Pub Date : 2025-04-01Epub Date: 2025-02-14DOI: 10.1146/annurev-physchem-082423-012311
Amy S Mullin
The optical centrifuge was demonstrated in 2000 as a tool for preparing ensembles of molecules in extreme rotational states. Highly rotationally excited molecules, so-called superrotors, are observed as products of photodissociation and molecular collisions, in high-temperature environments in the atmospheres of Earth and exoplanets, and in the interstellar medium. Traditional optical excitation is limited to small changes in rotation, limiting experiments to relatively low rotational states. In this review, I discuss the use of a tunable optical centrifuge to prepare molecules in selected ranges of excited rotational states and investigations of their collisional relaxation using state-resolved polarization-sensitive transient IR probing. I examine the decay dynamics of population, alignment, and translational energy release, focusing on experimental results, and compare them with simulations that overestimate observed relaxation rates. A clear picture of near-resonant and nonresonant energy transfer pathways emerges and establishes the means to distinguish superrotor and bath collision products.
{"title":"Generating Superrotors and Dynamics of Molecules in Extremely High Rotational States.","authors":"Amy S Mullin","doi":"10.1146/annurev-physchem-082423-012311","DOIUrl":"10.1146/annurev-physchem-082423-012311","url":null,"abstract":"<p><p>The optical centrifuge was demonstrated in 2000 as a tool for preparing ensembles of molecules in extreme rotational states. Highly rotationally excited molecules, so-called superrotors, are observed as products of photodissociation and molecular collisions, in high-temperature environments in the atmospheres of Earth and exoplanets, and in the interstellar medium. Traditional optical excitation is limited to small changes in rotation, limiting experiments to relatively low rotational states. In this review, I discuss the use of a tunable optical centrifuge to prepare molecules in selected ranges of excited rotational states and investigations of their collisional relaxation using state-resolved polarization-sensitive transient IR probing. I examine the decay dynamics of population, alignment, and translational energy release, focusing on experimental results, and compare them with simulations that overestimate observed relaxation rates. A clear picture of near-resonant and nonresonant energy transfer pathways emerges and establishes the means to distinguish superrotor and bath collision products.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"357-377"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-21DOI: 10.1146/annurev-physchem-082423-124349
Megan N Aardema, Simon W North
Recent studies on ozone photodissociation in the Hartley and Huggins bands have provided new insights into the dissociation dynamics and product state distributions. A Λ-doublet propensity in the photodissociation has been identified through experiment and theory as the origin of the oscillatory O2(a1Δg) rotational distributions and provides a promising diagnostic for determining the relative contributions of 3A' and 3A″ states in Huggins band spin-forbidden processes. Recent experiments on spin-forbidden dissociation have provided detailed information about the vibrational and rotational distributions of the O2 products and the branching ratios between the O2 electronic states, serving as a motivation for high-level theory.
{"title":"Recent Advances in Ozone Photochemistry: A Lambda Doublet Propensity and Spin-Forbidden Channels.","authors":"Megan N Aardema, Simon W North","doi":"10.1146/annurev-physchem-082423-124349","DOIUrl":"10.1146/annurev-physchem-082423-124349","url":null,"abstract":"<p><p>Recent studies on ozone photodissociation in the Hartley and Huggins bands have provided new insights into the dissociation dynamics and product state distributions. A Λ-doublet propensity in the photodissociation has been identified through experiment and theory as the origin of the oscillatory O<sub>2</sub>(a1Δ<sub>g</sub>) rotational distributions and provides a promising diagnostic for determining the relative contributions of 3<i>A</i>' and 3<i>A</i>″ states in Huggins band spin-forbidden processes. Recent experiments on spin-forbidden dissociation have provided detailed information about the vibrational and rotational distributions of the O<sub>2</sub> products and the branching ratios between the O<sub>2</sub> electronic states, serving as a motivation for high-level theory.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"39-56"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-02-14DOI: 10.1146/annurev-physchem-082720-031657
Josh Vura-Weis
In this review, we survey the use of extreme ultraviolet absorption spectroscopy to measure electronic and vibrational dynamics in transition metal complexes. Photons in this 30-100 eV energy range probe 3p → 3d transitions for 3d metals and 4f, 5p → 5d transitions in 5d metals, and the resulting spectra are sensitive to the spin state, oxidation state, and ligand field of the metal. Furthermore, the energy of the core level depends on the metal, providing elemental specificity. Use of tabletop high-harmonic sources allows these spectra to be measured with femtosecond to attosecond time resolution in a standard laser laboratory, revealing short-lived states in chromophores and photocatalysts that were unresolved using other techniques.
{"title":"Femtosecond Extreme Ultraviolet Absorption Spectroscopy of Transition Metal Complexes.","authors":"Josh Vura-Weis","doi":"10.1146/annurev-physchem-082720-031657","DOIUrl":"10.1146/annurev-physchem-082720-031657","url":null,"abstract":"<p><p>In this review, we survey the use of extreme ultraviolet absorption spectroscopy to measure electronic and vibrational dynamics in transition metal complexes. Photons in this 30-100 eV energy range probe 3<i>p</i> → 3<i>d</i> transitions for 3<i>d</i> metals and 4<i>f</i>, 5<i>p</i> → 5<i>d</i> transitions in 5<i>d</i> metals, and the resulting spectra are sensitive to the spin state, oxidation state, and ligand field of the metal. Furthermore, the energy of the core level depends on the metal, providing elemental specificity. Use of tabletop high-harmonic sources allows these spectra to be measured with femtosecond to attosecond time resolution in a standard laser laboratory, revealing short-lived states in chromophores and photocatalysts that were unresolved using other techniques.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"455-470"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-22DOI: 10.1146/annurev-physchem-082423-124941
Soumyajit Rajak, Jeremy F Schultz, Linfei Li, Nan Jiang
Inspired by the success of graphene, two-dimensional (2D) materials have been at the forefront of advanced (opto-)nanoelectronics and energy-related fields owing to their exotic properties like sizable bandgaps, Dirac fermions, quantum spin Hall states, topological edge states, and ballistic charge carrier transport, which hold promise for various electronic device applications. Emerging main group elemental 2D materials, beyond graphene, are of particular interest due to their unique structural characteristics, ease of synthetic exploration, and superior property tunability. In this review, we present recent advances in atomic-scale studies of elemental 2D materials with an emphasis on synthetic strategies and structural properties. We also discuss the challenges and perspectives regarding the integration of elemental 2D materials into various heterostructures.
{"title":"Atomistic Insights into Elemental Two-Dimensional Materials and Their Heterostructures.","authors":"Soumyajit Rajak, Jeremy F Schultz, Linfei Li, Nan Jiang","doi":"10.1146/annurev-physchem-082423-124941","DOIUrl":"10.1146/annurev-physchem-082423-124941","url":null,"abstract":"<p><p>Inspired by the success of graphene, two-dimensional (2D) materials have been at the forefront of advanced (opto-)nanoelectronics and energy-related fields owing to their exotic properties like sizable bandgaps, Dirac fermions, quantum spin Hall states, topological edge states, and ballistic charge carrier transport, which hold promise for various electronic device applications. Emerging main group elemental 2D materials, beyond graphene, are of particular interest due to their unique structural characteristics, ease of synthetic exploration, and superior property tunability. In this review, we present recent advances in atomic-scale studies of elemental 2D materials with an emphasis on synthetic strategies and structural properties. We also discuss the challenges and perspectives regarding the integration of elemental 2D materials into various heterostructures.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"83-102"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-22DOI: 10.1146/annurev-physchem-082423-032529
Cameron Wright, Gregory V Hartland
Ultrafast excitation of nanoparticles can excite the acoustic vibrational modes of the structure that correlate with the expansion coordinates. These modes are frequently seen in transient absorption experiments on metal nanoparticle samples and occasionally for semiconductors. The aim of this review is to give an overview of the physical chemistry of nanostructure acoustic vibrations. The issues discussed include the excitation mechanism, how to calculate the mode frequencies using continuum mechanics, and the factors that control vibrational damping. Recent results that demonstrate that the high frequencies inherent to the acoustic modes of nanomaterials trigger a viscoelastic response in surrounding liquids are also discussed, as well as vibrational coupling between nanostructures and mode hybridization within the nanostructures. Mode hybridization provides a way of manipulating the lifetimes of the acoustic modes, which is potentially useful for applications such as mass sensing.
{"title":"The Science of Nanostructure Acoustic Vibrations.","authors":"Cameron Wright, Gregory V Hartland","doi":"10.1146/annurev-physchem-082423-032529","DOIUrl":"10.1146/annurev-physchem-082423-032529","url":null,"abstract":"<p><p>Ultrafast excitation of nanoparticles can excite the acoustic vibrational modes of the structure that correlate with the expansion coordinates. These modes are frequently seen in transient absorption experiments on metal nanoparticle samples and occasionally for semiconductors. The aim of this review is to give an overview of the physical chemistry of nanostructure acoustic vibrations. The issues discussed include the excitation mechanism, how to calculate the mode frequencies using continuum mechanics, and the factors that control vibrational damping. Recent results that demonstrate that the high frequencies inherent to the acoustic modes of nanomaterials trigger a viscoelastic response in surrounding liquids are also discussed, as well as vibrational coupling between nanostructures and mode hybridization within the nanostructures. Mode hybridization provides a way of manipulating the lifetimes of the acoustic modes, which is potentially useful for applications such as mass sensing.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"57-81"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01DOI: 10.1146/annurev-physchem-082423-031814
Arghya Sarkar, MaKenna M Koble, Renee R Frontiera
Plasmonic nanomaterials are promising photocatalysts due to their large optical cross sections and facile generation of nanoscale hotspot regions. They have been used to drive a range of photochemical reactions, including H2 dissociation, CO2 reduction, and ammonia synthesis, offering an exciting approach to light-driven chemistry. Deepening our understanding of how energy can be controllably transferred from the plasmonic nanomaterial to proximal reactants should lead to improvements in the efficiency and selectivity in plasmonic photocatalysis. Here we provide a comprehensive overview of plasmonic properties and explore different energy partitioning pathways. We focus on the importance of mapping molecular potential energy landscapes to understand reactivity and describe recent advancements in spectroscopic techniques, such as ultrafast surface-enhanced Raman spectroscopy, electron microscopy, and electrochemistry, that can aid in understanding how plasmonic nanomaterials can be used to shape potential energy surfaces and modify chemical outcomes. Additionally, we explore innovative hybrid plasmonic nanostructures such as antenna-reactor complexes, plasmonic single-atom catalysts, plasmonic picocavities, and chiral plasmonic substrates, all of which show great promise in advancing the field of plasmon-driven chemistry.
{"title":"Plasmon-Driven Chemistry.","authors":"Arghya Sarkar, MaKenna M Koble, Renee R Frontiera","doi":"10.1146/annurev-physchem-082423-031814","DOIUrl":"https://doi.org/10.1146/annurev-physchem-082423-031814","url":null,"abstract":"<p><p>Plasmonic nanomaterials are promising photocatalysts due to their large optical cross sections and facile generation of nanoscale hotspot regions. They have been used to drive a range of photochemical reactions, including H<sub>2</sub> dissociation, CO<sub>2</sub> reduction, and ammonia synthesis, offering an exciting approach to light-driven chemistry. Deepening our understanding of how energy can be controllably transferred from the plasmonic nanomaterial to proximal reactants should lead to improvements in the efficiency and selectivity in plasmonic photocatalysis. Here we provide a comprehensive overview of plasmonic properties and explore different energy partitioning pathways. We focus on the importance of mapping molecular potential energy landscapes to understand reactivity and describe recent advancements in spectroscopic techniques, such as ultrafast surface-enhanced Raman spectroscopy, electron microscopy, and electrochemistry, that can aid in understanding how plasmonic nanomaterials can be used to shape potential energy surfaces and modify chemical outcomes. Additionally, we explore innovative hybrid plasmonic nanostructures such as antenna-reactor complexes, plasmonic single-atom catalysts, plasmonic picocavities, and chiral plasmonic substrates, all of which show great promise in advancing the field of plasmon-driven chemistry.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"76 1","pages":"129-152"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143967357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-02-19DOI: 10.1146/annurev-physchem-090319-053154
Klaus Ruedenberg
The present autobiography recounts the author's education in the liberal arts, physics, and chemistry, and his participation in various developing stages of ab initio quantum chemistry from its beginning around 1950 to the present. His personal history is briefly noted.
{"title":"Ushering in Ab Initio Quantum Chemistry.","authors":"Klaus Ruedenberg","doi":"10.1146/annurev-physchem-090319-053154","DOIUrl":"10.1146/annurev-physchem-090319-053154","url":null,"abstract":"<p><p>The present autobiography recounts the author's education in the liberal arts, physics, and chemistry, and his participation in various developing stages of ab initio quantum chemistry from its beginning around 1950 to the present. His personal history is briefly noted.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"19-37"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143456730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-01-22DOI: 10.1146/annurev-physchem-082423-035645
Kopin Liu
This is a recollection of my scientific trajectory. When I look back, I consider myself to be very fortunate for being able to do something I love and on topics of my own will. I am not a competitive person and tend to shy away from the limelight. Nonetheless, I survived in my profession and eventually made some modest contributions, which are beyond what I would have expected. We often forget about the human aspect of scientific endeavor. After all, science is done by individuals; humans have emotions and make mistakes. The frustrations of failures, the joys of finding problems and solutions to them, and the passion for fulfilling curiosity are all parts of this endeavor. Throughout the years, many people-mentors, students, postdocs, collaborators, and colleagues-have accompanied me in this exciting and fruitful journey, for which I am deeply grateful and feel very lucky to have them.
{"title":"Odyssey in the Wonderland of Chemical Dynamics.","authors":"Kopin Liu","doi":"10.1146/annurev-physchem-082423-035645","DOIUrl":"10.1146/annurev-physchem-082423-035645","url":null,"abstract":"<p><p>This is a recollection of my scientific trajectory. When I look back, I consider myself to be very fortunate for being able to do something I love and on topics of my own will. I am not a competitive person and tend to shy away from the limelight. Nonetheless, I survived in my profession and eventually made some modest contributions, which are beyond what I would have expected. We often forget about the human aspect of scientific endeavor. After all, science is done by individuals; humans have emotions and make mistakes. The frustrations of failures, the joys of finding problems and solutions to them, and the passion for fulfilling curiosity are all parts of this endeavor. Throughout the years, many people-mentors, students, postdocs, collaborators, and colleagues-have accompanied me in this exciting and fruitful journey, for which I am deeply grateful and feel very lucky to have them.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"1-17"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01DOI: 10.1146/annurev-physchem-082423-120310
Liam Wrigley, Cody W Schlenker
The inversion of singlet and triplet states is a rare phenomenon, where, in opposition to Hund's first rule, singlet electronic states are stabilized relative to their triplet counterparts. The recent discovery of organic molecules exhibiting this inversion presents exciting new technological opportunities, such as addressing stability issues in organic light-emitting diodes (OLEDs). In this review, we describe fundamental molecular properties that can yield singlet-triplet inversion, generally ascribed to a phenomenon known as dynamic spin polarization. We discuss the systems in which singlet-triplet inversion was theoretically proposed, experimentally verified, and first implemented in an OLED device. We highlight key insights from the extensive computational work being carried out to understand the intricacies of these systems. Finally, we consider the outlook for future inverted singlet-triplet (IST) emitters.
{"title":"Singlet-Triplet Inversion.","authors":"Liam Wrigley, Cody W Schlenker","doi":"10.1146/annurev-physchem-082423-120310","DOIUrl":"https://doi.org/10.1146/annurev-physchem-082423-120310","url":null,"abstract":"<p><p>The inversion of singlet and triplet states is a rare phenomenon, where, in opposition to Hund's first rule, singlet electronic states are stabilized relative to their triplet counterparts. The recent discovery of organic molecules exhibiting this inversion presents exciting new technological opportunities, such as addressing stability issues in organic light-emitting diodes (OLEDs). In this review, we describe fundamental molecular properties that can yield singlet-triplet inversion, generally ascribed to a phenomenon known as dynamic spin polarization. We discuss the systems in which singlet-triplet inversion was theoretically proposed, experimentally verified, and first implemented in an OLED device. We highlight key insights from the extensive computational work being carried out to understand the intricacies of these systems. Finally, we consider the outlook for future inverted singlet-triplet (IST) emitters.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"76 1","pages":"329-355"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143974210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-02-14DOI: 10.1146/annurev-physchem-083122-010308
Matthew Du, Agnish Kumar Behera, Suriyanarayanan Vaikuntanathan
Information is an important resource. Storing and retrieving information faithfully are huge challenges and many methods have been developed to understand the principles behind robust information processing. In this review, we focus on information storage and retrieval from the perspective of energetics, dynamics, and statistical mechanics. We first review the Hopfield model of associative memory, the classic energy-based model of memory. We then discuss generalizations and physical realizations of the Hopfield model. Finally, we highlight connections to energy-based neural networks used in deep learning. We hope this review inspires new directions along the lines of information storage and retrieval in physical systems.
{"title":"Physical Considerations in Memory and Information Storage.","authors":"Matthew Du, Agnish Kumar Behera, Suriyanarayanan Vaikuntanathan","doi":"10.1146/annurev-physchem-083122-010308","DOIUrl":"10.1146/annurev-physchem-083122-010308","url":null,"abstract":"<p><p>Information is an important resource. Storing and retrieving information faithfully are huge challenges and many methods have been developed to understand the principles behind robust information processing. In this review, we focus on information storage and retrieval from the perspective of energetics, dynamics, and statistical mechanics. We first review the Hopfield model of associative memory, the classic energy-based model of memory. We then discuss generalizations and physical realizations of the Hopfield model. Finally, we highlight connections to energy-based neural networks used in deep learning. We hope this review inspires new directions along the lines of information storage and retrieval in physical systems.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":" ","pages":"471-495"},"PeriodicalIF":11.7,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}