首页 > 最新文献

The European Physical Journal C最新文献

英文 中文
Neutrino Lorentz invariance violation from the (textit{CPT})-even SME coefficients through a tensor interaction with cosmological scalar fields 中微子洛伦兹不变性从(textit{CPT}) -甚至SME系数通过张量相互作用与宇宙标量场
IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2025-01-05 DOI: 10.1140/epjc/s10052-024-13719-0
Rubén Cordero, Luis A. Delgadillo, O. G. Miranda, C. A. Moura

Numerous non-standard interactions between neutrinos and scalar fields have been suggested in the literature. In this work, we have outlined the case of tensorial neutrino non-standard interactions with scalar fields, which can be related to the effective (textit{CPT})-even dimension-4 operators of the Standard Model Extension (SME). We illustrate how bounds placed on these parameters can be associated with limits on the energy scale of the proposed neutrino interactions with cosmic scalars. Besides, as a case study, we employ a DUNE-like experimental configuration to assess the projected sensitivities to the (textit{CPT})-even isotropic (c_{alpha beta }) and Z-spatial (c_{alpha beta }^{ZZ}) SME coefficients. For the case of the isotropic SME coefficients, an upper limit on the energy scale of the interaction can be placed. The current IceCube experiment and upcoming neutrino experiments such as DUNE, KM3NeT, IceCube-Gen2, and GRAND proposals, may clarify these classes of neutrino non-standard interactions.

在文献中提出了许多中微子和标量场之间的非标准相互作用。在这项工作中,我们概述了张量中微子与标量场的非标准相互作用的情况,这可能与标准模型扩展(SME)的有效(textit{CPT}) -偶维-4算子有关。我们说明了这些参数的边界如何与所提出的中微子与宇宙标量相互作用的能量尺度的限制相关联。此外,作为一个案例研究,我们采用类似dune的实验配置来评估对(textit{CPT}) -均匀各向同性(c_{alpha beta })和z -空间(c_{alpha beta }^{ZZ}) SME系数的预测灵敏度。对于各向同性的SME系数,可以设置相互作用能量尺度的上限。目前的冰立方实验和即将到来的中微子实验,如DUNE、KM3NeT、IceCube- gen2和GRAND提案,可能会澄清这些中微子非标准相互作用的类别。
{"title":"Neutrino Lorentz invariance violation from the (textit{CPT})-even SME coefficients through a tensor interaction with cosmological scalar fields","authors":"Rubén Cordero,&nbsp;Luis A. Delgadillo,&nbsp;O. G. Miranda,&nbsp;C. A. Moura","doi":"10.1140/epjc/s10052-024-13719-0","DOIUrl":"10.1140/epjc/s10052-024-13719-0","url":null,"abstract":"<div><p>Numerous non-standard interactions between neutrinos and scalar fields have been suggested in the literature. In this work, we have outlined the case of tensorial neutrino non-standard interactions with scalar fields, which can be related to the effective <span>(textit{CPT})</span>-even dimension-4 operators of the Standard Model Extension (SME). We illustrate how bounds placed on these parameters can be associated with limits on the energy scale of the proposed neutrino interactions with cosmic scalars. Besides, as a case study, we employ a DUNE-like experimental configuration to assess the projected sensitivities to the <span>(textit{CPT})</span>-even isotropic <span>(c_{alpha beta })</span> and <i>Z</i>-spatial <span>(c_{alpha beta }^{ZZ})</span> SME coefficients. For the case of the isotropic SME coefficients, an upper limit on the energy scale of the interaction can be placed. The current IceCube experiment and upcoming neutrino experiments such as DUNE, KM3NeT, IceCube-Gen2, and GRAND proposals, may clarify these classes of neutrino non-standard interactions.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13719-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple testing for signal-agnostic searches for new physics with machine learning 用机器学习对新物理进行信号不可知搜索的多重测试
IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2025-01-04 DOI: 10.1140/epjc/s10052-024-13722-5
Gaia Grosso, Marco Letizia

In this work, we address the question of how to enhance signal-agnostic searches by leveraging multiple testing strategies. Specifically, we consider hypothesis tests relying on machine learning, where model selection can introduce a bias towards specific families of new physics signals. Focusing on the New Physics Learning Machine, a methodology to perform a signal-agnostic likelihood-ratio test, we explore a number of approaches to multiple testing, such as combining p-values and aggregating test statistics. Our findings show that it is beneficial to combine different tests, characterised by distinct choices of hyperparameters, and that performances comparable to the best available test are generally achieved, while also providing a more uniform response to various types of anomalies. This study proposes a methodology that is valid beyond machine learning approaches and could in principle be applied to a larger class model-agnostic analyses based on hypothesis testing.

在这项工作中,我们解决了如何通过利用多种测试策略来增强信号不可知搜索的问题。具体来说,我们考虑依赖于机器学习的假设检验,其中模型选择可能会引入对特定新物理信号家族的偏见。以新物理学习机(New Physics Learning Machine,一种执行信号不确定似然比检验的方法)为重点,我们探索了多种多重检验方法,如组合p值和聚合检验统计量。我们的研究结果表明,结合不同的测试是有益的,以不同的超参数选择为特征,并且通常可以实现与最佳可用测试相当的性能,同时还可以对各种类型的异常提供更统一的响应。本研究提出了一种超越机器学习方法的有效方法,原则上可以应用于基于假设检验的更大类别的模型不可知分析。
{"title":"Multiple testing for signal-agnostic searches for new physics with machine learning","authors":"Gaia Grosso,&nbsp;Marco Letizia","doi":"10.1140/epjc/s10052-024-13722-5","DOIUrl":"10.1140/epjc/s10052-024-13722-5","url":null,"abstract":"<div><p>In this work, we address the question of how to enhance signal-agnostic searches by leveraging multiple testing strategies. Specifically, we consider hypothesis tests relying on machine learning, where model selection can introduce a bias towards specific families of new physics signals. Focusing on the New Physics Learning Machine, a methodology to perform a signal-agnostic likelihood-ratio test, we explore a number of approaches to multiple testing, such as combining <i>p</i>-values and aggregating test statistics. Our findings show that it is beneficial to combine different tests, characterised by distinct choices of hyperparameters, and that performances comparable to the best available test are generally achieved, while also providing a more uniform response to various types of anomalies. This study proposes a methodology that is valid beyond machine learning approaches and could in principle be applied to a larger class model-agnostic analyses based on hypothesis testing.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13722-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
JUNO sensitivity to invisible decay modes of neutrons 朱诺对中子不可见衰变模式的敏感性
IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2025-01-04 DOI: 10.1140/epjc/s10052-024-13638-0
JUNO Collaboration, Angel Abusleme, Thomas Adam, Kai Adamowicz, Shakeel Ahmad, Rizwan Ahmed, Sebastiano Aiello, Fengpeng An, Qi An, Giuseppe Andronico, Nikolay Anfimov, Vito Antonelli, Tatiana Antoshkina, João Pedro Athayde Marcondes de André, Didier Auguste, Weidong Bai, Nikita Balashov, Wander Baldini, Andrea Barresi, Davide Basilico, Eric Baussan, Marco Bellato, Marco Beretta, Antonio Bergnoli, Daniel Bick, Lukas Bieger, Svetlana Biktemerova, Thilo Birkenfeld, Iwan Blake, Simon Blyth, Anastasia Bolshakova, Mathieu Bongrand, Dominique Breton, Augusto Brigatti, Riccardo Brugnera, Riccardo Bruno, Antonio Budano, Jose Busto, Anatael Cabrera, Barbara Caccianiga, Hao Cai, Xiao Cai, Yanke Cai, Zhiyan Cai, Stéphane Callier, Steven Calvez, Antonio Cammi, Agustin Campeny, Chuanya Cao, Guofu Cao, Jun Cao, Rossella Caruso, Cédric Cerna, Vanessa Cerrone, Jinfan Chang, Yun Chang, Auttakit Chatrabhuti, Chao Chen, Guoming Chen, Pingping Chen, Shaomin Chen, Xin Chen, Yiming Chen, Yixue Chen, Yu Chen, Zelin Chen, Zhangming Chen, Zhiyuan Chen, Zikang Chen, Jie Cheng, Yaping Cheng, Yu Chin Cheng, Alexander Chepurnov, Alexey Chetverikov, Davide Chiesa, Pietro Chimenti, Yen-Ting Chin, Po-Lin Chou, Ziliang Chu, Artem Chukanov, Gérard Claverie, Catia Clementi, Barbara Clerbaux, Marta Colomer Molla, Selma Conforti Di Lorenzo, Alberto Coppi, Daniele Corti, Simon Csakli, Chenyang Cui, Flavio Dal Corso, Olivia Dalager, Jaydeep Datta, Christophe De La Taille, Zhi Deng, Ziyan Deng, Xiaoyu Ding, Xuefeng Ding, Yayun Ding, Bayu Dirgantara, Carsten Dittrich, Sergey Dmitrievsky, Tadeas Dohnal, Dmitry Dolzhikov, Georgy Donchenko, Jianmeng Dong, Evgeny Doroshkevich, Wei Dou, Marcos Dracos, Frédéric Druillole, Ran Du, Shuxian Du, Yujie Duan, Katherine Dugas, Stefano Dusini, Hongyue Duyang, Jessica Eck, Timo Enqvist, Andrea Fabbri, Ulrike Fahrendholz, Lei Fan, Jian Fang, Wenxing Fang, Dmitry Fedoseev, Li-Cheng Feng, Qichun Feng, Federico Ferraro, Amélie Fournier, Fritsch Fritsch, Haonan Gan, Feng Gao, Feng Gao, Alberto Garfagnini, Arsenii Gavrikov, Marco Giammarchi, Nunzio Giudice, Maxim Gonchar, Guanghua Gong, Hui Gong, Yuri Gornushkin, Marco Grassi, Maxim Gromov, Vasily Gromov, Minghao Gu, Xiaofei Gu, Yu Gu, Mengyun Guan, Yuduo Guan, Nunzio Guardone, Rosa Maria Guizzetti, Cong Guo, Wanlei Guo, Caren Hagner, Hechong Han, Ran Han, Yang Han, Jinhong He, Miao He, Wei He, Xinhai He, Tobias Heinz, Patrick Hellmuth, Yuekun Heng, Rafael Herrera, YuenKeung Hor, Shaojing Hou, Yee Hsiung, Bei-Zhen Hu, Hang Hu, Jun Hu, Peng Hu, Shouyang Hu, Tao Hu, Yuxiang Hu, Zhuojun Hu, Guihong Huang, Hanxiong Huang, Jinhao Huang, Junting Huang, Kaixuan Huang, Shengheng Huang, Wenhao Huang, Xin Huang, Xingtao Huang, Yongbo Huang, Jiaqi Hui, Lei Huo, Wenju Huo, Cédric Huss, Safeer Hussain, Leonard Imbert, Ara Ioannisian, Roberto Isocrate, Arshak Jafar, Beatrice Jelmini, Ignacio Jeria, Xiaolu Ji, Huihui Jia, Junji Jia, Siyu Jian, Cailian Jiang, Di Jiang, Guangzheng Jiang, Wei Jiang, Xiaoshan Jiang, Xiaozhao Jiang, Yixuan Jiang, Xiaoping Jing, Cécile Jollet, Li Kang, Rebin Karaparabil, Narine Kazarian, Ali Khan, Amina Khatun, Khanchai Khosonthongkee, Denis Korablev, Konstantin Kouzakov, Alexey Krasnoperov, Sergey Kuleshov, Sindhujha Kumaran, Nikolay Kutovskiy, Loïc Labit, Tobias Lachenmaier, Haojing Lai, Cecilia Landini, Sébastien Leblanc, Frederic Lefevre, Ruiting Lei, Rupert Leitner, Jason Leung, Demin Li, Fei Li, Fule Li, Gaosong Li, Hongjian Li, Huang Li, Jiajun Li, Min Li, Nan Li, Qingjiang Li, Ruhui Li, Rui Li, Shanfeng Li, Shuo Li, Tao Li, Teng Li, Weidong Li, Weiguo Li, Xiaomei Li, Xiaonan Li, Xinglong Li, Yi Li, Yichen Li, Yufeng Li, Zhaohan Li, Zhibing Li, Ziyuan Li, Zonghai Li, An-An Liang, Hao Liang, Hao Liang, Jiajun Liao, Yilin Liao, Yuzhong Liao, Ayut Limphirat, Guey-Lin Lin, Shengxin Lin, Tao Lin, Jiajie Ling, Xin Ling, Ivano Lippi, Caimei Liu, Fang Liu, Fengcheng Liu, Haidong Liu, Haotian Liu, Hongbang Liu, Hongjuan Liu, Hongtao Liu, Hongyang Liu, Jianglai Liu, Jiaxi Liu, Jinchang Liu, Min Liu, Qian Liu, Qin Liu, Runxuan Liu, Shenghui Liu, Shubin Liu, Shulin Liu, Xiaowei Liu, Xiwen Liu, Xuewei Liu, Yankai Liu, Zhen Liu, Lorenzo Loi, Alexey Lokhov, Paolo Lombardi, Claudio Lombardo, Kai Loo, Chuan Lu, Haoqi Lu, Jingbin Lu, Junguang Lu, Meishu Lu, Peizhi Lu, Shuxiang Lu, Xianguo Lu, Bayarto Lubsandorzhiev, Sultim Lubsandorzhiev, Livia Ludhova, Arslan Lukanov, Fengjiao Luo, Guang Luo, Jianyi Luo, Shu Luo, Wuming Luo, Xiaojie Luo, Vladimir Lyashuk, Bangzheng Ma, Bing Ma, Qiumei Ma, Si Ma, Xiaoyan Ma, Xubo Ma, Jihane Maalmi, Jingyu Mai, Marco Malabarba, Yury Malyshkin, Roberto Carlos Mandujano, Fabio Mantovani, Xin Mao, Yajun Mao, Stefano M. Mari, Filippo Marini, Agnese Martini, Matthias Mayer, Davit Mayilyan, Ints Mednieks, Yue Meng, Anita Meraviglia, Anselmo Meregaglia, Emanuela Meroni, Lino Miramonti, Nikhil Mohan, Michele Montuschi, Cristobal Morales Reveco, Massimiliano Nastasi, Dmitry V. Naumov, Elena Naumova, Diana Navas-Nicolas, Igor Nemchenok, Minh Thuan Nguyen Thi, Alexey Nikolaev, Feipeng Ning, Zhe Ning, Hiroshi Nunokawa, Lothar Oberauer, Juan Pedro Ochoa-Ricoux, Alexander Olshevskiy, Domizia Orestano, Fausto Ortica, Rainer Othegraven, Alessandro Paoloni, George Parker, Sergio Parmeggiano, Achilleas Patsias, Yatian Pei, Luca Pelicci, Anguo Peng, Haiping Peng, Yu Peng, Zhaoyuan Peng, Elisa Percalli, Willy Perrin, Frédéric Perrot, Pierre-Alexandre Petitjean, Fabrizio Petrucci, Oliver Pilarczyk, Luis Felipe Piñeres Rico, Artyom Popov, Pascal Poussot, Ezio Previtali, Fazhi Qi, Ming Qi, Xiaohui Qi, Sen Qian, Xiaohui Qian, Zhen Qian, Hao Qiao, Zhonghua Qin, Shoukang Qiu, Manhao Qu, Zhenning Qu, Gioacchino Ranucci, Alessandra Re, Abdel Rebii, Mariia Redchuk, Gioele Reina, Bin Ren, Jie Ren, Yuhan Ren, Barbara Ricci, Komkrit Rientong, Mariam Rifai, Mathieu Roche, Narongkiat Rodphai, Aldo Romani, Bedřich Roskovec, Xichao Ruan, Arseniy Rybnikov, Andrey Sadovsky, Paolo Saggese, Deshan Sandanayake, Anut Sangka, Giuseppe Sava, Utane Sawangwit, Michaela Schever, Cédric Schwab, Konstantin Schweizer, Alexandr Selyunin, Andrea Serafini, Mariangela Settimo, Junyu Shao, Vladislav Sharov, Hexi Shi, Jingyan Shi, Yanan Shi, Vitaly Shutov, Andrey Sidorenkov, Fedor Šimkovic, Apeksha Singhal, Chiara Sirignano, Jaruchit Siripak, Monica Sisti, Mikhail Smirnov, Oleg Smirnov, Sergey Sokolov, Julanan Songwadhana, Boonrucksar Soonthornthum, Albert Sotnikov, Warintorn Sreethawong, Achim Stahl, Luca Stanco, Konstantin Stankevich, Hans Steiger, Jochen Steinmann, Tobias Sterr, Matthias Raphael Stock, Virginia Strati, Michail Strizh, Alexander Studenikin, Aoqi Su, Jun Su, Jun Su, Guangbao Sun, Shifeng Sun, Xilei Sun, Yongjie Sun, Yongzhao Sun, Zhengyang Sun, Narumon Suwonjandee, Akira Takenaka, Xiaohan Tan, Jian Tang, Jingzhe Tang, Qiang Tang, Quan Tang, Xiao Tang, Vidhya Thara Hariharan, Igor Tkachev, Tomas Tmej, Marco Danilo Claudio Torri, Andrea Triossi, Wladyslaw Trzaska, Yu-Chen Tung, Cristina Tuve, Nikita Ushakov, Vadim Vedin, Carlo Venettacci, Giuseppe Verde, Maxim Vialkov, Benoit Viaud, Cornelius Moritz Vollbrecht, Katharina von Sturm, Vit Vorobel, Dmitriy Voronin, Lucia Votano, Pablo Walker, Caishen Wang, Chung-Hsiang Wang, En Wang, Guoli Wang, Hanwen Wang, Jian Wang, Jun Wang, Li Wang, Lu Wang, Meng Wang, Meng Wang, Mingyuan Wang, Qianchuan Wang, Ruiguang Wang, Sibo Wang, Siguang Wang, Wei Wang, Wenshuai Wang, Xi Wang, Xiangyue Wang, Yangfu Wang, Yaoguang Wang, Yi Wang, Yi Wang, Yifang Wang, Yuanqing Wang, Yuyi Wang, Zhe Wang, Zheng Wang, Zhimin Wang, Apimook Watcharangkool, Wei Wei, Wei Wei, Wenlu Wei, Yadong Wei, Yuehuan Wei, Liangjian Wen, Jun Weng, Christopher Wiebusch, Rosmarie Wirth, Chengxin Wu, Diru Wu, Qun Wu, Yinhui Wu, Yiyang Wu, Zhi Wu, Michael Wurm, Jacques Wurtz, Christian Wysotzki, Yufei Xi, Dongmei Xia, Shishen Xian, Ziqian Xiang, Fei Xiao, Xiang Xiao, Xiaochuan Xie, Yijun Xie, Yuguang Xie, Zhao Xin, Zhizhong Xing, Benda Xu, Cheng Xu, Donglian Xu, Fanrong Xu, Hangkun Xu, Jiayang Xu, Jilei Xu, Jing Xu, Jinghuan Xu, Meihang Xu, Xunjie Xu, Yin Xu, Yu Xu, Baojun Yan, Qiyu Yan, Taylor Yan, Xiongbo Yan, Yupeng Yan, Changgen Yang, Chengfeng Yang, Fengfan Yang, Jie Yang, Lei Yang, Pengfei Yang, Xiaoyu Yang, Yifan Yang, Yixiang Yang, Zekun Yang, Haifeng Yao, Jiaxuan Ye, Mei Ye, Ziping Ye, Frédéric Yermia, Zhengyun You, Boxiang Yu, Chiye Yu, Chunxu Yu, Guojun Yu, Hongzhao Yu, Miao Yu, Xianghui Yu, Zeyuan Yu, Zezhong Yu, Cenxi Yuan, Chengzhuo Yuan, Ying Yuan, Zhenxiong Yuan, Baobiao Yue, Noman Zafar, Kirill Zamogilnyi, Vitalii Zavadskyi, Fanrui Zeng, Shan Zeng, Tingxuan Zeng, Yuda Zeng, Liang Zhan, Aiqiang Zhang, Bin Zhang, Binting Zhang, Feiyang Zhang, Hangchang Zhang, Haosen Zhang, Honghao Zhang, Jialiang Zhang, Jiawen Zhang, Jie Zhang, Jingbo Zhang, Jinnan Zhang, Junwei Zhang, Lei Zhang, Peng Zhang, Ping Zhang, Qingmin Zhang, Shiqi Zhang, Shu Zhang, Shuihan Zhang, Siyuan Zhang, Tao Zhang, Xiaomei Zhang, Xin Zhang, Xuantong Zhang, Yibing Zhang, Yinhong Zhang, Yiyu Zhang, Yongpeng Zhang, Yu Zhang, Yuanyuan Zhang, Yumei Zhang, Zhenyu Zhang, Zhijian Zhang, Jie Zhao, Rong Zhao, Runze Zhao, Shujun Zhao, Tianhao Zhao, Hua Zheng, Yangheng Zheng, Jing Zhou, Li Zhou, Nan Zhou, Shun Zhou, Tong Zhou, Xiang Zhou, Xing Zhou, Jingsen Zhu, Kangfu Zhu, Kejun Zhu, Zhihang Zhu, Bo Zhuang, Honglin Zhuang, Liang Zong, Jiaheng Zou, JUNO Collaboration

We explore the decay of bound neutrons in the JUNO liquid scintillator detector into invisible particles (e.g., (nrightarrow 3 nu ) or (nn rightarrow 2 nu )), which do not produce an observable signal. The invisible decay includes two decay modes: ( n rightarrow { inv} ) and ( nn rightarrow { inv} ). The invisible decays of s-shell neutrons in (^{12}textrm{C}) will leave a highly excited residual nucleus. Subsequently, some de-excitation modes of the excited residual nuclei can produce a time- and space-correlated triple coincidence signal in the JUNO detector. Based on a full Monte Carlo simulation informed with the latest available data, we estimate all backgrounds, including inverse beta decay events of the reactor antineutrino ({bar{nu }}_e), natural radioactivity, cosmogenic isotopes and neutral current interactions of atmospheric neutrinos. Pulse shape discrimination and multivariate analysis techniques are employed to further suppress backgrounds. With two years of exposure, JUNO is expected to give an order of magnitude improvement compared to the current best limits. After 10 years of data taking, the JUNO expected sensitivities at a 90% confidence level are (tau /B( n rightarrow { inv} ) > 5.0 times 10^{31} , textrm{years}) and (tau /B( nn rightarrow { inv} ) > 1.4 times 10^{32} , textrm{years}).

我们在JUNO液体闪烁体探测器中探索束缚中子衰变为不可见粒子(例如(nrightarrow 3 nu )或(nn rightarrow 2 nu )),这些粒子不会产生可观测信号。不可见衰变包括( n rightarrow { inv} )和( nn rightarrow { inv} )两种衰变模式。(^{12}textrm{C})中s壳层中子的不可见衰变将留下一个高度激发的残核。随后,在JUNO探测器中,一些被激发残核的去激发模式可以产生时空相关的三重符合信号。基于完整的蒙特卡罗模拟和最新可用数据,我们估计了所有背景,包括反应堆反中微子({bar{nu }}_e)的反β衰变事件,自然放射性,宇宙生成同位素和大气中微子的中性电流相互作用。采用脉冲形状判别和多变量分析技术进一步抑制背景。经过两年的曝光,朱诺号预计将比目前的最佳极限提高一个数量级。经过10年的数据采集,朱诺号预计灵敏度为90% confidence level are (tau /B( n rightarrow { inv} ) > 5.0 times 10^{31} , textrm{years}) and (tau /B( nn rightarrow { inv} ) > 1.4 times 10^{32} , textrm{years}).
{"title":"JUNO sensitivity to invisible decay modes of neutrons","authors":"JUNO Collaboration,&nbsp;Angel Abusleme,&nbsp;Thomas Adam,&nbsp;Kai Adamowicz,&nbsp;Shakeel Ahmad,&nbsp;Rizwan Ahmed,&nbsp;Sebastiano Aiello,&nbsp;Fengpeng An,&nbsp;Qi An,&nbsp;Giuseppe Andronico,&nbsp;Nikolay Anfimov,&nbsp;Vito Antonelli,&nbsp;Tatiana Antoshkina,&nbsp;João Pedro Athayde Marcondes de André,&nbsp;Didier Auguste,&nbsp;Weidong Bai,&nbsp;Nikita Balashov,&nbsp;Wander Baldini,&nbsp;Andrea Barresi,&nbsp;Davide Basilico,&nbsp;Eric Baussan,&nbsp;Marco Bellato,&nbsp;Marco Beretta,&nbsp;Antonio Bergnoli,&nbsp;Daniel Bick,&nbsp;Lukas Bieger,&nbsp;Svetlana Biktemerova,&nbsp;Thilo Birkenfeld,&nbsp;Iwan Blake,&nbsp;Simon Blyth,&nbsp;Anastasia Bolshakova,&nbsp;Mathieu Bongrand,&nbsp;Dominique Breton,&nbsp;Augusto Brigatti,&nbsp;Riccardo Brugnera,&nbsp;Riccardo Bruno,&nbsp;Antonio Budano,&nbsp;Jose Busto,&nbsp;Anatael Cabrera,&nbsp;Barbara Caccianiga,&nbsp;Hao Cai,&nbsp;Xiao Cai,&nbsp;Yanke Cai,&nbsp;Zhiyan Cai,&nbsp;Stéphane Callier,&nbsp;Steven Calvez,&nbsp;Antonio Cammi,&nbsp;Agustin Campeny,&nbsp;Chuanya Cao,&nbsp;Guofu Cao,&nbsp;Jun Cao,&nbsp;Rossella Caruso,&nbsp;Cédric Cerna,&nbsp;Vanessa Cerrone,&nbsp;Jinfan Chang,&nbsp;Yun Chang,&nbsp;Auttakit Chatrabhuti,&nbsp;Chao Chen,&nbsp;Guoming Chen,&nbsp;Pingping Chen,&nbsp;Shaomin Chen,&nbsp;Xin Chen,&nbsp;Yiming Chen,&nbsp;Yixue Chen,&nbsp;Yu Chen,&nbsp;Zelin Chen,&nbsp;Zhangming Chen,&nbsp;Zhiyuan Chen,&nbsp;Zikang Chen,&nbsp;Jie Cheng,&nbsp;Yaping Cheng,&nbsp;Yu Chin Cheng,&nbsp;Alexander Chepurnov,&nbsp;Alexey Chetverikov,&nbsp;Davide Chiesa,&nbsp;Pietro Chimenti,&nbsp;Yen-Ting Chin,&nbsp;Po-Lin Chou,&nbsp;Ziliang Chu,&nbsp;Artem Chukanov,&nbsp;Gérard Claverie,&nbsp;Catia Clementi,&nbsp;Barbara Clerbaux,&nbsp;Marta Colomer Molla,&nbsp;Selma Conforti Di Lorenzo,&nbsp;Alberto Coppi,&nbsp;Daniele Corti,&nbsp;Simon Csakli,&nbsp;Chenyang Cui,&nbsp;Flavio Dal Corso,&nbsp;Olivia Dalager,&nbsp;Jaydeep Datta,&nbsp;Christophe De La Taille,&nbsp;Zhi Deng,&nbsp;Ziyan Deng,&nbsp;Xiaoyu Ding,&nbsp;Xuefeng Ding,&nbsp;Yayun Ding,&nbsp;Bayu Dirgantara,&nbsp;Carsten Dittrich,&nbsp;Sergey Dmitrievsky,&nbsp;Tadeas Dohnal,&nbsp;Dmitry Dolzhikov,&nbsp;Georgy Donchenko,&nbsp;Jianmeng Dong,&nbsp;Evgeny Doroshkevich,&nbsp;Wei Dou,&nbsp;Marcos Dracos,&nbsp;Frédéric Druillole,&nbsp;Ran Du,&nbsp;Shuxian Du,&nbsp;Yujie Duan,&nbsp;Katherine Dugas,&nbsp;Stefano Dusini,&nbsp;Hongyue Duyang,&nbsp;Jessica Eck,&nbsp;Timo Enqvist,&nbsp;Andrea Fabbri,&nbsp;Ulrike Fahrendholz,&nbsp;Lei Fan,&nbsp;Jian Fang,&nbsp;Wenxing Fang,&nbsp;Dmitry Fedoseev,&nbsp;Li-Cheng Feng,&nbsp;Qichun Feng,&nbsp;Federico Ferraro,&nbsp;Amélie Fournier,&nbsp;Fritsch Fritsch,&nbsp;Haonan Gan,&nbsp;Feng Gao,&nbsp;Feng Gao,&nbsp;Alberto Garfagnini,&nbsp;Arsenii Gavrikov,&nbsp;Marco Giammarchi,&nbsp;Nunzio Giudice,&nbsp;Maxim Gonchar,&nbsp;Guanghua Gong,&nbsp;Hui Gong,&nbsp;Yuri Gornushkin,&nbsp;Marco Grassi,&nbsp;Maxim Gromov,&nbsp;Vasily Gromov,&nbsp;Minghao Gu,&nbsp;Xiaofei Gu,&nbsp;Yu Gu,&nbsp;Mengyun Guan,&nbsp;Yuduo Guan,&nbsp;Nunzio Guardone,&nbsp;Rosa Maria Guizzetti,&nbsp;Cong Guo,&nbsp;Wanlei Guo,&nbsp;Caren Hagner,&nbsp;Hechong Han,&nbsp;Ran Han,&nbsp;Yang Han,&nbsp;Jinhong He,&nbsp;Miao He,&nbsp;Wei He,&nbsp;Xinhai He,&nbsp;Tobias Heinz,&nbsp;Patrick Hellmuth,&nbsp;Yuekun Heng,&nbsp;Rafael Herrera,&nbsp;YuenKeung Hor,&nbsp;Shaojing Hou,&nbsp;Yee Hsiung,&nbsp;Bei-Zhen Hu,&nbsp;Hang Hu,&nbsp;Jun Hu,&nbsp;Peng Hu,&nbsp;Shouyang Hu,&nbsp;Tao Hu,&nbsp;Yuxiang Hu,&nbsp;Zhuojun Hu,&nbsp;Guihong Huang,&nbsp;Hanxiong Huang,&nbsp;Jinhao Huang,&nbsp;Junting Huang,&nbsp;Kaixuan Huang,&nbsp;Shengheng Huang,&nbsp;Wenhao Huang,&nbsp;Xin Huang,&nbsp;Xingtao Huang,&nbsp;Yongbo Huang,&nbsp;Jiaqi Hui,&nbsp;Lei Huo,&nbsp;Wenju Huo,&nbsp;Cédric Huss,&nbsp;Safeer Hussain,&nbsp;Leonard Imbert,&nbsp;Ara Ioannisian,&nbsp;Roberto Isocrate,&nbsp;Arshak Jafar,&nbsp;Beatrice Jelmini,&nbsp;Ignacio Jeria,&nbsp;Xiaolu Ji,&nbsp;Huihui Jia,&nbsp;Junji Jia,&nbsp;Siyu Jian,&nbsp;Cailian Jiang,&nbsp;Di Jiang,&nbsp;Guangzheng Jiang,&nbsp;Wei Jiang,&nbsp;Xiaoshan Jiang,&nbsp;Xiaozhao Jiang,&nbsp;Yixuan Jiang,&nbsp;Xiaoping Jing,&nbsp;Cécile Jollet,&nbsp;Li Kang,&nbsp;Rebin Karaparabil,&nbsp;Narine Kazarian,&nbsp;Ali Khan,&nbsp;Amina Khatun,&nbsp;Khanchai Khosonthongkee,&nbsp;Denis Korablev,&nbsp;Konstantin Kouzakov,&nbsp;Alexey Krasnoperov,&nbsp;Sergey Kuleshov,&nbsp;Sindhujha Kumaran,&nbsp;Nikolay Kutovskiy,&nbsp;Loïc Labit,&nbsp;Tobias Lachenmaier,&nbsp;Haojing Lai,&nbsp;Cecilia Landini,&nbsp;Sébastien Leblanc,&nbsp;Frederic Lefevre,&nbsp;Ruiting Lei,&nbsp;Rupert Leitner,&nbsp;Jason Leung,&nbsp;Demin Li,&nbsp;Fei Li,&nbsp;Fule Li,&nbsp;Gaosong Li,&nbsp;Hongjian Li,&nbsp;Huang Li,&nbsp;Jiajun Li,&nbsp;Min Li,&nbsp;Nan Li,&nbsp;Qingjiang Li,&nbsp;Ruhui Li,&nbsp;Rui Li,&nbsp;Shanfeng Li,&nbsp;Shuo Li,&nbsp;Tao Li,&nbsp;Teng Li,&nbsp;Weidong Li,&nbsp;Weiguo Li,&nbsp;Xiaomei Li,&nbsp;Xiaonan Li,&nbsp;Xinglong Li,&nbsp;Yi Li,&nbsp;Yichen Li,&nbsp;Yufeng Li,&nbsp;Zhaohan Li,&nbsp;Zhibing Li,&nbsp;Ziyuan Li,&nbsp;Zonghai Li,&nbsp;An-An Liang,&nbsp;Hao Liang,&nbsp;Hao Liang,&nbsp;Jiajun Liao,&nbsp;Yilin Liao,&nbsp;Yuzhong Liao,&nbsp;Ayut Limphirat,&nbsp;Guey-Lin Lin,&nbsp;Shengxin Lin,&nbsp;Tao Lin,&nbsp;Jiajie Ling,&nbsp;Xin Ling,&nbsp;Ivano Lippi,&nbsp;Caimei Liu,&nbsp;Fang Liu,&nbsp;Fengcheng Liu,&nbsp;Haidong Liu,&nbsp;Haotian Liu,&nbsp;Hongbang Liu,&nbsp;Hongjuan Liu,&nbsp;Hongtao Liu,&nbsp;Hongyang Liu,&nbsp;Jianglai Liu,&nbsp;Jiaxi Liu,&nbsp;Jinchang Liu,&nbsp;Min Liu,&nbsp;Qian Liu,&nbsp;Qin Liu,&nbsp;Runxuan Liu,&nbsp;Shenghui Liu,&nbsp;Shubin Liu,&nbsp;Shulin Liu,&nbsp;Xiaowei Liu,&nbsp;Xiwen Liu,&nbsp;Xuewei Liu,&nbsp;Yankai Liu,&nbsp;Zhen Liu,&nbsp;Lorenzo Loi,&nbsp;Alexey Lokhov,&nbsp;Paolo Lombardi,&nbsp;Claudio Lombardo,&nbsp;Kai Loo,&nbsp;Chuan Lu,&nbsp;Haoqi Lu,&nbsp;Jingbin Lu,&nbsp;Junguang Lu,&nbsp;Meishu Lu,&nbsp;Peizhi Lu,&nbsp;Shuxiang Lu,&nbsp;Xianguo Lu,&nbsp;Bayarto Lubsandorzhiev,&nbsp;Sultim Lubsandorzhiev,&nbsp;Livia Ludhova,&nbsp;Arslan Lukanov,&nbsp;Fengjiao Luo,&nbsp;Guang Luo,&nbsp;Jianyi Luo,&nbsp;Shu Luo,&nbsp;Wuming Luo,&nbsp;Xiaojie Luo,&nbsp;Vladimir Lyashuk,&nbsp;Bangzheng Ma,&nbsp;Bing Ma,&nbsp;Qiumei Ma,&nbsp;Si Ma,&nbsp;Xiaoyan Ma,&nbsp;Xubo Ma,&nbsp;Jihane Maalmi,&nbsp;Jingyu Mai,&nbsp;Marco Malabarba,&nbsp;Yury Malyshkin,&nbsp;Roberto Carlos Mandujano,&nbsp;Fabio Mantovani,&nbsp;Xin Mao,&nbsp;Yajun Mao,&nbsp;Stefano M. Mari,&nbsp;Filippo Marini,&nbsp;Agnese Martini,&nbsp;Matthias Mayer,&nbsp;Davit Mayilyan,&nbsp;Ints Mednieks,&nbsp;Yue Meng,&nbsp;Anita Meraviglia,&nbsp;Anselmo Meregaglia,&nbsp;Emanuela Meroni,&nbsp;Lino Miramonti,&nbsp;Nikhil Mohan,&nbsp;Michele Montuschi,&nbsp;Cristobal Morales Reveco,&nbsp;Massimiliano Nastasi,&nbsp;Dmitry V. Naumov,&nbsp;Elena Naumova,&nbsp;Diana Navas-Nicolas,&nbsp;Igor Nemchenok,&nbsp;Minh Thuan Nguyen Thi,&nbsp;Alexey Nikolaev,&nbsp;Feipeng Ning,&nbsp;Zhe Ning,&nbsp;Hiroshi Nunokawa,&nbsp;Lothar Oberauer,&nbsp;Juan Pedro Ochoa-Ricoux,&nbsp;Alexander Olshevskiy,&nbsp;Domizia Orestano,&nbsp;Fausto Ortica,&nbsp;Rainer Othegraven,&nbsp;Alessandro Paoloni,&nbsp;George Parker,&nbsp;Sergio Parmeggiano,&nbsp;Achilleas Patsias,&nbsp;Yatian Pei,&nbsp;Luca Pelicci,&nbsp;Anguo Peng,&nbsp;Haiping Peng,&nbsp;Yu Peng,&nbsp;Zhaoyuan Peng,&nbsp;Elisa Percalli,&nbsp;Willy Perrin,&nbsp;Frédéric Perrot,&nbsp;Pierre-Alexandre Petitjean,&nbsp;Fabrizio Petrucci,&nbsp;Oliver Pilarczyk,&nbsp;Luis Felipe Piñeres Rico,&nbsp;Artyom Popov,&nbsp;Pascal Poussot,&nbsp;Ezio Previtali,&nbsp;Fazhi Qi,&nbsp;Ming Qi,&nbsp;Xiaohui Qi,&nbsp;Sen Qian,&nbsp;Xiaohui Qian,&nbsp;Zhen Qian,&nbsp;Hao Qiao,&nbsp;Zhonghua Qin,&nbsp;Shoukang Qiu,&nbsp;Manhao Qu,&nbsp;Zhenning Qu,&nbsp;Gioacchino Ranucci,&nbsp;Alessandra Re,&nbsp;Abdel Rebii,&nbsp;Mariia Redchuk,&nbsp;Gioele Reina,&nbsp;Bin Ren,&nbsp;Jie Ren,&nbsp;Yuhan Ren,&nbsp;Barbara Ricci,&nbsp;Komkrit Rientong,&nbsp;Mariam Rifai,&nbsp;Mathieu Roche,&nbsp;Narongkiat Rodphai,&nbsp;Aldo Romani,&nbsp;Bedřich Roskovec,&nbsp;Xichao Ruan,&nbsp;Arseniy Rybnikov,&nbsp;Andrey Sadovsky,&nbsp;Paolo Saggese,&nbsp;Deshan Sandanayake,&nbsp;Anut Sangka,&nbsp;Giuseppe Sava,&nbsp;Utane Sawangwit,&nbsp;Michaela Schever,&nbsp;Cédric Schwab,&nbsp;Konstantin Schweizer,&nbsp;Alexandr Selyunin,&nbsp;Andrea Serafini,&nbsp;Mariangela Settimo,&nbsp;Junyu Shao,&nbsp;Vladislav Sharov,&nbsp;Hexi Shi,&nbsp;Jingyan Shi,&nbsp;Yanan Shi,&nbsp;Vitaly Shutov,&nbsp;Andrey Sidorenkov,&nbsp;Fedor Šimkovic,&nbsp;Apeksha Singhal,&nbsp;Chiara Sirignano,&nbsp;Jaruchit Siripak,&nbsp;Monica Sisti,&nbsp;Mikhail Smirnov,&nbsp;Oleg Smirnov,&nbsp;Sergey Sokolov,&nbsp;Julanan Songwadhana,&nbsp;Boonrucksar Soonthornthum,&nbsp;Albert Sotnikov,&nbsp;Warintorn Sreethawong,&nbsp;Achim Stahl,&nbsp;Luca Stanco,&nbsp;Konstantin Stankevich,&nbsp;Hans Steiger,&nbsp;Jochen Steinmann,&nbsp;Tobias Sterr,&nbsp;Matthias Raphael Stock,&nbsp;Virginia Strati,&nbsp;Michail Strizh,&nbsp;Alexander Studenikin,&nbsp;Aoqi Su,&nbsp;Jun Su,&nbsp;Jun Su,&nbsp;Guangbao Sun,&nbsp;Shifeng Sun,&nbsp;Xilei Sun,&nbsp;Yongjie Sun,&nbsp;Yongzhao Sun,&nbsp;Zhengyang Sun,&nbsp;Narumon Suwonjandee,&nbsp;Akira Takenaka,&nbsp;Xiaohan Tan,&nbsp;Jian Tang,&nbsp;Jingzhe Tang,&nbsp;Qiang Tang,&nbsp;Quan Tang,&nbsp;Xiao Tang,&nbsp;Vidhya Thara Hariharan,&nbsp;Igor Tkachev,&nbsp;Tomas Tmej,&nbsp;Marco Danilo Claudio Torri,&nbsp;Andrea Triossi,&nbsp;Wladyslaw Trzaska,&nbsp;Yu-Chen Tung,&nbsp;Cristina Tuve,&nbsp;Nikita Ushakov,&nbsp;Vadim Vedin,&nbsp;Carlo Venettacci,&nbsp;Giuseppe Verde,&nbsp;Maxim Vialkov,&nbsp;Benoit Viaud,&nbsp;Cornelius Moritz Vollbrecht,&nbsp;Katharina von Sturm,&nbsp;Vit Vorobel,&nbsp;Dmitriy Voronin,&nbsp;Lucia Votano,&nbsp;Pablo Walker,&nbsp;Caishen Wang,&nbsp;Chung-Hsiang Wang,&nbsp;En Wang,&nbsp;Guoli Wang,&nbsp;Hanwen Wang,&nbsp;Jian Wang,&nbsp;Jun Wang,&nbsp;Li Wang,&nbsp;Lu Wang,&nbsp;Meng Wang,&nbsp;Meng Wang,&nbsp;Mingyuan Wang,&nbsp;Qianchuan Wang,&nbsp;Ruiguang Wang,&nbsp;Sibo Wang,&nbsp;Siguang Wang,&nbsp;Wei Wang,&nbsp;Wenshuai Wang,&nbsp;Xi Wang,&nbsp;Xiangyue Wang,&nbsp;Yangfu Wang,&nbsp;Yaoguang Wang,&nbsp;Yi Wang,&nbsp;Yi Wang,&nbsp;Yifang Wang,&nbsp;Yuanqing Wang,&nbsp;Yuyi Wang,&nbsp;Zhe Wang,&nbsp;Zheng Wang,&nbsp;Zhimin Wang,&nbsp;Apimook Watcharangkool,&nbsp;Wei Wei,&nbsp;Wei Wei,&nbsp;Wenlu Wei,&nbsp;Yadong Wei,&nbsp;Yuehuan Wei,&nbsp;Liangjian Wen,&nbsp;Jun Weng,&nbsp;Christopher Wiebusch,&nbsp;Rosmarie Wirth,&nbsp;Chengxin Wu,&nbsp;Diru Wu,&nbsp;Qun Wu,&nbsp;Yinhui Wu,&nbsp;Yiyang Wu,&nbsp;Zhi Wu,&nbsp;Michael Wurm,&nbsp;Jacques Wurtz,&nbsp;Christian Wysotzki,&nbsp;Yufei Xi,&nbsp;Dongmei Xia,&nbsp;Shishen Xian,&nbsp;Ziqian Xiang,&nbsp;Fei Xiao,&nbsp;Xiang Xiao,&nbsp;Xiaochuan Xie,&nbsp;Yijun Xie,&nbsp;Yuguang Xie,&nbsp;Zhao Xin,&nbsp;Zhizhong Xing,&nbsp;Benda Xu,&nbsp;Cheng Xu,&nbsp;Donglian Xu,&nbsp;Fanrong Xu,&nbsp;Hangkun Xu,&nbsp;Jiayang Xu,&nbsp;Jilei Xu,&nbsp;Jing Xu,&nbsp;Jinghuan Xu,&nbsp;Meihang Xu,&nbsp;Xunjie Xu,&nbsp;Yin Xu,&nbsp;Yu Xu,&nbsp;Baojun Yan,&nbsp;Qiyu Yan,&nbsp;Taylor Yan,&nbsp;Xiongbo Yan,&nbsp;Yupeng Yan,&nbsp;Changgen Yang,&nbsp;Chengfeng Yang,&nbsp;Fengfan Yang,&nbsp;Jie Yang,&nbsp;Lei Yang,&nbsp;Pengfei Yang,&nbsp;Xiaoyu Yang,&nbsp;Yifan Yang,&nbsp;Yixiang Yang,&nbsp;Zekun Yang,&nbsp;Haifeng Yao,&nbsp;Jiaxuan Ye,&nbsp;Mei Ye,&nbsp;Ziping Ye,&nbsp;Frédéric Yermia,&nbsp;Zhengyun You,&nbsp;Boxiang Yu,&nbsp;Chiye Yu,&nbsp;Chunxu Yu,&nbsp;Guojun Yu,&nbsp;Hongzhao Yu,&nbsp;Miao Yu,&nbsp;Xianghui Yu,&nbsp;Zeyuan Yu,&nbsp;Zezhong Yu,&nbsp;Cenxi Yuan,&nbsp;Chengzhuo Yuan,&nbsp;Ying Yuan,&nbsp;Zhenxiong Yuan,&nbsp;Baobiao Yue,&nbsp;Noman Zafar,&nbsp;Kirill Zamogilnyi,&nbsp;Vitalii Zavadskyi,&nbsp;Fanrui Zeng,&nbsp;Shan Zeng,&nbsp;Tingxuan Zeng,&nbsp;Yuda Zeng,&nbsp;Liang Zhan,&nbsp;Aiqiang Zhang,&nbsp;Bin Zhang,&nbsp;Binting Zhang,&nbsp;Feiyang Zhang,&nbsp;Hangchang Zhang,&nbsp;Haosen Zhang,&nbsp;Honghao Zhang,&nbsp;Jialiang Zhang,&nbsp;Jiawen Zhang,&nbsp;Jie Zhang,&nbsp;Jingbo Zhang,&nbsp;Jinnan Zhang,&nbsp;Junwei Zhang,&nbsp;Lei Zhang,&nbsp;Peng Zhang,&nbsp;Ping Zhang,&nbsp;Qingmin Zhang,&nbsp;Shiqi Zhang,&nbsp;Shu Zhang,&nbsp;Shuihan Zhang,&nbsp;Siyuan Zhang,&nbsp;Tao Zhang,&nbsp;Xiaomei Zhang,&nbsp;Xin Zhang,&nbsp;Xuantong Zhang,&nbsp;Yibing Zhang,&nbsp;Yinhong Zhang,&nbsp;Yiyu Zhang,&nbsp;Yongpeng Zhang,&nbsp;Yu Zhang,&nbsp;Yuanyuan Zhang,&nbsp;Yumei Zhang,&nbsp;Zhenyu Zhang,&nbsp;Zhijian Zhang,&nbsp;Jie Zhao,&nbsp;Rong Zhao,&nbsp;Runze Zhao,&nbsp;Shujun Zhao,&nbsp;Tianhao Zhao,&nbsp;Hua Zheng,&nbsp;Yangheng Zheng,&nbsp;Jing Zhou,&nbsp;Li Zhou,&nbsp;Nan Zhou,&nbsp;Shun Zhou,&nbsp;Tong Zhou,&nbsp;Xiang Zhou,&nbsp;Xing Zhou,&nbsp;Jingsen Zhu,&nbsp;Kangfu Zhu,&nbsp;Kejun Zhu,&nbsp;Zhihang Zhu,&nbsp;Bo Zhuang,&nbsp;Honglin Zhuang,&nbsp;Liang Zong,&nbsp;Jiaheng Zou,&nbsp;JUNO Collaboration","doi":"10.1140/epjc/s10052-024-13638-0","DOIUrl":"10.1140/epjc/s10052-024-13638-0","url":null,"abstract":"<div><p>We explore the decay of bound neutrons in the JUNO liquid scintillator detector into invisible particles (e.g., <span>(nrightarrow 3 nu )</span> or <span>(nn rightarrow 2 nu )</span>), which do not produce an observable signal. The invisible decay includes two decay modes: <span>( n rightarrow { inv} )</span> and <span>( nn rightarrow { inv} )</span>. The invisible decays of <i>s</i>-shell neutrons in <span>(^{12}textrm{C})</span> will leave a highly excited residual nucleus. Subsequently, some de-excitation modes of the excited residual nuclei can produce a time- and space-correlated triple coincidence signal in the JUNO detector. Based on a full Monte Carlo simulation informed with the latest available data, we estimate all backgrounds, including inverse beta decay events of the reactor antineutrino <span>({bar{nu }}_e)</span>, natural radioactivity, cosmogenic isotopes and neutral current interactions of atmospheric neutrinos. Pulse shape discrimination and multivariate analysis techniques are employed to further suppress backgrounds. With two years of exposure, JUNO is expected to give an order of magnitude improvement compared to the current best limits. After 10 years of data taking, the JUNO expected sensitivities at a 90% confidence level are <span>(tau /B( n rightarrow { inv} ) &gt; 5.0 times 10^{31} , textrm{years})</span> and <span>(tau /B( nn rightarrow { inv} ) &gt; 1.4 times 10^{32} , textrm{years})</span>.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13638-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anatomy of vector-like top-quark models in the alignment limit of the 2-Higgs Doublet Model Type-II 类矢量顶夸克模型在2-希格斯双重态模型ii型对准极限中的剖析
IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2025-01-03 DOI: 10.1140/epjc/s10052-024-13692-8
A. Arhrib, R. Benbrik, M. Boukidi, B. Manaut, S. Moretti

A comprehensive extension of the ordinary 2-Higgs Doublet Model (2HDM), supplemented by vector-like quarks (VLQs), in the “alignment limit” is presented. In such a scenario, we study the possibility that large hadron collider (LHC) searches for VLQs can profile their nature too, i.e., whether they belong to a singlet, doublet, or triplet representation. To achieve this, we exploit both standard model (SM) decays of VLQs with top-(anti)quark electromagnetic (EM) charge (T), i.e., into bt quarks and (W^pm , Z,h) bosons (which turn out to be suppressed and hence T states can escape existing limits) as well as their exotic decays, i.e., into bt (and possibly B) quarks and (H^pm , H, A) bosons. We show that quite specific decay patterns emerge in the different VLQ representations so that, depending upon which T signals are accessed at the LHC, one may be able to ascertain the underlying beyond standard model (BSM) structure, especially if mass knowledge of the new fermionic and bosonic sectors can be inferred from (other) data.

在“对准极限”下,对普通的2-希格斯双重模型(2HDM)进行了全面的扩展,并补充了类矢量夸克(VLQs)。在这种情况下,我们研究了大型强子对撞机(LHC)搜索vlq的可能性,也可以描述它们的性质,即它们是否属于单重态、双重态或三重态表示。为了实现这一点,我们利用了具有顶(反)夸克电磁(EM)电荷(T)的vlq的标准模型(SM)衰变,即变成b, T夸克和(W^pm , Z,h)玻色子(结果被抑制,因此T态可以逃避现有的限制)以及它们的奇异衰变,即变成b, T(可能还有b)夸克和(H^pm , H, A)玻色子。我们表明,在不同的VLQ表示中出现了相当特定的衰变模式,因此,根据在LHC中访问的T信号,人们可能能够确定潜在的超越标准模型(BSM)结构,特别是如果新的费米子和玻色子扇区的质量知识可以从(其他)数据中推断出来。
{"title":"Anatomy of vector-like top-quark models in the alignment limit of the 2-Higgs Doublet Model Type-II","authors":"A. Arhrib,&nbsp;R. Benbrik,&nbsp;M. Boukidi,&nbsp;B. Manaut,&nbsp;S. Moretti","doi":"10.1140/epjc/s10052-024-13692-8","DOIUrl":"10.1140/epjc/s10052-024-13692-8","url":null,"abstract":"<div><p>A comprehensive extension of the ordinary 2-Higgs Doublet Model (2HDM), supplemented by vector-like quarks (VLQs), in the “alignment limit” is presented. In such a scenario, we study the possibility that large hadron collider (LHC) searches for VLQs can profile their nature too, i.e., whether they belong to a singlet, doublet, or triplet representation. To achieve this, we exploit both standard model (SM) decays of VLQs with top-(anti)quark electromagnetic (EM) charge (<i>T</i>), i.e., into <i>b</i>, <i>t</i> quarks and <span>(W^pm , Z,h)</span> bosons (which turn out to be suppressed and hence <i>T</i> states can escape existing limits) as well as their exotic decays, i.e., into <i>b</i>, <i>t</i> (and possibly <i>B</i>) quarks and <span>(H^pm , H, A)</span> bosons. We show that quite specific decay patterns emerge in the different VLQ representations so that, depending upon which <i>T</i> signals are accessed at the LHC, one may be able to ascertain the underlying beyond standard model (BSM) structure, especially if mass knowledge of the new fermionic and bosonic sectors can be inferred from (other) data.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13692-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Properties of the wormhole model in de Rham–Gabadadze–Tolley like massive gravity with specific matter density de Rham-Gabadadze-Tolley中虫洞模型的特性,类似具有特定物质密度的大质量引力
IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2025-01-03 DOI: 10.1140/epjc/s10052-024-13670-0
Piyali Bhar

In the conventional method of studying wormhole (WH) geometry, traversability requires the presence of exotic matter, which also provides negative gravity effects to keep the wormhole throat open. In de Rham–Gabadadze–Tolley (dRGT) massive gravity theory, we produce two types of WH solutions in our present paper. We obtain the field equations for exact WH solutions by selecting a static and spherically symmetric metric for the background geometry. We derive the WH geometry completely for the two different choices of redshift functions. The obtained WH solutions violate all the energy conditions, including the null energy condition (NEC). Various plots are used to illustrate the behavior of the wormhole for a suitable range of (m^2c_1), where m is the graviton mass. It is observed that the photon deflection angle becomes negative for all values of (m^2c_1) as a result of the repulsive action of gravity. It is also shown that the repulsive impact of massive gravitons pushes the spacetime geometry so strongly that the asymptotic flatness is affected. The volume integral quantifier (VIQ) is computed to determine the amounts of matter that violate the null energy condition. The complexity factor of the proposed model is also discussed.

在研究虫洞几何的传统方法中,可穿越性需要外来物质的存在,这也提供了负重力效应来保持虫洞喉咙的打开。在de Rham-Gabadadze-Tolley (dRGT)质量引力理论中,我们给出了两种类型的WH解。我们通过选择一个静态球对称的背景几何度规,得到精确WH解的场方程。我们推导了两种不同选择的红移函数的WH几何。得到的WH解违反了所有的能量条件,包括零能量条件(NEC)。不同的图被用来说明虫洞在(m^2c_1)的合适范围内的行为,其中m是引力子的质量。我们观察到,由于重力的排斥作用,光子偏转角在(m^2c_1)的所有值下都变为负值。结果还表明,大质量引力子的排斥性碰撞对时空几何的推动非常强烈,以致影响了渐近平坦性。计算体积积分量子(VIQ)来确定违反零能条件的物质的数量。本文还讨论了模型的复杂性因素。
{"title":"Properties of the wormhole model in de Rham–Gabadadze–Tolley like massive gravity with specific matter density","authors":"Piyali Bhar","doi":"10.1140/epjc/s10052-024-13670-0","DOIUrl":"10.1140/epjc/s10052-024-13670-0","url":null,"abstract":"<div><p>In the conventional method of studying wormhole (WH) geometry, traversability requires the presence of exotic matter, which also provides negative gravity effects to keep the wormhole throat open. In de Rham–Gabadadze–Tolley (dRGT) massive gravity theory, we produce two types of WH solutions in our present paper. We obtain the field equations for exact WH solutions by selecting a static and spherically symmetric metric for the background geometry. We derive the WH geometry completely for the two different choices of redshift functions. The obtained WH solutions violate all the energy conditions, including the null energy condition (NEC). Various plots are used to illustrate the behavior of the wormhole for a suitable range of <span>(m^2c_1)</span>, where <i>m</i> is the graviton mass. It is observed that the photon deflection angle becomes negative for all values of <span>(m^2c_1)</span> as a result of the repulsive action of gravity. It is also shown that the repulsive impact of massive gravitons pushes the spacetime geometry so strongly that the asymptotic flatness is affected. The volume integral quantifier (VIQ) is computed to determine the amounts of matter that violate the null energy condition. The complexity factor of the proposed model is also discussed.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13670-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing active-sterile neutrino transition magnetic moment on coherent elastic solar neutrino-nucleus scattering 相干弹性太阳中微子核散射探测活性惰性中微子跃迁磁矩
IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2025-01-03 DOI: 10.1140/epjc/s10052-024-13679-5
M. Demirci, M. F. Mustamin

In the presence of a transition magnetic moment between active and sterile neutrinos, sterile neutrinos could be produced by neutrino beams electromagnetically upscattering on nuclei. We study the active-sterile neutrino transition magnetic moment through this upscattering in the coherent elastic neutrino-nucleus scattering process induced by solar neutrinos. We place new limits on the transition magnetic moment-sterile neutrino mass plane using the latest data from the CDEX-10 experiment. We also provide projected sensitivities for future measurements. We observe that the projected sensitivities could cover some regions of the parameter space which were previously unexplored for the sterile neutrino mass up to (sim 10) MeV.

在活性中微子和惰性中微子之间存在跃迁磁矩的情况下,惰性中微子可以通过中微子束在原子核上的电磁上散射产生。在由太阳中微子引起的相干弹性中微子-原子核散射过程中,利用这种上散射研究了活性惰性中微子跃迁磁矩。我们利用CDEX-10实验的最新数据对跃迁磁矩-惰性中微子质量平面进行了新的限制。我们还提供了未来测量的预测灵敏度。我们观察到,预测的灵敏度可以覆盖参数空间的一些区域,这些区域以前没有探索过无菌中微子质量,最高可达(sim 10) MeV。
{"title":"Probing active-sterile neutrino transition magnetic moment on coherent elastic solar neutrino-nucleus scattering","authors":"M. Demirci,&nbsp;M. F. Mustamin","doi":"10.1140/epjc/s10052-024-13679-5","DOIUrl":"10.1140/epjc/s10052-024-13679-5","url":null,"abstract":"<div><p>In the presence of a transition magnetic moment between active and sterile neutrinos, sterile neutrinos could be produced by neutrino beams electromagnetically upscattering on nuclei. We study the active-sterile neutrino transition magnetic moment through this upscattering in the coherent elastic neutrino-nucleus scattering process induced by solar neutrinos. We place new limits on the transition magnetic moment-sterile neutrino mass plane using the latest data from the CDEX-10 experiment. We also provide projected sensitivities for future measurements. We observe that the projected sensitivities could cover some regions of the parameter space which were previously unexplored for the sterile neutrino mass up to <span>(sim 10)</span> MeV.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13679-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of multidifferential cross sections for dijet production in proton-proton collisions at s = 13 Te V.
IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2025-01-01 Epub Date: 2025-01-24 DOI: 10.1140/epjc/s10052-024-13606-8

A measurement of the dijet production cross section is reported based on proton-proton collision data collected in 2016 at s = 13 Te V by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3 fb - 1 . Jets are reconstructed with the anti- k T algorithm for distance parameters of R = 0.4 and 0.8. Cross sections are measured double-differentially (2D) as a function of the largest absolute rapidity | y | max of the two jets with the highest transverse momenta p T and their invariant mass m 1 , 2 , and triple-differentially (3D) as a function of the rapidity separation y , the total boost y b , and either m 1 , 2 or the average p T of the two jets. The cross sections are unfolded to correct for detector effects and are compared with fixed-order calculations derived at next-to-next-to-leading order in perturbative quantum chromodynamics. The impact of the measurements on the parton distribution functions and the strong coupling constant at the mass of the Z boson is investigated, yielding a value of α S ( m Z ) = 0.1179 ± 0.0019 .

{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Measurement of multidifferential cross sections for dijet production in proton-proton collisions at <ns0:math> <ns0:mrow><ns0:msqrt><ns0:mi>s</ns0:mi></ns0:msqrt> <ns0:mo>=</ns0:mo> <ns0:mn>13</ns0:mn> <ns0:mspace /> <ns0:mi>Te</ns0:mi> <ns0:mspace /> <ns0:mi>V</ns0:mi></ns0:mrow></ns0:math>.","authors":"","doi":"10.1140/epjc/s10052-024-13606-8","DOIUrl":"https://doi.org/10.1140/epjc/s10052-024-13606-8","url":null,"abstract":"<p><p>A measurement of the dijet production cross section is reported based on proton-proton collision data collected in 2016 at <math> <mrow><msqrt><mi>s</mi></msqrt> <mo>=</mo> <mn>13</mn> <mspace></mspace> <mi>Te</mi> <mspace></mspace> <mi>V</mi></mrow> </math> by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3 <math><mrow><mspace></mspace> <msup><mrow><mi>fb</mi></mrow> <mrow><mo>-</mo> <mn>1</mn></mrow> </msup> </mrow> </math> . Jets are reconstructed with the anti- <math><msub><mi>k</mi> <mtext>T</mtext></msub> </math> algorithm for distance parameters of <math><mrow><mi>R</mi> <mo>=</mo> <mn>0.4</mn></mrow> </math> and 0.8. Cross sections are measured double-differentially (2D) as a function of the largest absolute rapidity <math> <msub><mrow><mo>|</mo> <mi>y</mi> <mo>|</mo></mrow> <mi>max</mi></msub> </math> of the two jets with the highest transverse momenta <math><msub><mi>p</mi> <mtext>T</mtext></msub> </math> and their invariant mass <math><msub><mi>m</mi> <mrow><mn>1</mn> <mo>,</mo> <mn>2</mn></mrow> </msub> </math> , and triple-differentially (3D) as a function of the rapidity separation <math><msup><mi>y</mi> <mrow><mrow></mrow> <mo>∗</mo></mrow> </msup> </math> , the total boost <math><msub><mi>y</mi> <mi>b</mi></msub> </math> , and either <math><msub><mi>m</mi> <mrow><mn>1</mn> <mo>,</mo> <mn>2</mn></mrow> </msub> </math> or the average <math><msub><mi>p</mi> <mtext>T</mtext></msub> </math> of the two jets. The cross sections are unfolded to correct for detector effects and are compared with fixed-order calculations derived at next-to-next-to-leading order in perturbative quantum chromodynamics. The impact of the measurements on the parton distribution functions and the strong coupling constant at the mass of the <math><mi>Z</mi></math> boson is investigated, yielding a value of <math> <mrow><msub><mi>α</mi> <mtext>S</mtext></msub> <mrow><mo>(</mo> <msub><mi>m</mi> <mi>Z</mi></msub> <mo>)</mo></mrow> <mo>=</mo> <mn>0.1179</mn> <mo>±</mo> <mn>0.0019</mn></mrow> </math> .</p>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 1","pages":"72"},"PeriodicalIF":4.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Barrow holographic dark energy: a path to reconstructing f(R, T) gravity 巴罗全息暗能量:重建f(R, T)引力的路径
IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-12-31 DOI: 10.1140/epjc/s10052-024-13708-3
P. S. Ens, A. F. Santos

In this paper, we investigate one of the established methods for reconstructing modified gravity models from a dark energy model, with the aim of discovering relationships between these theories. In this study, we focus on the f(RT) modified gravity theory, where R denotes the Ricci scalar and T represents the trace of the energy–momentum tensor. We employ Barrow’s holographic dark energy model, derived from fractal surfaces of black holes, to investigate the reconstruction process. The numerical results are subsequently presented for various infrared cutoffs, such as the Hubble horizon, future event horizon, and Granda–Oliveros cutoff.

在本文中,我们研究了一种由暗能量模型重建修正引力模型的方法,目的是发现这些理论之间的关系。在本研究中,我们关注f(R, T)修正的引力理论,其中R表示里奇标量,T表示能量动量张量的迹线。我们使用Barrow的全息暗能量模型,从黑洞的分形表面导出,来研究重建过程。随后给出了各种红外截止点的数值结果,如哈勃视界、未来事件视界和Granda-Oliveros截止点。
{"title":"Barrow holographic dark energy: a path to reconstructing f(R, T) gravity","authors":"P. S. Ens,&nbsp;A. F. Santos","doi":"10.1140/epjc/s10052-024-13708-3","DOIUrl":"10.1140/epjc/s10052-024-13708-3","url":null,"abstract":"<div><p>In this paper, we investigate one of the established methods for reconstructing modified gravity models from a dark energy model, with the aim of discovering relationships between these theories. In this study, we focus on the <i>f</i>(<i>R</i>, <i>T</i>) modified gravity theory, where <i>R</i> denotes the Ricci scalar and <i>T</i> represents the trace of the energy–momentum tensor. We employ Barrow’s holographic dark energy model, derived from fractal surfaces of black holes, to investigate the reconstruction process. The numerical results are subsequently presented for various infrared cutoffs, such as the Hubble horizon, future event horizon, and Granda–Oliveros cutoff.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 12","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13708-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
X-ray pulsed light curves of highly compact neutron stars as probes of scalar–tensor theories of gravity 作为引力标量张量理论探测的高度致密中子星的x射线脉冲光曲线
IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-12-30 DOI: 10.1140/epjc/s10052-024-13721-6
Tulio Ottoni, Jaziel G. Coelho, Rafael C. R. de Lima, Jonas P. Pereira, Jorge A. Rueda

The strong gravitational potential of neutron stars (NSs) makes them ideal astrophysical objects for testing extreme gravity phenomena. We explore the potential of NS X-ray pulsed light curve observations to probe deviations from general relativity (GR) within the scalar–tensor theory (STT) of gravity framework. We compute the flux from a single, circular, finite-size hot spot, accounting for light bending, Shapiro time delay, and Doppler effect. We focus on the high-compactness regime, i.e., close to the critical GR value (GM/(c^2 R)=0.284), over which multiple images of the spot appear and impact crucially the light curves. Our investigation is motivated by the increased sensitivity of the pulse to the scalar charge of the spacetime in such high compactness regimes, making these systems exceptionally suitable for scrutinizing deviations from GR, notably phenomena such as spontaneous scalarization, as predicted by STT. We find significant differences in NS observables, e.g., the flux of a single spot can differ up to 80% with respect to GR. Additionally, reasonable choices for the STT parameters that satisfy astrophysical constraints lead to changes in the NS radius relative to GR of up to approximately 10%. Consequently, scalar parameters might be better constrained when uncertainties in NS radii decrease, where this could occur with the advent of next-generation gravitational wave detectors, such as the Einstein Telescope and LISA, as well as future electromagnetic missions like eXTP and ATHENA. Thus, our findings suggest that accurate X-ray data of the NS surface emission, jointly with refined theoretical models, could constrain STTs.

中子星(NSs)强大的引力势使它们成为测试极端重力现象的理想天体物理对象。我们探索了NS x射线脉冲光曲线观测在引力框架的标量张量理论(STT)中探测广义相对论(GR)偏差的潜力。我们计算了一个单一的、圆形的、有限大小的热点的通量,考虑了光弯曲、夏皮罗时间延迟和多普勒效应。我们专注于高紧实度区域,即接近临界GR值(GM/(c^2 R)=0.284),在此区域上出现多幅光斑图像,并对光曲线产生关键影响。我们的研究的动机是,在这种高紧度体系中,脉冲对时空标量电荷的灵敏度增加,使这些系统特别适合于仔细检查与GR的偏差,特别是像STT预测的自发标化这样的现象。我们发现NS观测值存在显著差异,例如,单个点的通量可相差高达80% with respect to GR. Additionally, reasonable choices for the STT parameters that satisfy astrophysical constraints lead to changes in the NS radius relative to GR of up to approximately 10%. Consequently, scalar parameters might be better constrained when uncertainties in NS radii decrease, where this could occur with the advent of next-generation gravitational wave detectors, such as the Einstein Telescope and LISA, as well as future electromagnetic missions like eXTP and ATHENA. Thus, our findings suggest that accurate X-ray data of the NS surface emission, jointly with refined theoretical models, could constrain STTs.
{"title":"X-ray pulsed light curves of highly compact neutron stars as probes of scalar–tensor theories of gravity","authors":"Tulio Ottoni,&nbsp;Jaziel G. Coelho,&nbsp;Rafael C. R. de Lima,&nbsp;Jonas P. Pereira,&nbsp;Jorge A. Rueda","doi":"10.1140/epjc/s10052-024-13721-6","DOIUrl":"10.1140/epjc/s10052-024-13721-6","url":null,"abstract":"<div><p>The strong gravitational potential of neutron stars (NSs) makes them ideal astrophysical objects for testing extreme gravity phenomena. We explore the potential of NS X-ray pulsed light curve observations to probe deviations from general relativity (GR) within the scalar–tensor theory (STT) of gravity framework. We compute the flux from a single, circular, finite-size hot spot, accounting for light bending, Shapiro time delay, and Doppler effect. We focus on the high-compactness regime, i.e., close to the critical GR value <span>(GM/(c^2 R)=0.284)</span>, over which multiple images of the spot appear and impact crucially the light curves. Our investigation is motivated by the increased sensitivity of the pulse to the scalar charge of the spacetime in such high compactness regimes, making these systems exceptionally suitable for scrutinizing deviations from GR, notably phenomena such as spontaneous scalarization, as predicted by STT. We find significant differences in NS observables, e.g., the flux of a single spot can differ up to 80% with respect to GR. Additionally, reasonable choices for the STT parameters that satisfy astrophysical constraints lead to changes in the NS radius relative to GR of up to approximately 10%. Consequently, scalar parameters might be better constrained when uncertainties in NS radii decrease, where this could occur with the advent of next-generation gravitational wave detectors, such as the Einstein Telescope and LISA, as well as future electromagnetic missions like eXTP and ATHENA. Thus, our findings suggest that accurate X-ray data of the NS surface emission, jointly with refined theoretical models, could constrain STTs.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 12","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13721-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of evolving cluster of stars and exotic matter 演化中的星团和外来物质的稳定性
IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-12-30 DOI: 10.1140/epjc/s10052-024-13703-8
Wasee Shahid, Rubab Manzoor, Saadia Mumtaz, Syed Ali Mardan, Adnan Malik

This paper discusses the phenomenon of evolving spherically symmetric cluster of stars in the presence of an exotic matter. To discuss evolutionary mechanism, we use the Starobinsky model of f(R) gravity as exotic matter and the structure scalars as evolutional parameters. We study various evolution modes such as isotropic pressure, quasi-homologous evolution, density homogeneity, and geodesic nature. The stability of homogeneous density of baryonic and non-baryonic matter is discussed using dissipation, tidal forces, anisotropic pressures, expansion and shear-effects. It is observed that the dark matter has remarkable impact on the evolutionary changes. Also, it is shown that the dissipation factor produces density inhomogeneity in expanding clusters with shear effects. We observe that high curvature geometry enhances quasi-homologous evolution in the presence of shear. We use star Her X-1 as test star to discuss physical behavior of Starobinsky model. It is found that the density of dark matter overcomes the density of matter for large values of dark matter parameter n.

本文讨论了在外来物质存在下球对称星团演化的现象。为了讨论演化机制,我们使用Starobinsky的f(R)引力模型作为奇异物质,并使用结构标量作为演化参数。我们研究了各种演化模式,如各向同性压力、准同源演化、密度均匀性和测地线性质。从耗散、潮汐力、各向异性压力、膨胀和剪切效应等方面讨论了重子和非重子物质均匀密度的稳定性。我们观察到暗物质对演化变化有着显著的影响。在剪切作用下,耗散因子会导致膨胀团簇的密度不均匀性。我们观察到,在剪切存在的情况下,高曲率几何增强了准同源演化。我们以Her X-1星作为试验星,讨论了Starobinsky模型的物理行为。发现当暗物质参数n较大时,暗物质的密度大于物质的密度。
{"title":"Stability of evolving cluster of stars and exotic matter","authors":"Wasee Shahid,&nbsp;Rubab Manzoor,&nbsp;Saadia Mumtaz,&nbsp;Syed Ali Mardan,&nbsp;Adnan Malik","doi":"10.1140/epjc/s10052-024-13703-8","DOIUrl":"10.1140/epjc/s10052-024-13703-8","url":null,"abstract":"<div><p>This paper discusses the phenomenon of evolving spherically symmetric cluster of stars in the presence of an exotic matter. To discuss evolutionary mechanism, we use the Starobinsky model of <i>f</i>(<i>R</i>) gravity as exotic matter and the structure scalars as evolutional parameters. We study various evolution modes such as isotropic pressure, quasi-homologous evolution, density homogeneity, and geodesic nature. The stability of homogeneous density of baryonic and non-baryonic matter is discussed using dissipation, tidal forces, anisotropic pressures, expansion and shear-effects. It is observed that the dark matter has remarkable impact on the evolutionary changes. Also, it is shown that the dissipation factor produces density inhomogeneity in expanding clusters with shear effects. We observe that high curvature geometry enhances quasi-homologous evolution in the presence of shear. We use star Her X-1 as test star to discuss physical behavior of Starobinsky model. It is found that the density of dark matter overcomes the density of matter for large values of dark matter parameter <i>n</i>.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 12","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13703-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142889950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The European Physical Journal C
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1