see what information loss means and how island prescription is interpreted in water experiment. In this paper we show that the analogue of information loss is the loss of momentum per unit mass of the fluid over the horizon and maintaining the momentum loss leads to the island prescription.

模拟重力成功地模拟了霍金辐射并在实验室中进行了测试。在这种情况下,黑洞是通过流体中的一个区域来模拟的,比如水,在这个区域里,没有声波可以逃离视界,声子振荡被检测为霍金辐射。这意味着模拟模拟可以提供另一种描述,从而为高能物理问题提供新的见解。现在看看信息丢失意味着什么,以及岛屿处方如何在水实验中解释,这将是一件有趣的事情。在本文中,我们证明了信息损失的类比是流体在视界上每单位质量的动量损失,保持动量损失导致岛式处方。
{"title":"Analogue gravity and the island prescription","authors":"Shahrokh Parvizi,&nbsp;Mojtaba Shahbazi","doi":"10.1140/epjc/s10052-023-11874-4","DOIUrl":"10.1140/epjc/s10052-023-11874-4","url":null,"abstract":"<div><p>Analogue gravity succeeded to simulate Hawking radiation and test it in laboratories. In this setting, the black hole is simulated by an area in a fluid, say water, where no sound wave can escape the event horizon and phonon oscillations are detected as Hawking radiation. This means that the analogue simulations can provide an alternative description, and consequently, a new insight to the high energy physics problems. Now it would be interesting to see what information loss means and how island prescription is interpreted in water experiment. In this paper we show that the analogue of information loss is the loss of momentum per unit mass of the fluid over the horizon and maintaining the momentum loss leads to the island prescription.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11874-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4289404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
The European Physical Journal C
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1