Pub Date : 2023-08-09DOI: 10.1140/epjc/s10052-023-11858-4
Chandrachur Chakraborty, Parthasarathi Majumdar
Inspired by the reported existence of substantive magnetic fields in the vicinity of the central supermassive black holes in Sagittarius A* and Messier 87*, we consider test particle motion in the spacetime close to a generic spherical black hole in the presence of magnetic fields in its vicinity. Modelling such a spacetime in terms of an axisymmetric, non-rotating Ernst–Melvin–Schwarzschild black hole geometry with appropriate parameters, we compute the geodesic nodal-plane precession frequency for a test particle with mass, for such a spacetime, and obtain a non-vanishing result, surpassing earlier folklore that only axisymmetric spacetimes with rotation (non-vanishing Kerr parameter) can generate such a precession. We call this magnetic field-generated phenomenon Gravitational Larmor Precession. What we present here is a Proof of Concept incipient assay, rather than a detailed analysis of supermassive black holes with magnetic fields in their neighbourhood. However, for completeness, we briefly discuss observational prospects of this precession in terms of available magnetic field strengths close to central black holes in galaxies.
{"title":"Gravitational Larmor precession","authors":"Chandrachur Chakraborty, Parthasarathi Majumdar","doi":"10.1140/epjc/s10052-023-11858-4","DOIUrl":"10.1140/epjc/s10052-023-11858-4","url":null,"abstract":"<div><p>Inspired by the reported existence of substantive magnetic fields in the vicinity of the central supermassive black holes in Sagittarius A* and Messier 87*, we consider test particle motion in the spacetime close to a generic spherical black hole in the presence of magnetic fields in its vicinity. Modelling such a spacetime in terms of an axisymmetric, non-rotating Ernst–Melvin–Schwarzschild black hole geometry with appropriate parameters, we compute the geodesic nodal-plane precession frequency for a test particle with mass, for such a spacetime, and obtain a non-vanishing result, surpassing earlier folklore that only axisymmetric spacetimes with rotation (non-vanishing Kerr parameter) can generate such a precession. We call this magnetic field-generated phenomenon Gravitational Larmor Precession. What we present here is a Proof of Concept incipient assay, rather than a detailed analysis of supermassive black holes with magnetic fields in their neighbourhood. However, for completeness, we briefly discuss observational prospects of this precession in terms of available magnetic field strengths close to central black holes in galaxies.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11858-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4681215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-09DOI: 10.1140/epjc/s10052-023-11864-6
Stefan Sandner, Miguel Escudero, Samuel J. Witte
The cosmic microwave background (CMB) has proven to be an invaluable tool for studying the properties and interactions of neutrinos, providing insight not only into the sum of neutrino masses but also the free streaming nature of neutrinos prior to recombination. The CMB is a particularly powerful probe of new eV-scale bosons interacting with neutrinos, as these particles can thermalize with neutrinos via the inverse decay process, (nu bar{nu } rightarrow X), and suppress neutrino free streaming near recombination – even for couplings as small as (lambda _{nu } sim {mathcal {O}}(10^{-13})). Here, we revisit CMB constraints on such bosons, improving upon a number of approximations previously adopted in the literature and generalizing the constraints to a broader class of models. This includes scenarios in which the boson is either spin-0 or spin-1, the number of interacting neutrinos is either (N_{textrm{int}} = 1,2 ) or 3, and the case in which a primordial abundance of the species is present. We apply these bounds to well-motivated models, such as the singlet majoron model or a light (U(1)_{L_{mu }-L_{tau }}) gauge boson, and find that they represent the leading constraints for masses (m_Xsim 1, {textrm{eV}}). Finally, we revisit the extent to which neutrino-philic bosons can ameliorate the Hubble tension, and find that recent improvements in the understanding of how such bosons damp neutrino free streaming reduces the previously found success of this proposal.
{"title":"Precision CMB constraints on eV-scale bosons coupled to neutrinos","authors":"Stefan Sandner, Miguel Escudero, Samuel J. Witte","doi":"10.1140/epjc/s10052-023-11864-6","DOIUrl":"10.1140/epjc/s10052-023-11864-6","url":null,"abstract":"<div><p>The cosmic microwave background (CMB) has proven to be an invaluable tool for studying the properties and interactions of neutrinos, providing insight not only into the sum of neutrino masses but also the free streaming nature of neutrinos prior to recombination. The CMB is a particularly powerful probe of new eV-scale bosons interacting with neutrinos, as these particles can thermalize with neutrinos via the inverse decay process, <span>(nu bar{nu } rightarrow X)</span>, and suppress neutrino free streaming near recombination – even for couplings as small as <span>(lambda _{nu } sim {mathcal {O}}(10^{-13}))</span>. Here, we revisit CMB constraints on such bosons, improving upon a number of approximations previously adopted in the literature and generalizing the constraints to a broader class of models. This includes scenarios in which the boson is either spin-0 or spin-1, the number of interacting neutrinos is either <span>(N_{textrm{int}} = 1,2 )</span> or 3, and the case in which a primordial abundance of the species is present. We apply these bounds to well-motivated models, such as the singlet majoron model or a light <span>(U(1)_{L_{mu }-L_{tau }})</span> gauge boson, and find that they represent the leading constraints for masses <span>(m_Xsim 1, {textrm{eV}})</span>. Finally, we revisit the extent to which neutrino-philic bosons can ameliorate the Hubble tension, and find that recent improvements in the understanding of how such bosons damp neutrino free streaming reduces the previously found success of this proposal.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11864-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4681216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-09DOI: 10.1140/epjc/s10052-023-11896-y
H. R. Fazlollahi
In this paper and in the follows of the holographic approach to describe the primary acceleration and the late-time acceleration eras, we have considered and unified inflation and dark energy while accelerated particle holographic (APHM) density is used (Fazlollahi in Chin Phys C 47:035101, 2023). As discussed, establishing holographic model for constant roll inflation during the very early Universe leads one to explicit form of Hubble parameter which satisfies inflationary era. The validity of such holographic constant roll inflation with respect to the Planck data puts a certain bound on the infrared cut-off at the time of horizon crossing. Beside the mere inflation, the Hubble parameter gives explicit form for density of accelerated particle holographic model. It is shown such density due to inflationary bound condition on infrared cut-off could present late-time acceleration epoch. Consequently, inflation and late time expansion era unified in unique infrared cut-off model. Moreover, such corresponding fractional density gives more matter regimes during matter era. Nevertheless, studying matter structure formation during matter era reveals the model is not in conflict with ({Lambda })CDM model.
在本文及后续描述主加速和晚时间加速时代的全息方法中,我们考虑并统一了暴胀和暗能量,同时使用了加速粒子全息(APHM)密度(Fazlollahi In Chin Phys C 47:035101, 2023)。如前所述,建立宇宙早期恒定滚动暴胀的全息模型可以得到满足暴胀时代的哈勃参数的明确形式。相对于普朗克数据,这种全息恒定滚动膨胀的有效性对视界穿越时的红外截止点有一定的限制。除了单纯的膨胀外,哈勃参数给出了加速粒子密度全息模型的显式形式。结果表明,由于红外截止点的膨胀约束条件,这样的密度可以出现晚时间的加速纪元。因此,暴胀和晚时间膨胀时代统一在一个独特的红外截止模型中。此外,这种相应的分数密度在物质时代给出了更多的物质状态。然而,对物质时代物质结构形成的研究表明,该模型与({Lambda }) CDM模型并不冲突。
{"title":"Unified inflation and dark energy with accelerated particle holographic model","authors":"H. R. Fazlollahi","doi":"10.1140/epjc/s10052-023-11896-y","DOIUrl":"10.1140/epjc/s10052-023-11896-y","url":null,"abstract":"<div><p>In this paper and in the follows of the holographic approach to describe the primary acceleration and the late-time acceleration eras, we have considered and unified inflation and dark energy while accelerated particle holographic (APHM) density is used (Fazlollahi in Chin Phys C 47:035101, 2023). As discussed, establishing holographic model for constant roll inflation during the very early Universe leads one to explicit form of Hubble parameter which satisfies inflationary era. The validity of such holographic constant roll inflation with respect to the Planck data puts a certain bound on the infrared cut-off at the time of horizon crossing. Beside the mere inflation, the Hubble parameter gives explicit form for density of accelerated particle holographic model. It is shown such density due to inflationary bound condition on infrared cut-off could present late-time acceleration epoch. Consequently, inflation and late time expansion era unified in unique infrared cut-off model. Moreover, such corresponding fractional density gives more matter regimes during matter era. Nevertheless, studying matter structure formation during matter era reveals the model is not in conflict with <span>({Lambda })</span>CDM model.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11896-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4369573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-09DOI: 10.1140/epjc/s10052-023-11857-5
Shamaila Rani, Abdul Jawad, Mazhar Hussain
In this paper, we study the effect of Barrow entropy on the thermodynamic properties and geometry of specific black holes along with the nonlinear source. We investigate the mass, temperature, thermodynamic variable, and electric potential of the black hole as well. Furthermore, we examine the behavior of heat capacity to check the stability of a black hole. Geometrothermodynamics allows us to describe interactions between thermodynamics, critical points, and phase transitions by considering the geometric characteristics of the thermodynamic equilibrium space. Our analysis demonstrates that these findings are consistent with the results derived from the classical thermodynamics of black holes.
{"title":"Impact of barrow entropy on geometrothermodynamics of specific black holes","authors":"Shamaila Rani, Abdul Jawad, Mazhar Hussain","doi":"10.1140/epjc/s10052-023-11857-5","DOIUrl":"10.1140/epjc/s10052-023-11857-5","url":null,"abstract":"<div><p>In this paper, we study the effect of Barrow entropy on the thermodynamic properties and geometry of specific black holes along with the nonlinear source. We investigate the mass, temperature, thermodynamic variable, and electric potential of the black hole as well. Furthermore, we examine the behavior of heat capacity to check the stability of a black hole. Geometrothermodynamics allows us to describe interactions between thermodynamics, critical points, and phase transitions by considering the geometric characteristics of the thermodynamic equilibrium space. Our analysis demonstrates that these findings are consistent with the results derived from the classical thermodynamics of black holes.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11857-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4371933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-09DOI: 10.1140/epjc/s10052-023-11887-z
E. Fernández-Martínez, J. López-Pavón, J. M. No, T. Ota, S. Rosauro-Alcaraz
We perform a comprehensive scan of the parameter space of a general singlet scalar extension of the Standard Model to identify the regions which can lead to a strong first-order phase transition, as required by the electroweak baryogenesis mechanism. We find that taking into account bubble nucleation is a fundamental constraint on the parameter space and present a conservative and fast estimate for it so as to enable efficient parameter space scanning. The allowed regions turn out to be already significantly probed by constraints on the scalar mixing from Higgs signal strength measurements. We also consider the addition of new neutrino singlet fields with Yukawa couplings to both scalars and forming heavy (pseudo)-Dirac pairs, as in the linear or inverse Seesaw mechanisms for neutrino mass generation. We find that their inclusion does not alter the allowed parameter space from early universe phenomenology in a significant way. Conversely, there are allowed regions of the parameter space where the presence of the neutrino singlets would remarkably modify the collider phenomenology, yielding interesting new signatures in Higgs and singlet scalar decays.
{"title":"(nu ) Electroweak baryogenesis: the scalar singlet strikes back","authors":"E. Fernández-Martínez, J. López-Pavón, J. M. No, T. Ota, S. Rosauro-Alcaraz","doi":"10.1140/epjc/s10052-023-11887-z","DOIUrl":"10.1140/epjc/s10052-023-11887-z","url":null,"abstract":"<div><p>We perform a comprehensive scan of the parameter space of a general singlet scalar extension of the Standard Model to identify the regions which can lead to a strong first-order phase transition, as required by the electroweak baryogenesis mechanism. We find that taking into account bubble nucleation is a fundamental constraint on the parameter space and present a conservative and fast estimate for it so as to enable efficient parameter space scanning. The allowed regions turn out to be already significantly probed by constraints on the scalar mixing from Higgs signal strength measurements. We also consider the addition of new neutrino singlet fields with Yukawa couplings to both scalars and forming heavy (pseudo)-Dirac pairs, as in the linear or inverse Seesaw mechanisms for neutrino mass generation. We find that their inclusion does not alter the allowed parameter space from early universe phenomenology in a significant way. Conversely, there are allowed regions of the parameter space where the presence of the neutrino singlets would remarkably modify the collider phenomenology, yielding interesting new signatures in Higgs and singlet scalar decays.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11887-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4372990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-08DOI: 10.1140/epjc/s10052-023-11815-1
R. Aaij, A. S. W. Abdelmotteleb, C. Abellan Beteta, F. Abudinén, T. Ackernley, B. Adeva, M. Adinolfi, P. Adlarson, H. Afsharnia, C. Agapopoulou, C. A. Aidala, Z. Ajaltouni, S. Akar, K. Akiba, J. Albrecht, F. Alessio, M. Alexander, A. Alfonso Albero, Z. Aliouche, P. Alvarez Cartelle, R. Amalric, S. Amato, J. L. Amey, Y. Amhis, L. An, L. Anderlini, M. Andersson, A. Andreianov, M. Andreotti, D. Andreou, D. Ao, F. Archilli, A. Artamonov, M. Artuso, E. Aslanides, M. Atzeni, B. Audurier, S. Bachmann, M. Bachmayer, J. J. Back, A. Bailly-reyre, P. Baladron Rodriguez, V. Balagura, W. Baldini, J. Baptista de Souza Leite, M. Barbetti, R. J. Barlow, S. Barsuk, W. Barter, M. Bartolini, F. Baryshnikov, J. M. Basels, G. Bassi, B. Batsukh, A. Battig, A. Bay, A. Beck, M. Becker, F. Bedeschi, I. B. Bediaga, A. Beiter, V. Belavin, S. Belin, V. Bellee, K. Belous, I. Belov, I. Belyaev, G. Benane, G. Bencivenni, E. Ben-Haim, A. Berezhnoy, R. Bernet, S. Bernet Andres, D. Berninghoff, H. C. Bernstein, C. Bertella, A. Bertolin, C. Betancourt, F. Betti, Ia. Bezshyiko, S. Bhasin, J. Bhom, L. Bian, M. S. Bieker, N. V. Biesuz, S. Bifani, P. Billoir, A. Biolchini, M. Birch, F. C. R. Bishop, A. Bitadze, A. Bizzeti, M. P. Blago, T. Blake, F. Blanc, J. E. Blank, S. Blusk, D. Bobulska, J. A. Boelhauve, O. Boente Garcia, T. Boettcher, A. Boldyrev, C. S. Bolognani, R. Bolzonella, N. Bondar, F. Borgato, S. Borghi, M. Borsato, J. T. Borsuk, S. A. Bouchiba, T. J. V. Bowcock, A. Boyer, C. Bozzi, M. J. Bradley, S. Braun, A. Brea Rodriguez, J. Brodzicka, A. Brossa Gonzalo, J. Brown, D. Brundu, A. Buonaura, L. Buonincontri, A. T. Burke, C. Burr, A. Bursche, A. Butkevich, J. S. Butter, J. Buytaert, W. Byczynski, S. Cadeddu, H. Cai, R. Calabrese, L. Calefice, S. Cali, R. Calladine, M. Calvi, M. Calvo Gomez, P. Campana, D. H. Campora Perez, A. F. Campoverde Quezada, S. Capelli, L. Capriotti, A. Carbone, G. Carboni, R. Cardinale, A. Cardini, P. Carniti, L. Carus, A. Casais Vidal, R. Caspary, G. Casse, M. Cattaneo, G. Cavallero, V. Cavallini, S. Celani, J. Cerasoli, D. Cervenkov, A. J. Chadwick, M. G. Chapman, M. Charles, Ph. Charpentier, C. A. Chavez Barajas, M. Chefdeville, C. Chen, S. Chen, A. Chernov, S. Chernyshenko, V. Chobanova, S. Cholak, M. Chrzaszcz, A. Chubykin, V. Chulikov, P. Ciambrone, M. F. Cicala, X. Cid Vidal, G. Ciezarek, G. Ciullo, P. E. L. Clarke, M. Clemencic, H. V. Cliff, J. Closier, J. L. Cobbledick, V. Coco, J. A. B. Coelho, J. Cogan, E. Cogneras, L. Cojocariu, P. Collins, T. Colombo, L. Congedo, A. Contu, N. Cooke, I. Corredoira, G. Corti, B. Couturier, D. C. Craik, M. Cruz Torres, R. Currie, C. L. Da Silva, S. Dadabaev, L. Dai, X. Dai, E. Dall’Occo, J. Dalseno, C. D’Ambrosio, J. Daniel, A. Danilina, P. d’Argent, J. E. Davies, A. Davis, O. De Aguiar Francisco, J. de Boer, K. De Bruyn, S. De Capua, M. De Cian, U. De Freitas Carneiro Da Graca, E. De Lucia, J. M. De Miranda, L. De Paula, M. De Serio, D. De Simone, P. De Simone, F. De Vellis, J. A. de Vries, C. T. Dean, F. Debernardis, D. Decamp, V. Dedu, L. Del Buono, B. Delaney, H.-P. Dembinski, V. Denysenko, O. Deschamps, F. Dettori, B. Dey, P. Di Nezza, I. Diachkov, S. Didenko, L. Dieste Maronas, S. Ding, V. Dobishuk, A. Dolmatov, C. Dong, A. M. Donohoe, F. Dordei, A. C. dos Reis, L. Douglas, A. G. Downes, P. Duda, M. W. Dudek, L. Dufour, V. Duk, P. Durante, M. M. Duras, J. M. Durham, D. Dutta, A. Dziurda, A. Dzyuba, S. Easo, U. Egede, V. Egorychev, S. Eidelman, C. Eirea Orro, S. Eisenhardt, E. Ejopu, S. Ek-In, L. Eklund, S. Ely, A. Ene, E. Epple, S. Escher, J. Eschle, S. Esen, T. Evans, F. Fabiano, L. N. Falcao, Y. Fan, B. Fang, L. Fantini, M. Faria, S. Farry, D. Fazzini, L. F. Felkowski, M. Feo, M. Fernandez Gomez, A. D. Fernez, F. Ferrari, L. Ferreira Lopes, F. Ferreira Rodrigues, S. Ferreres Sole, M. Ferrillo, M. Ferro-Luzzi, S. Filippov, R. A. Fini, M. Fiorini, M. Firlej, K. M. Fischer, D. S. Fitzgerald, C. Fitzpatrick, T. Fiutowski, F. Fleuret, M. Fontana, F. Fontanelli, R. Forty, D. Foulds-Holt, V. Franco Lima, M. Franco Sevilla, M. Frank, E. Franzoso, G. Frau, C. Frei, D. A. Friday, J. Fu, Q. Fuehring, T. Fulghesu, E. Gabriel, G. Galati, M. D. Galati, A. Gallas Torreira, D. Galli, S. Gambetta, Y. Gan, M. Gandelman, P. Gandini, Y. Gao, Y. Gao, M. Garau, L. M. Garcia Martin, P. Garcia Moreno, J. García Pardiñas, B. Garcia Plana, F. A. Garcia Rosales, L. Garrido, C. Gaspar, R. E. Geertsema, D. Gerick, L. L. Gerken, E. Gersabeck, M. Gersabeck, T. Gershon, L. Giambastiani, V. Gibson, H. K. Giemza, A. L. Gilman, M. Giovannetti, A. Gioventù, P. Gironella Gironell, C. Giugliano, M. A. Giza, K. Gizdov, E. L. Gkougkousis, V. V. Gligorov, C. Göbel, E. Golobardes, D. Golubkov, A. Golutvin, A. Gomes, S. Gomez Fernandez, F. Goncalves Abrantes, M. Goncerz, G. Gong, I. V. Gorelov, C. Gotti, J. P. Grabowski, T. Grammatico, L. A. Granado Cardoso, E. Graugés, E. Graverini, G. Graziani, A. T. Grecu, L. M. Greeven, N. A. Grieser, L. Grillo, S. Gromov, B. R. Gruberg Cazon, C. Gu, M. Guarise, M. Guittiere, P. A. Günther, E. Gushchin, A. Guth, Y. Guz, T. Gys, T. Hadavizadeh, C. Hadjivasiliou, G. Haefeli, C. Haen, J. Haimberger, S. C. Haines, T. Halewood-leagas, M. M. Halvorsen, P. M. Hamilton, J. Hammerich, Q. Han, X. Han, E. B. Hansen, S. Hansmann-Menzemer, L. Hao, N. Harnew, T. Harrison, C. Hasse, M. Hatch, J. He, K. Heijhoff, C. Henderson, R. D. L. Henderson, A. M. Hennequin, K. Hennessy, L. Henry, J. Herd, J. Heuel, A. Hicheur, D. Hill, M. Hilton, S. E. Hollitt, J. Horswill, R. Hou, Y. Hou, J. Hu, J. Hu, W. Hu, X. Hu, W. Huang, X. Huang, W. Hulsbergen, R. J. Hunter, M. Hushchyn, D. Hutchcroft, P. Ibis, M. Idzik, D. Ilin, P. Ilten, A. Inglessi, A. Iniukhin, A. Ishteev, K. Ivshin, R. Jacobsson, H. Jage, S. J. Jaimes Elles, S. Jakobsen, E. Jans, B. K. Jashal, A. Jawahery, V. Jevtic, E. Jiang, X. Jiang, Y. Jiang, M. John, D. Johnson, C. R. Jones, T. P. Jones, B. Jost, N. Jurik, I. Juszczak, S. Kandybei, Y. Kang, M. Karacson, D. Karpenkov, M. Karpov, J. W. Kautz, F. Keizer, D. M. Keller, M. Kenzie, T. Ketel, B. Khanji, A. Kharisova, S. Kholodenko, G. Khreich, T. Kirn, V. S. Kirsebom, O. Kitouni, S. Klaver, N. Kleijne, K. Klimaszewski, M. R. Kmiec, S. Koliiev, A. Kondybayeva, A. Konoplyannikov, P. Kopciewicz, R. Kopecna, P. Koppenburg, M. Korolev, I. Kostiuk, O. Kot, S. Kotriakhova, A. Kozachuk, P. Kravchenko, L. Kravchuk, R. D. Krawczyk, M. Kreps, S. Kretzschmar, P. Krokovny, W. Krupa, W. Krzemien, J. Kubat, S. Kubis, W. Kucewicz, M. Kucharczyk, V. Kudryavtsev, A. Kupsc, D. Lacarrere, G. Lafferty, A. Lai, A. Lampis, D. Lancierini, C. Landesa Gomez, J. J. Lane, R. Lane, G. Lanfranchi, C. Langenbruch, J. Langer, O. Lantwin, T. Latham, F. Lazzari, M. Lazzaroni, R. Le Gac, S. H. Lee, R. Lefèvre, A. Leflat, S. Legotin, P. Lenisa, O. Leroy, T. Lesiak, B. Leverington, A. Li, H. Li, K. Li, P. Li, P.-R. Li, S. Li, T. Li, T. Li, Y. Li, Z. Li, X. Liang, C. Lin, T. Lin, R. Lindner, V. Lisovskyi, R. Litvinov, G. Liu, H. Liu, Q. Liu, S. Liu, A. Lobo Salvia, A. Loi, R. Lollini, J. Lomba Castro, I. Longstaff, J. H. Lopes, A. Lopez Huertas, S. L.ópez Soliño, G. H. Lovell, Y. Lu, C. Lucarelli, D. Lucchesi, S. Luchuk, M. Lucio Martinez, V. Lukashenko, Y. Luo, A. Lupato, E. Luppi, A. Lusiani, K. Lynch, X.-R. Lyu, L. Ma, R. Ma, S. Maccolini, F. Machefert, F. Maciuc, I. Mackay, V. Macko, P. Mackowiak, L. R. Madhan Mohan, A. Maevskiy, D. Maisuzenko, M. W. Majewski, J. J. Malczewski, S. Malde, B. Malecki, A. Malinin, T. Maltsev, G. Manca, G. Mancinelli, C. Mancuso, D. Manuzzi, C. A. Manzari, D. Marangotto, J. M. Maratas, J. F. Marchand, U. Marconi, S. Mariani, C. Marin Benito, J. Marks, A. M. Marshall, P. J. Marshall, G. Martelli, G. Martellotti, L. Martinazzoli, M. Martinelli, D. Martinez Santos, F. Martinez Vidal, A. Massafferri, M. Materok, R. Matev, A. Mathad, V. Matiunin, C. Matteuzzi, K. R. Mattioli, A. Mauri, E. Maurice, J. Mauricio, M. Mazurek, M. McCann, L. Mcconnell, T. H. McGrath, N. T. McHugh, A. McNab, R. McNulty, J. V. Mead, B. Meadows, G. Meier, D. Melnychuk, S. Meloni, M. Merk, A. Merli, L. Meyer Garcia, D. Miao, M. Mikhasenko, D. A. Milanes, E. Millard, M. Milovanovic, M.-N. Minard, A. Minotti, T. Miralles, S. E. Mitchell, B. Mitreska, D. S. Mitzel, A. Mödden, R. A. Mohammed, R. D. Moise, S. Mokhnenko, T. Mombächer, M. Monk, I. A. Monroy, S. Monteil, M. Morandin, G. Morello, M. J. Morello, J. Moron, A. B. Morris, A. G. Morris, R. Mountain, H. Mu, E. Muhammad, F. Muheim, M. Mulder, K. Müller, C. H. Murphy, D. Murray, R. Murta, P. Muzzetto, P. Naik, T. Nakada, R. Nandakumar, T. Nanut, I. Nasteva, M. Needham, N. Neri, S. Neubert, N. Neufeld, P. Neustroev, R. Newcombe, J. Nicolini, E. M. Niel, S. Nieswand, N. Nikitin, N. S. Nolte, C. Normand, J. Novoa Fernandez, C. Nunez, A. Oblakowska-Mucha, V. Obraztsov, T. Oeser, D. P. O’Hanlon, S. Okamura, R. Oldeman, F. Oliva, C. J. G. Onderwater, R. H. O’Neil, J. M. Otalora Goicochea, T. Ovsiannikova, P. Owen, A. Oyanguren, O. Ozcelik, K. O. Padeken, B. Pagare, P. R. Pais, T. Pajero, A. Palano, M. Palutan, Y. Pan, G. Panshin, L. Paolucci, A. Papanestis, M. Pappagallo, L. L. Pappalardo, C. Pappenheimer, W. Parker, C. Parkes, B. Passalacqua, G. Passaleva, A. Pastore, M. Patel, C. Patrignani, C. J. Pawley, A. Pearce, A. Pellegrino, M. Pepe Altarelli, S. Perazzini, D. Pereima, A. Pereiro Castro, P. Perret, M. Petric, K. Petridis, A. Petrolini, A. Petrov, S. Petrucci, M. Petruzzo, H. Pham, A. Philippov, R. Piandani, L. Pica, M. Piccini, B. Pietrzyk, G. Pietrzyk, M. Pili, D. Pinci, F. Pisani, M. Pizzichemi, V. Placinta, J. Plews, M. Plo Casasus, F. Polci, M. Poli Lener, M. Poliakova, A. Poluektov, N. Polukhina, I. Polyakov, E. Polycarpo, S. Ponce, D. Popov, S. Popov, S. Poslavskii, K. Prasanth, L. Promberger, C. Prouve, V. Pugatch, V. Puill, G. Punzi, H. R. Qi, W. Qian, N. Qin, S. Qu, R. Quagliani, N. V. Raab, R. I. Rabadan Trejo, B. Rachwal, J. H. Rademacker, R. Rajagopalan, M. Rama, M. Ramos Pernas, M. S. Rangel, F. Ratnikov, G. Raven, M. Rebollo De Miguel, F. Redi, J. Reich, F. Reiss, C. Remon Alepuz, Z. Ren, P. K. Resmi, R. Ribatti, A. M. Ricci, S. Ricciardi, K. Richardson, M. Richardson-Slipper, K. Rinnert, P. Robbe, G. Robertson, A. B. Rodrigues, E. Rodrigues, E. Rodriguez Fernandez, J. A. Rodriguez Lopez, E. Rodriguez Rodriguez, D. L. Rolf, A. Rollings, P. Roloff, V. Romanovskiy, M. Romero Lamas, A. Romero Vidal, J. D. Roth, M. Rotondo, M. S. Rudolph, T. Ruf, R. A. Ruiz Fernandez, J. Ruiz Vidal, A. Ryzhikov, J. Ryzka, J. J. Saborido Silva, N. Sagidova, N. Sahoo, B. Saitta, M. Salomoni, C. Sanchez Gras, I. Sanderswood, R. Santacesaria, C. Santamarina Rios, M. Santimaria, E. Santovetti, D. Saranin, G. Sarpis, M. Sarpis, A. Sarti, C. Satriano, A. Satta, M. Saur, D. Savrina, H. Sazak, L. G. Scantlebury Smead, A. Scarabotto, S. Schael, S. Scherl, M. Schiller, H. Schindler, M. Schmelling, B. Schmidt, S. Schmitt, O. Schneider, A. Schopper, M. Schubiger, S. Schulte, M. H. Schune, R. Schwemmer, B. Sciascia, A. Sciuccati, S. Sellam, A. Semennikov, M. Senghi Soares, A. Sergi, N. Serra, L. Sestini, A. Seuthe, Y. Shang, D. M. Shangase, M. Shapkin, I. Shchemerov, L. Shchutska, T. Shears, L. Shekhtman, Z. Shen, S. Sheng, V. Shevchenko, B. Shi, E. B. Shields, Y. Shimizu, E. Shmanin, R. Shorkin, J. D. Shupperd, B. G. Siddi, R. Silva Coutinho, G. Simi, S. Simone, M. Singla, N. Skidmore, R. Skuza, T. Skwarnicki, M. W. Slater, J. C. Smallwood, J. G. Smeaton, E. Smith, K. Smith, M. Smith, A. Snoch, L. Soares Lavra, M. D. Sokoloff, F. J. P. Soler, A. Solomin, A. Solovev, I. Solovyev, R. Song, F. L. Souza De Almeida, B. Souza De Paula, B. Spaan, E. Spadaro Norella, E. Spedicato, E. Spiridenkov, P. Spradlin, V. Sriskaran, F. Stagni, M. Stahl, S. Stahl, S. Stanislaus, E. N. Stein, O. Steinkamp, O. Stenyakin, H. Stevens, S. Stone, D. Strekalina, Y. S. Su, F. Suljik, J. Sun, L. Sun, Y. Sun, P. Svihra, P. N. Swallow, K. Swientek, A. Szabelski, T. Szumlak, M. Szymanski, Y. Tan, S. Taneja, M. D. Tat, A. Terentev, F. Teubert, E. Thomas, D. J. D. Thompson, K. A. Thomson, H. Tilquin, V. Tisserand, S. T’Jampens, M. Tobin, L. Tomassetti, G. Tonani, X. Tong, D. Torres Machado, D. Y. Tou, S. M. Trilov, C. Trippl, G. Tuci, A. Tully, N. Tuning, A. Ukleja, D. J. Unverzagt, A. Usachov, A. Ustyuzhanin, U. Uwer, A. Vagner, V. Vagnoni, A. Valassi, G. Valenti, N. Valls Canudas, M. van Beuzekom, M. Van Dijk, H. Van Hecke, E. van Herwijnen, C. B. Van Hulse, M. van Veghel, R. Vazquez Gomez, P. Vazquez Regueiro, C. Vázquez Sierra, S. Vecchi, J. J. Velthuis, M. Veltri, A. Venkateswaran, M. Veronesi, M. Vesterinen, D. Vieira, M. Vieites Diaz, X. Vilasis-Cardona, E. Vilella Figueras, A. Villa, P. Vincent, F. C. Volle, D. vom Bruch, A. Vorobyev, V. Vorobyev, N. Voropaev, K. Vos, C. Vrahas, R. Waldi, J. Walsh, G. Wan, C. Wang, G. Wang, J. Wang, J. Wang, J. Wang, J. Wang, M. Wang, R. Wang, X. Wang, Y. Wang, Z. Wang, Z. Wang, Z. Wang, J. A. Ward, N. K. Watson, D. Websdale, Y. Wei, C. Weisser, B. D. C. Westhenry, D. J. White, M. Whitehead, A. R. Wiederhold, D. Wiedner, G. Wilkinson, M. K. Wilkinson, I. Williams, M. Williams, M. R. J. Williams, R. Williams, F. F. Wilson, W. Wislicki, M. Witek, L. Witola, C. P. Wong, G. Wormser, S. A. Wotton, H. Wu, J. Wu, K. Wyllie, Z. Xiang, D. Xiao, Y. Xie, A. Xu, J. Xu, L. Xu, L. Xu, M. Xu, Q. Xu, Z. Xu, Z. Xu, D. Yang, S. Yang, X. Yang, Y. Yang, Z. Yang, Z. Yang, L. E. Yeomans, V. Yeroshenko, H. Yeung, H. Yin, J. Yu, X. Yuan, E. Zaffaroni, M. Zavertyaev, M. Zdybal, O. Zenaiev, M. Zeng, C. Zhang, D. Zhang, L. Zhang, S. Zhang, S. Zhang, Y. Zhang, Y. Zhang, A. Zharkova, A. Zhelezov, Y. Zheng, T. Zhou, X. Zhou, Y. Zhou, V. Zhovkovska, X. Zhu, X. Zhu, Z. Zhu, V. Zhukov, Q. Zou, S. Zucchelli, D. Zuliani, G. Zunica, LHCb Collaboration
{"title":"Publisher Erratum: Open charm production and asymmetry in pNe collisions at (sqrt{s_{scriptscriptstyle {text {NN}}}} = 68.5) GeV","authors":"R. Aaij, A. S. W. Abdelmotteleb, C. Abellan Beteta, F. Abudinén, T. Ackernley, B. Adeva, M. Adinolfi, P. Adlarson, H. Afsharnia, C. Agapopoulou, C. A. Aidala, Z. Ajaltouni, S. Akar, K. Akiba, J. Albrecht, F. Alessio, M. Alexander, A. Alfonso Albero, Z. Aliouche, P. Alvarez Cartelle, R. Amalric, S. Amato, J. L. Amey, Y. Amhis, L. An, L. Anderlini, M. Andersson, A. Andreianov, M. Andreotti, D. Andreou, D. Ao, F. Archilli, A. Artamonov, M. Artuso, E. Aslanides, M. Atzeni, B. Audurier, S. Bachmann, M. Bachmayer, J. J. Back, A. Bailly-reyre, P. Baladron Rodriguez, V. Balagura, W. Baldini, J. Baptista de Souza Leite, M. Barbetti, R. J. Barlow, S. Barsuk, W. Barter, M. Bartolini, F. Baryshnikov, J. M. Basels, G. Bassi, B. Batsukh, A. Battig, A. Bay, A. Beck, M. Becker, F. Bedeschi, I. B. Bediaga, A. Beiter, V. Belavin, S. Belin, V. Bellee, K. Belous, I. Belov, I. Belyaev, G. Benane, G. Bencivenni, E. Ben-Haim, A. Berezhnoy, R. Bernet, S. Bernet Andres, D. Berninghoff, H. C. Bernstein, C. Bertella, A. Bertolin, C. Betancourt, F. Betti, Ia. Bezshyiko, S. Bhasin, J. Bhom, L. Bian, M. S. Bieker, N. V. Biesuz, S. Bifani, P. Billoir, A. Biolchini, M. Birch, F. C. R. Bishop, A. Bitadze, A. Bizzeti, M. P. Blago, T. Blake, F. Blanc, J. E. Blank, S. Blusk, D. Bobulska, J. A. Boelhauve, O. Boente Garcia, T. Boettcher, A. Boldyrev, C. S. Bolognani, R. Bolzonella, N. Bondar, F. Borgato, S. Borghi, M. Borsato, J. T. Borsuk, S. A. Bouchiba, T. J. V. Bowcock, A. Boyer, C. Bozzi, M. J. Bradley, S. Braun, A. Brea Rodriguez, J. Brodzicka, A. Brossa Gonzalo, J. Brown, D. Brundu, A. Buonaura, L. Buonincontri, A. T. Burke, C. Burr, A. Bursche, A. Butkevich, J. S. Butter, J. Buytaert, W. Byczynski, S. Cadeddu, H. Cai, R. Calabrese, L. Calefice, S. Cali, R. Calladine, M. Calvi, M. Calvo Gomez, P. Campana, D. H. Campora Perez, A. F. Campoverde Quezada, S. Capelli, L. Capriotti, A. Carbone, G. Carboni, R. Cardinale, A. Cardini, P. Carniti, L. Carus, A. Casais Vidal, R. Caspary, G. Casse, M. Cattaneo, G. Cavallero, V. Cavallini, S. Celani, J. Cerasoli, D. Cervenkov, A. J. Chadwick, M. G. Chapman, M. Charles, Ph. Charpentier, C. A. Chavez Barajas, M. Chefdeville, C. Chen, S. Chen, A. Chernov, S. Chernyshenko, V. Chobanova, S. Cholak, M. Chrzaszcz, A. Chubykin, V. Chulikov, P. Ciambrone, M. F. Cicala, X. Cid Vidal, G. Ciezarek, G. Ciullo, P. E. L. Clarke, M. Clemencic, H. V. Cliff, J. Closier, J. L. Cobbledick, V. Coco, J. A. B. Coelho, J. Cogan, E. Cogneras, L. Cojocariu, P. Collins, T. Colombo, L. Congedo, A. Contu, N. Cooke, I. Corredoira, G. Corti, B. Couturier, D. C. Craik, M. Cruz Torres, R. Currie, C. L. Da Silva, S. Dadabaev, L. Dai, X. Dai, E. Dall’Occo, J. Dalseno, C. D’Ambrosio, J. Daniel, A. Danilina, P. d’Argent, J. E. Davies, A. Davis, O. De Aguiar Francisco, J. de Boer, K. De Bruyn, S. De Capua, M. De Cian, U. De Freitas Carneiro Da Graca, E. De Lucia, J. M. De Miranda, L. De Paula, M. De Serio, D. De Simone, P. De Simone, F. De Vellis, J. A. de Vries, C. T. Dean, F. Debernardis, D. Decamp, V. Dedu, L. Del Buono, B. Delaney, H.-P. Dembinski, V. Denysenko, O. Deschamps, F. Dettori, B. Dey, P. Di Nezza, I. Diachkov, S. Didenko, L. Dieste Maronas, S. Ding, V. Dobishuk, A. Dolmatov, C. Dong, A. M. Donohoe, F. Dordei, A. C. dos Reis, L. Douglas, A. G. Downes, P. Duda, M. W. Dudek, L. Dufour, V. Duk, P. Durante, M. M. Duras, J. M. Durham, D. Dutta, A. Dziurda, A. Dzyuba, S. Easo, U. Egede, V. Egorychev, S. Eidelman, C. Eirea Orro, S. Eisenhardt, E. Ejopu, S. Ek-In, L. Eklund, S. Ely, A. Ene, E. Epple, S. Escher, J. Eschle, S. Esen, T. Evans, F. Fabiano, L. N. Falcao, Y. Fan, B. Fang, L. Fantini, M. Faria, S. Farry, D. Fazzini, L. F. Felkowski, M. Feo, M. Fernandez Gomez, A. D. Fernez, F. Ferrari, L. Ferreira Lopes, F. Ferreira Rodrigues, S. Ferreres Sole, M. Ferrillo, M. Ferro-Luzzi, S. Filippov, R. A. Fini, M. Fiorini, M. Firlej, K. M. Fischer, D. S. Fitzgerald, C. Fitzpatrick, T. Fiutowski, F. Fleuret, M. Fontana, F. Fontanelli, R. Forty, D. Foulds-Holt, V. Franco Lima, M. Franco Sevilla, M. Frank, E. Franzoso, G. Frau, C. Frei, D. A. Friday, J. Fu, Q. Fuehring, T. Fulghesu, E. Gabriel, G. Galati, M. D. Galati, A. Gallas Torreira, D. Galli, S. Gambetta, Y. Gan, M. Gandelman, P. Gandini, Y. Gao, Y. Gao, M. Garau, L. M. Garcia Martin, P. Garcia Moreno, J. García Pardiñas, B. Garcia Plana, F. A. Garcia Rosales, L. Garrido, C. Gaspar, R. E. Geertsema, D. Gerick, L. L. Gerken, E. Gersabeck, M. Gersabeck, T. Gershon, L. Giambastiani, V. Gibson, H. K. Giemza, A. L. Gilman, M. Giovannetti, A. Gioventù, P. Gironella Gironell, C. Giugliano, M. A. Giza, K. Gizdov, E. L. Gkougkousis, V. V. Gligorov, C. Göbel, E. Golobardes, D. Golubkov, A. Golutvin, A. Gomes, S. Gomez Fernandez, F. Goncalves Abrantes, M. Goncerz, G. Gong, I. V. Gorelov, C. Gotti, J. P. Grabowski, T. Grammatico, L. A. Granado Cardoso, E. Graugés, E. Graverini, G. Graziani, A. T. Grecu, L. M. Greeven, N. A. Grieser, L. Grillo, S. Gromov, B. R. Gruberg Cazon, C. Gu, M. Guarise, M. Guittiere, P. A. Günther, E. Gushchin, A. Guth, Y. Guz, T. Gys, T. Hadavizadeh, C. Hadjivasiliou, G. Haefeli, C. Haen, J. Haimberger, S. C. Haines, T. Halewood-leagas, M. M. Halvorsen, P. M. Hamilton, J. Hammerich, Q. Han, X. Han, E. B. Hansen, S. Hansmann-Menzemer, L. Hao, N. Harnew, T. Harrison, C. Hasse, M. Hatch, J. He, K. Heijhoff, C. Henderson, R. D. L. Henderson, A. M. Hennequin, K. Hennessy, L. Henry, J. Herd, J. Heuel, A. Hicheur, D. Hill, M. Hilton, S. E. Hollitt, J. Horswill, R. Hou, Y. Hou, J. Hu, J. Hu, W. Hu, X. Hu, W. Huang, X. Huang, W. Hulsbergen, R. J. Hunter, M. Hushchyn, D. Hutchcroft, P. Ibis, M. Idzik, D. Ilin, P. Ilten, A. Inglessi, A. Iniukhin, A. Ishteev, K. Ivshin, R. Jacobsson, H. Jage, S. J. Jaimes Elles, S. Jakobsen, E. Jans, B. K. Jashal, A. Jawahery, V. Jevtic, E. Jiang, X. Jiang, Y. Jiang, M. John, D. Johnson, C. R. Jones, T. P. Jones, B. Jost, N. Jurik, I. Juszczak, S. Kandybei, Y. Kang, M. Karacson, D. Karpenkov, M. Karpov, J. W. Kautz, F. Keizer, D. M. Keller, M. Kenzie, T. Ketel, B. Khanji, A. Kharisova, S. Kholodenko, G. Khreich, T. Kirn, V. S. Kirsebom, O. Kitouni, S. Klaver, N. Kleijne, K. Klimaszewski, M. R. Kmiec, S. Koliiev, A. Kondybayeva, A. Konoplyannikov, P. Kopciewicz, R. Kopecna, P. Koppenburg, M. Korolev, I. Kostiuk, O. Kot, S. Kotriakhova, A. Kozachuk, P. Kravchenko, L. Kravchuk, R. D. Krawczyk, M. Kreps, S. Kretzschmar, P. Krokovny, W. Krupa, W. Krzemien, J. Kubat, S. Kubis, W. Kucewicz, M. Kucharczyk, V. Kudryavtsev, A. Kupsc, D. Lacarrere, G. Lafferty, A. Lai, A. Lampis, D. Lancierini, C. Landesa Gomez, J. J. Lane, R. Lane, G. Lanfranchi, C. Langenbruch, J. Langer, O. Lantwin, T. Latham, F. Lazzari, M. Lazzaroni, R. Le Gac, S. H. Lee, R. Lefèvre, A. Leflat, S. Legotin, P. Lenisa, O. Leroy, T. Lesiak, B. Leverington, A. Li, H. Li, K. Li, P. Li, P.-R. Li, S. Li, T. Li, T. Li, Y. Li, Z. Li, X. Liang, C. Lin, T. Lin, R. Lindner, V. Lisovskyi, R. Litvinov, G. Liu, H. Liu, Q. Liu, S. Liu, A. Lobo Salvia, A. Loi, R. Lollini, J. Lomba Castro, I. Longstaff, J. H. Lopes, A. Lopez Huertas, S. L.ópez Soliño, G. H. Lovell, Y. Lu, C. Lucarelli, D. Lucchesi, S. Luchuk, M. Lucio Martinez, V. Lukashenko, Y. Luo, A. Lupato, E. Luppi, A. Lusiani, K. Lynch, X.-R. Lyu, L. Ma, R. Ma, S. Maccolini, F. Machefert, F. Maciuc, I. Mackay, V. Macko, P. Mackowiak, L. R. Madhan Mohan, A. Maevskiy, D. Maisuzenko, M. W. Majewski, J. J. Malczewski, S. Malde, B. Malecki, A. Malinin, T. Maltsev, G. Manca, G. Mancinelli, C. Mancuso, D. Manuzzi, C. A. Manzari, D. Marangotto, J. M. Maratas, J. F. Marchand, U. Marconi, S. Mariani, C. Marin Benito, J. Marks, A. M. Marshall, P. J. Marshall, G. Martelli, G. Martellotti, L. Martinazzoli, M. Martinelli, D. Martinez Santos, F. Martinez Vidal, A. Massafferri, M. Materok, R. Matev, A. Mathad, V. Matiunin, C. Matteuzzi, K. R. Mattioli, A. Mauri, E. Maurice, J. Mauricio, M. Mazurek, M. McCann, L. Mcconnell, T. H. McGrath, N. T. McHugh, A. McNab, R. McNulty, J. V. Mead, B. Meadows, G. Meier, D. Melnychuk, S. Meloni, M. Merk, A. Merli, L. Meyer Garcia, D. Miao, M. Mikhasenko, D. A. Milanes, E. Millard, M. Milovanovic, M.-N. Minard, A. Minotti, T. Miralles, S. E. Mitchell, B. Mitreska, D. S. Mitzel, A. Mödden, R. A. Mohammed, R. D. Moise, S. Mokhnenko, T. Mombächer, M. Monk, I. A. Monroy, S. Monteil, M. Morandin, G. Morello, M. J. Morello, J. Moron, A. B. Morris, A. G. Morris, R. Mountain, H. Mu, E. Muhammad, F. Muheim, M. Mulder, K. Müller, C. H. Murphy, D. Murray, R. Murta, P. Muzzetto, P. Naik, T. Nakada, R. Nandakumar, T. Nanut, I. Nasteva, M. Needham, N. Neri, S. Neubert, N. Neufeld, P. Neustroev, R. Newcombe, J. Nicolini, E. M. Niel, S. Nieswand, N. Nikitin, N. S. Nolte, C. Normand, J. Novoa Fernandez, C. Nunez, A. Oblakowska-Mucha, V. Obraztsov, T. Oeser, D. P. O’Hanlon, S. Okamura, R. Oldeman, F. Oliva, C. J. G. Onderwater, R. H. O’Neil, J. M. Otalora Goicochea, T. Ovsiannikova, P. Owen, A. Oyanguren, O. Ozcelik, K. O. Padeken, B. Pagare, P. R. Pais, T. Pajero, A. Palano, M. Palutan, Y. Pan, G. Panshin, L. Paolucci, A. Papanestis, M. Pappagallo, L. L. Pappalardo, C. Pappenheimer, W. Parker, C. Parkes, B. Passalacqua, G. Passaleva, A. Pastore, M. Patel, C. Patrignani, C. J. Pawley, A. Pearce, A. Pellegrino, M. Pepe Altarelli, S. Perazzini, D. Pereima, A. Pereiro Castro, P. Perret, M. Petric, K. Petridis, A. Petrolini, A. Petrov, S. Petrucci, M. Petruzzo, H. Pham, A. Philippov, R. Piandani, L. Pica, M. Piccini, B. Pietrzyk, G. Pietrzyk, M. Pili, D. Pinci, F. Pisani, M. Pizzichemi, V. Placinta, J. Plews, M. Plo Casasus, F. Polci, M. Poli Lener, M. Poliakova, A. Poluektov, N. Polukhina, I. Polyakov, E. Polycarpo, S. Ponce, D. Popov, S. Popov, S. Poslavskii, K. Prasanth, L. Promberger, C. Prouve, V. Pugatch, V. Puill, G. Punzi, H. R. Qi, W. Qian, N. Qin, S. Qu, R. Quagliani, N. V. Raab, R. I. Rabadan Trejo, B. Rachwal, J. H. Rademacker, R. Rajagopalan, M. Rama, M. Ramos Pernas, M. S. Rangel, F. Ratnikov, G. Raven, M. Rebollo De Miguel, F. Redi, J. Reich, F. Reiss, C. Remon Alepuz, Z. Ren, P. K. Resmi, R. Ribatti, A. M. Ricci, S. Ricciardi, K. Richardson, M. Richardson-Slipper, K. Rinnert, P. Robbe, G. Robertson, A. B. Rodrigues, E. Rodrigues, E. Rodriguez Fernandez, J. A. Rodriguez Lopez, E. Rodriguez Rodriguez, D. L. Rolf, A. Rollings, P. Roloff, V. Romanovskiy, M. Romero Lamas, A. Romero Vidal, J. D. Roth, M. Rotondo, M. S. Rudolph, T. Ruf, R. A. Ruiz Fernandez, J. Ruiz Vidal, A. Ryzhikov, J. Ryzka, J. J. Saborido Silva, N. Sagidova, N. Sahoo, B. Saitta, M. Salomoni, C. Sanchez Gras, I. Sanderswood, R. Santacesaria, C. Santamarina Rios, M. Santimaria, E. Santovetti, D. Saranin, G. Sarpis, M. Sarpis, A. Sarti, C. Satriano, A. Satta, M. Saur, D. Savrina, H. Sazak, L. G. Scantlebury Smead, A. Scarabotto, S. Schael, S. Scherl, M. Schiller, H. Schindler, M. Schmelling, B. Schmidt, S. Schmitt, O. Schneider, A. Schopper, M. Schubiger, S. Schulte, M. H. Schune, R. Schwemmer, B. Sciascia, A. Sciuccati, S. Sellam, A. Semennikov, M. Senghi Soares, A. Sergi, N. Serra, L. Sestini, A. Seuthe, Y. Shang, D. M. Shangase, M. Shapkin, I. Shchemerov, L. Shchutska, T. Shears, L. Shekhtman, Z. Shen, S. Sheng, V. Shevchenko, B. Shi, E. B. Shields, Y. Shimizu, E. Shmanin, R. Shorkin, J. D. Shupperd, B. G. Siddi, R. Silva Coutinho, G. Simi, S. Simone, M. Singla, N. Skidmore, R. Skuza, T. Skwarnicki, M. W. Slater, J. C. Smallwood, J. G. Smeaton, E. Smith, K. Smith, M. Smith, A. Snoch, L. Soares Lavra, M. D. Sokoloff, F. J. P. Soler, A. Solomin, A. Solovev, I. Solovyev, R. Song, F. L. Souza De Almeida, B. Souza De Paula, B. Spaan, E. Spadaro Norella, E. Spedicato, E. Spiridenkov, P. Spradlin, V. Sriskaran, F. Stagni, M. Stahl, S. Stahl, S. Stanislaus, E. N. Stein, O. Steinkamp, O. Stenyakin, H. Stevens, S. Stone, D. Strekalina, Y. S. Su, F. Suljik, J. Sun, L. Sun, Y. Sun, P. Svihra, P. N. Swallow, K. Swientek, A. Szabelski, T. Szumlak, M. Szymanski, Y. Tan, S. Taneja, M. D. Tat, A. Terentev, F. Teubert, E. Thomas, D. J. D. Thompson, K. A. Thomson, H. Tilquin, V. Tisserand, S. T’Jampens, M. Tobin, L. Tomassetti, G. Tonani, X. Tong, D. Torres Machado, D. Y. Tou, S. M. Trilov, C. Trippl, G. Tuci, A. Tully, N. Tuning, A. Ukleja, D. J. Unverzagt, A. Usachov, A. Ustyuzhanin, U. Uwer, A. Vagner, V. Vagnoni, A. Valassi, G. Valenti, N. Valls Canudas, M. van Beuzekom, M. Van Dijk, H. Van Hecke, E. van Herwijnen, C. B. Van Hulse, M. van Veghel, R. Vazquez Gomez, P. Vazquez Regueiro, C. Vázquez Sierra, S. Vecchi, J. J. Velthuis, M. Veltri, A. Venkateswaran, M. Veronesi, M. Vesterinen, D. Vieira, M. Vieites Diaz, X. Vilasis-Cardona, E. Vilella Figueras, A. Villa, P. Vincent, F. C. Volle, D. vom Bruch, A. Vorobyev, V. Vorobyev, N. Voropaev, K. Vos, C. Vrahas, R. Waldi, J. Walsh, G. Wan, C. Wang, G. Wang, J. Wang, J. Wang, J. Wang, J. Wang, M. Wang, R. Wang, X. Wang, Y. Wang, Z. Wang, Z. Wang, Z. Wang, J. A. Ward, N. K. Watson, D. Websdale, Y. Wei, C. Weisser, B. D. C. Westhenry, D. J. White, M. Whitehead, A. R. Wiederhold, D. Wiedner, G. Wilkinson, M. K. Wilkinson, I. Williams, M. Williams, M. R. J. Williams, R. Williams, F. F. Wilson, W. Wislicki, M. Witek, L. Witola, C. P. Wong, G. Wormser, S. A. Wotton, H. Wu, J. Wu, K. Wyllie, Z. Xiang, D. Xiao, Y. Xie, A. Xu, J. Xu, L. Xu, L. Xu, M. Xu, Q. Xu, Z. Xu, Z. Xu, D. Yang, S. Yang, X. Yang, Y. Yang, Z. Yang, Z. Yang, L. E. Yeomans, V. Yeroshenko, H. Yeung, H. Yin, J. Yu, X. Yuan, E. Zaffaroni, M. Zavertyaev, M. Zdybal, O. Zenaiev, M. Zeng, C. Zhang, D. Zhang, L. Zhang, S. Zhang, S. Zhang, Y. Zhang, Y. Zhang, A. Zharkova, A. Zhelezov, Y. Zheng, T. Zhou, X. Zhou, Y. Zhou, V. Zhovkovska, X. Zhu, X. Zhu, Z. Zhu, V. Zhukov, Q. Zou, S. Zucchelli, D. Zuliani, G. Zunica, LHCb Collaboration","doi":"10.1140/epjc/s10052-023-11815-1","DOIUrl":"10.1140/epjc/s10052-023-11815-1","url":null,"abstract":"","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11815-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4326402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-08DOI: 10.1140/epjc/s10052-023-11878-0
I. Andrade, R. Menezes
This work deals with the presence of localized structures in relativistic systems described by two real scalar fields in two-dimensional spacetime. We consider the usual two-field model with the inclusion of the cuscuton term, which couples the fields regardless the potential. First we follow the steps of previous work to show that the system supports a first-order framework, allowing us to obtain the energy of solutions without knowing their explicit form. The cuscuton term brings versatility into the first-order equations, which gives rise to interesting modifications in the profiles of topological configurations, such as the smooth control over their slope and the internal structure of the energy density.
{"title":"Kinks in cuscuton-like models with two scalar fields","authors":"I. Andrade, R. Menezes","doi":"10.1140/epjc/s10052-023-11878-0","DOIUrl":"10.1140/epjc/s10052-023-11878-0","url":null,"abstract":"<div><p>This work deals with the presence of localized structures in relativistic systems described by two real scalar fields in two-dimensional spacetime. We consider the usual two-field model with the inclusion of the cuscuton term, which couples the fields regardless the potential. First we follow the steps of previous work to show that the system supports a first-order framework, allowing us to obtain the energy of solutions without knowing their explicit form. The cuscuton term brings versatility into the first-order equations, which gives rise to interesting modifications in the profiles of topological configurations, such as the smooth control over their slope and the internal structure of the energy density.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11878-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4332492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-08DOI: 10.1140/epjc/s10052-023-11888-y
Juri Fiaschi, Benjamin Fuks, Michael Klasen, Alexander Neuwirth
Due to the greater experimental precision expected from the currently ongoing LHC Run 3, equally accurate theoretical predictions are essential. We update the documentation of the Resummino package, a program dedicated to precision cross section calculations for the production of a pair of sleptons, electroweakinos, and leptons in the presence of extra gauge bosons, and for the production of an associated electroweakino-squark or electroweakino-gluino pair. We detail different additions that have been released since the initial version of the program a decade ago, and then use the code to investigate the impact of threshold resummation corrections at the next-to-next-to-leading-logarithmic accuracy. As an illustration of the code we consider the production of pairs of electroweakinos and sleptons at the LHC for centre-of-mass energies ranging up to 13.6 TeV and in simplified model scenarios. We find slightly increased total cross section values, accompanied by a significant decrease of the associated theoretical uncertainties. Furthermore, we explore the dependence of the results on the squark masses.
{"title":"Electroweak superpartner production at 13.6 Tev with Resummino","authors":"Juri Fiaschi, Benjamin Fuks, Michael Klasen, Alexander Neuwirth","doi":"10.1140/epjc/s10052-023-11888-y","DOIUrl":"10.1140/epjc/s10052-023-11888-y","url":null,"abstract":"<div><p>Due to the greater experimental precision expected from the currently ongoing LHC Run 3, equally accurate theoretical predictions are essential. We update the documentation of the <i>Resummino</i> package, a program dedicated to precision cross section calculations for the production of a pair of sleptons, electroweakinos, and leptons in the presence of extra gauge bosons, and for the production of an associated electroweakino-squark or electroweakino-gluino pair. We detail different additions that have been released since the initial version of the program a decade ago, and then use the code to investigate the impact of threshold resummation corrections at the next-to-next-to-leading-logarithmic accuracy. As an illustration of the code we consider the production of pairs of electroweakinos and sleptons at the LHC for centre-of-mass energies ranging up to 13.6 TeV and in simplified model scenarios. We find slightly increased total cross section values, accompanied by a significant decrease of the associated theoretical uncertainties. Furthermore, we explore the dependence of the results on the squark masses.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11888-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4331121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-07DOI: 10.1140/epjc/s10052-023-11897-x
Saeed Ullah Khan, Zhi-Min Chen
This article examines particle dynamics and acceleration in the magnetic Penrose process (MPP) around Kerr black hole (BH) in a split monopole magnetic field. The characteristics of charged particle motion around magnetized BHs reveal four differen feasible regimes of ionized Keplerian disk behaviour: survival in regular epicyclic motion; changing into a chaotic toroidal state; collapse due to escaping along magnetic field lines and collapse due to falling into the BHs. By making use of the effective potential, we have investigated the position of stable circular orbits for both in- and off-equatorial planes. We observed that the positive magnetic field ({{mathcal {P}}}>0) increases the stability of effective potential, whereas ({{mathcal {P}}}<0) diminishes its stability. We show that ultra-efficient energy extraction from spinning supermassive BH controlled by the MPP can pay the bill. We anticipate neutral particle ionization, such as neutron beta-decay, edging closer to the BH horizon, charging protons to more than (10^{20})eV for a supermassive BH of mass (10^9M_{odot }) and a magnetic field of strength (10^4)G.
{"title":"Charged particle dynamics in black hole split monopole magnetosphere","authors":"Saeed Ullah Khan, Zhi-Min Chen","doi":"10.1140/epjc/s10052-023-11897-x","DOIUrl":"10.1140/epjc/s10052-023-11897-x","url":null,"abstract":"<div><p>This article examines particle dynamics and acceleration in the magnetic Penrose process (MPP) around Kerr black hole (BH) in a split monopole magnetic field. The characteristics of charged particle motion around magnetized BHs reveal four differen feasible regimes of ionized Keplerian disk behaviour: survival in regular epicyclic motion; changing into a chaotic toroidal state; collapse due to escaping along magnetic field lines and collapse due to falling into the BHs. By making use of the effective potential, we have investigated the position of stable circular orbits for both in- and off-equatorial planes. We observed that the positive magnetic field <span>({{mathcal {P}}}>0)</span> increases the stability of effective potential, whereas <span>({{mathcal {P}}}<0)</span> diminishes its stability. We show that ultra-efficient energy extraction from spinning supermassive BH controlled by the MPP can pay the bill. We anticipate neutral particle ionization, such as neutron beta-decay, edging closer to the BH horizon, charging protons to more than <span>(10^{20})</span>eV for a supermassive BH of mass <span>(10^9M_{odot })</span> and a magnetic field of strength <span>(10^4)</span>G.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11897-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4609163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-07DOI: 10.1140/epjc/s10052-023-11874-4
Shahrokh Parvizi, Mojtaba Shahbazi
Analogue gravity succeeded to simulate Hawking radiation and test it in laboratories. In this setting, the black hole is simulated by an area in a fluid, say water, where no sound wave can escape the event horizon and phonon oscillations are detected as Hawking radiation. This means that the analogue simulations can provide an alternative description, and consequently, a new insight to the high energy physics problems. Now it would be interesting to see what information loss means and how island prescription is interpreted in water experiment. In this paper we show that the analogue of information loss is the loss of momentum per unit mass of the fluid over the horizon and maintaining the momentum loss leads to the island prescription.
{"title":"Analogue gravity and the island prescription","authors":"Shahrokh Parvizi, Mojtaba Shahbazi","doi":"10.1140/epjc/s10052-023-11874-4","DOIUrl":"10.1140/epjc/s10052-023-11874-4","url":null,"abstract":"<div><p>Analogue gravity succeeded to simulate Hawking radiation and test it in laboratories. In this setting, the black hole is simulated by an area in a fluid, say water, where no sound wave can escape the event horizon and phonon oscillations are detected as Hawking radiation. This means that the analogue simulations can provide an alternative description, and consequently, a new insight to the high energy physics problems. Now it would be interesting to see what information loss means and how island prescription is interpreted in water experiment. In this paper we show that the analogue of information loss is the loss of momentum per unit mass of the fluid over the horizon and maintaining the momentum loss leads to the island prescription.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.4,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11874-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4289404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}