Zero-dimensional (0D) cuprous organic–inorganic hybrid halides have emerged as a new kind of scintillator due to their high light yield and adjustable emission properties in the whole visible spectral range. However, their practical application in the radiation industry is seriously hindered by the instability of CuI ions under humid atmospheres and oxidizing environments. Herein, we designed a new Cu(I)-based halide of [CEOMTPP]2Cu4Br6 (CEOMTPP = ethoxycarbonylmethyl(triphenyl) phosphonium cation) containing a discrete [Cu4Br6]2− nanocluster, which displays strong broadband yellow light emission with near-unity photoluminescence quantum yield (PLQY) and large Stokes shift of 206 nm. Remarkably, [CEOMTPP]2Cu4Br6 shows ultra-high anti-water and anti-oxidation stability with steady emitting performance in water for over one year and in an acid–base aqueous solution for one day. Benefiting from the near-unity PLQY, large Stokes shift and negligible self-absorption, [CEOMTPP]2Cu4Br6 exhibits excellent scintillation properties with a high light yield of 69 500 phonon per meV and low detection limit of 113.0 nGy s−1. Furthermore, a high spatial resolution of 14.5 lp mm−1 is achieved in X-ray imaging based on a [CEOMTPP]2Cu4Br6@EVA composite-assembled scintillation screen, demonstrating its potential application in medical photography. This research provides a fundamental structural engineering strategy to design highly efficient and stable low-dimensional Cu(I) halides for X-ray radiation application.
The development of extra-broadband visible emission phosphors is crucial to achieve next-generation illumination with better color experience. Herein, a defect engineering strategy mediated by the structural cationic substitution is proposed and experimentally demonstrated for specific ultra-broadband emission in a garnet phosphor. The induced oxygen vacancies and interstitial cation through lattice distortion break the periodic potential field of the crystal and provide electronic levels in the band gap. As a result, excited by blue-light-emitting diodes, the novel Y3Sc2Al3O12:B3+ shows an ultra-broad emission with a full width at half maximum (FWHM) of ∼170 nm. Compared to general defect-emitting phosphors, the unique Y3Sc2Al3O12:B3+ exhibits excellent thermal quenching resistance and superior internal quantum efficiency of up to 95%. These findings not only show great promise of Y3Sc2Al3O12:B3+ as an extra-broadband emitter but also provide a new design strategy to achieve a full-visible-spectrum phosphor in a single-component material for white-light applications.