Pub Date : 2022-07-08DOI: 10.1146/annurev-neuro-110920-030610
Carla Taveggia, M Laura Feltri
Schwann cells in the peripheral nervous system (PNS) are essential for the support and myelination of axons, ensuring fast and accurate communication between the central nervous system and the periphery. Schwann cells and related glia accompany innervating axons in virtually all tissues in the body, where they exhibit remarkable plasticity and the ability to modulate pathology in extraordinary, and sometimes surprising, ways. Here, we provide a brief overview of the various glial cell types in the PNS and describe the cornerstone cellular and molecular processes that enable Schwann cells to perform their canonical functions. We then dive into discussing exciting noncanonical functions of Schwann cells and related PNS glia, which include their role in organizing the PNS, in regulating synaptic activity and pain, in modulating immunity, in providing a pool of stem cells for different organs, and, finally, in influencing cancer.
{"title":"Beyond Wrapping: Canonical and Noncanonical Functions of Schwann Cells.","authors":"Carla Taveggia, M Laura Feltri","doi":"10.1146/annurev-neuro-110920-030610","DOIUrl":"https://doi.org/10.1146/annurev-neuro-110920-030610","url":null,"abstract":"<p><p>Schwann cells in the peripheral nervous system (PNS) are essential for the support and myelination of axons, ensuring fast and accurate communication between the central nervous system and the periphery. Schwann cells and related glia accompany innervating axons in virtually all tissues in the body, where they exhibit remarkable plasticity and the ability to modulate pathology in extraordinary, and sometimes surprising, ways. Here, we provide a brief overview of the various glial cell types in the PNS and describe the cornerstone cellular and molecular processes that enable Schwann cells to perform their canonical functions. We then dive into discussing exciting noncanonical functions of Schwann cells and related PNS glia, which include their role in organizing the PNS, in regulating synaptic activity and pain, in modulating immunity, in providing a pool of stem cells for different organs, and, finally, in influencing cancer.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"45 ","pages":"561-580"},"PeriodicalIF":13.9,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9939976/pdf/nihms-1870650.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10745335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-08DOI: 10.1146/annurev-neuro-111020-084824
Wenbo Tang, Shantanu P Jadhav
When navigating through space, we must maintain a representation of our position in real time; when recalling a past episode, a memory can come back in a flash. Interestingly, the brain's spatial representation system, including the hippocampus, supports these two distinct timescale functions. How are neural representations of space used in the service of both real-world navigation and internal mnemonic processes? Recent progress has identified sequences of hippocampal place cells, evolving at multiple timescales in accordance with either navigational behaviors or internal oscillations, that underlie these functions. We review experimental findings on experience-dependent modulation of these sequential representations and consider how they link real-world navigation to time-compressed memories. We further discuss recent work suggesting the prevalence of these sequences beyond hippocampus and propose that these multiple-timescale mechanisms may represent a general algorithm for organizing cell assemblies, potentially unifying the dual roles of the spatial representation system in memory and navigation.
{"title":"Multiple-Timescale Representations of Space: Linking Memory to Navigation.","authors":"Wenbo Tang, Shantanu P Jadhav","doi":"10.1146/annurev-neuro-111020-084824","DOIUrl":"https://doi.org/10.1146/annurev-neuro-111020-084824","url":null,"abstract":"<p><p>When navigating through space, we must maintain a representation of our position in real time; when recalling a past episode, a memory can come back in a flash. Interestingly, the brain's spatial representation system, including the hippocampus, supports these two distinct timescale functions. How are neural representations of space used in the service of both real-world navigation and internal mnemonic processes? Recent progress has identified sequences of hippocampal place cells, evolving at multiple timescales in accordance with either navigational behaviors or internal oscillations, that underlie these functions. We review experimental findings on experience-dependent modulation of these sequential representations and consider how they link real-world navigation to time-compressed memories. We further discuss recent work suggesting the prevalence of these sequences beyond hippocampus and propose that these multiple-timescale mechanisms may represent a general algorithm for organizing cell assemblies, potentially unifying the dual roles of the spatial representation system in memory and navigation.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"45 ","pages":"1-21"},"PeriodicalIF":13.9,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10021996/pdf/nihms-1878767.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9763945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-08Epub Date: 2022-01-05DOI: 10.1146/annurev-neuro-111020-090812
Madeline G Andrews, Arnold R Kriegstein
Organoids are 3D cell culture systems derived from human pluripotent stem cells that contain tissue resident cell types and reflect features of early tissue organization. Neural organoids are a particularly innovative scientific advance given the lack of accessibility of developing human brain tissue and intractability of neurological diseases. Neural organoids have become an invaluable approach to model features of human brain development that are not well reflected in animal models. Organoids also hold promise for the study of atypical cellular, molecular, and genetic features that underscore neurological diseases. Additionally, organoids may provide a platform for testing therapeutics in human cells and are a potential source for cell replacement approaches to brain injury or disease. Despite the promising features of organoids, their broad utility is tempered by a variety of limitations yet to be overcome, including lack of high-fidelity cell types, limited maturation, atypical physiology, and lack of arealization, features that may limit their reliability for certain applications.
{"title":"Challenges of Organoid Research.","authors":"Madeline G Andrews, Arnold R Kriegstein","doi":"10.1146/annurev-neuro-111020-090812","DOIUrl":"10.1146/annurev-neuro-111020-090812","url":null,"abstract":"<p><p>Organoids are 3D cell culture systems derived from human pluripotent stem cells that contain tissue resident cell types and reflect features of early tissue organization. Neural organoids are a particularly innovative scientific advance given the lack of accessibility of developing human brain tissue and intractability of neurological diseases. Neural organoids have become an invaluable approach to model features of human brain development that are not well reflected in animal models. Organoids also hold promise for the study of atypical cellular, molecular, and genetic features that underscore neurological diseases. Additionally, organoids may provide a platform for testing therapeutics in human cells and are a potential source for cell replacement approaches to brain injury or disease. Despite the promising features of organoids, their broad utility is tempered by a variety of limitations yet to be overcome, including lack of high-fidelity cell types, limited maturation, atypical physiology, and lack of arealization, features that may limit their reliability for certain applications.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"45 ","pages":"23-39"},"PeriodicalIF":12.1,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10559943/pdf/nihms-1934854.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9591055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-08Epub Date: 2022-02-28DOI: 10.1146/annurev-neuro-110920-011929
Johannes W de Jong, Kurt M Fraser, Stephan Lammel
Ventral tegmental area (VTA) dopamine (DA) neurons are often thought to uniformly encode reward prediction errors. Conversely, DA release in the nucleus accumbens (NAc), the prominent projection target of these neurons, has been implicated in reinforcement learning, motivation, aversion, and incentive salience. This contrast between heterogeneous functions of DA release versus a homogeneous role for DA neuron activity raises numerous questions regarding how VTA DA activity translates into NAc DA release. Further complicating this issue is increasing evidence that distinct VTA DA projections into defined NAc subregions mediate diverse behavioral functions. Here, we evaluate evidence for heterogeneity within the mesoaccumbal DA system and argue that frameworks of DA function must incorporate the precise topographic organization of VTA DA neurons to clarify their contribution to health and disease.
人们通常认为,腹侧被盖区(VTA)多巴胺(DA)神经元统一编码奖励预测错误。与此相反,这些神经元的主要投射靶点--伏隔核(NAc)中的多巴胺释放却与强化学习、动机、厌恶和激励显著性有关。DA释放的异质性功能与DA神经元活动的同质性作用之间的这种反差,引发了许多关于VTA DA活动如何转化为NAc DA释放的问题。越来越多的证据表明,不同的 VTA DA 投射到确定的 NAc 亚区域会介导不同的行为功能,这使问题变得更加复杂。在这里,我们评估了中囊DA系统内异质性的证据,并认为DA功能框架必须包含VTA DA神经元的精确地形组织,以阐明它们对健康和疾病的贡献。
{"title":"Mesoaccumbal Dopamine Heterogeneity: What Do Dopamine Firing and Release Have to Do with It?","authors":"Johannes W de Jong, Kurt M Fraser, Stephan Lammel","doi":"10.1146/annurev-neuro-110920-011929","DOIUrl":"10.1146/annurev-neuro-110920-011929","url":null,"abstract":"<p><p>Ventral tegmental area (VTA) dopamine (DA) neurons are often thought to uniformly encode reward prediction errors. Conversely, DA release in the nucleus accumbens (NAc), the prominent projection target of these neurons, has been implicated in reinforcement learning, motivation, aversion, and incentive salience. This contrast between heterogeneous functions of DA release versus a homogeneous role for DA neuron activity raises numerous questions regarding how VTA DA activity translates into NAc DA release. Further complicating this issue is increasing evidence that distinct VTA DA projections into defined NAc subregions mediate diverse behavioral functions. Here, we evaluate evidence for heterogeneity within the mesoaccumbal DA system and argue that frameworks of DA function must incorporate the precise topographic organization of VTA DA neurons to clarify their contribution to health and disease.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"45 ","pages":"109-129"},"PeriodicalIF":13.9,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271543/pdf/nihms-1785634.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9763948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-08DOI: 10.1146/annurev-neuro-110920-022431
Kendra E Liu, Michael H Raymond, Kodi S Ravichandran, Sarah Kucenas
Neurodevelopment and efferocytosis have fascinated scientists for decades. How an organism builds a nervous system that is precisely tuned for efficient behaviors and survival and how it simultaneously manages constant somatic cell turnover are complex questions that have resulted in distinct fields of study. Although neurodevelopment requires the overproduction of cells that are subsequently pruned back, very few studies marry these fields to elucidate the cellular and molecular mechanisms that drive nervous system development through the lens of cell clearance. In this review, we discuss these fields to highlight exciting areas of future synergy. We first review neurodevelopment from the perspective of overproduction and subsequent refinement and then discuss who clears this developmental debris and the mechanisms that control these events. We then end with how a more deliberate merger ofneurodevelopment and efferocytosis could reframe our understanding of homeostasis and disease and discuss areas of future study.
{"title":"Clearing Your Mind: Mechanisms of Debris Clearance After Cell Death During Neural Development.","authors":"Kendra E Liu, Michael H Raymond, Kodi S Ravichandran, Sarah Kucenas","doi":"10.1146/annurev-neuro-110920-022431","DOIUrl":"https://doi.org/10.1146/annurev-neuro-110920-022431","url":null,"abstract":"<p><p>Neurodevelopment and efferocytosis have fascinated scientists for decades. How an organism builds a nervous system that is precisely tuned for efficient behaviors and survival and how it simultaneously manages constant somatic cell turnover are complex questions that have resulted in distinct fields of study. Although neurodevelopment requires the overproduction of cells that are subsequently pruned back, very few studies marry these fields to elucidate the cellular and molecular mechanisms that drive nervous system development through the lens of cell clearance. In this review, we discuss these fields to highlight exciting areas of future synergy. We first review neurodevelopment from the perspective of overproduction and subsequent refinement and then discuss who clears this developmental debris and the mechanisms that control these events. We then end with how a more deliberate merger ofneurodevelopment and efferocytosis could reframe our understanding of homeostasis and disease and discuss areas of future study.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"45 ","pages":"177-198"},"PeriodicalIF":13.9,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157384/pdf/nihms-1892295.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9764128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-08DOI: 10.1146/annurev-neuro-110920-023056
John R Lukens, Ukpong B Eyo
Mounting evidence indicates that microglia, which are the resident immune cells of the brain, play critical roles in a diverse array of neurodevelopmental processes required for proper brain maturation and function. This evidence has ultimately led to growing speculation that microglial dysfunction may play a role in neurodevelopmental disorder (NDD) pathoetiology. In this review, we first provide an overview of how microglia mechanistically contribute to the sculpting of the developing brain and neuronal circuits. To provide an example of how disruption of microglial biology impacts NDD development, we also highlight emerging evidence that has linked microglial dysregulation to autism spectrum disorder pathogenesis. In recent years, there has been increasing interest in how the gut microbiome shapes microglial biology. In the last section of this review, we put a spotlight on this burgeoning area of microglial research and discuss how microbiota-dependent modulation of microglial biology is currently thought to influence NDD progression.
{"title":"Microglia and Neurodevelopmental Disorders.","authors":"John R Lukens, Ukpong B Eyo","doi":"10.1146/annurev-neuro-110920-023056","DOIUrl":"https://doi.org/10.1146/annurev-neuro-110920-023056","url":null,"abstract":"<p><p>Mounting evidence indicates that microglia, which are the resident immune cells of the brain, play critical roles in a diverse array of neurodevelopmental processes required for proper brain maturation and function. This evidence has ultimately led to growing speculation that microglial dysfunction may play a role in neurodevelopmental disorder (NDD) pathoetiology. In this review, we first provide an overview of how microglia mechanistically contribute to the sculpting of the developing brain and neuronal circuits. To provide an example of how disruption of microglial biology impacts NDD development, we also highlight emerging evidence that has linked microglial dysregulation to autism spectrum disorder pathogenesis. In recent years, there has been increasing interest in how the gut microbiome shapes microglial biology. In the last section of this review, we put a spotlight on this burgeoning area of microglial research and discuss how microbiota-dependent modulation of microglial biology is currently thought to influence NDD progression.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"45 ","pages":"425-445"},"PeriodicalIF":13.9,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449242/pdf/nihms-1901571.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10062676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-08Epub Date: 2022-05-04DOI: 10.1146/annurev-neuro-110920-040422
Puja K Parekh, Shane B Johnson, Conor Liston
Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapses in stress-sensitive brain regions. These properties are shared to varying degrees by all known antidepressants, suggesting that synaptic remodeling could play a key role in depression pathophysiology and antidepressant function. Still, it is unclear whether and precisely how synaptogenesis contributes to mood state transitions. Here, we review evidence supporting an emerging model in which depression is defined by a distinct brain state distributed across multiple stress-sensitive circuits, with neurons assuming altered functional properties, synapse configurations, and, importantly, a reduced capacity for plasticity and adaptation. Antidepressants act initially by facilitating plasticity and enabling a functional reconfiguration of this brain state. Subsequently, synaptogenesis plays a specific role in sustaining these changes over time.
{"title":"Synaptic Mechanisms Regulating Mood State Transitions in Depression.","authors":"Puja K Parekh, Shane B Johnson, Conor Liston","doi":"10.1146/annurev-neuro-110920-040422","DOIUrl":"10.1146/annurev-neuro-110920-040422","url":null,"abstract":"<p><p>Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapses in stress-sensitive brain regions. These properties are shared to varying degrees by all known antidepressants, suggesting that synaptic remodeling could play a key role in depression pathophysiology and antidepressant function. Still, it is unclear whether and precisely how synaptogenesis contributes to mood state transitions. Here, we review evidence supporting an emerging model in which depression is defined by a distinct brain state distributed across multiple stress-sensitive circuits, with neurons assuming altered functional properties, synapse configurations, and, importantly, a reduced capacity for plasticity and adaptation. Antidepressants act initially by facilitating plasticity and enabling a functional reconfiguration of this brain state. Subsequently, synaptogenesis plays a specific role in sustaining these changes over time.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"1 1","pages":"581-601"},"PeriodicalIF":12.1,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43171529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-19DOI: 10.1146/annurev-neuro-111020-100834
Rosemary C. Challis, Sripriya Ravindra Kumar, Xinhong Chen, David Goertsen, G. M. Coughlin, A. Hori, Miguel R. Chuapoco, T. Otis, T. F. Miles, V. Gradinaru
Recombinant adeno-associated viruses (AAVs) are commonly used gene delivery vehicles for neuroscience research. They have two engineerable features: the capsid (outer protein shell) and cargo (encapsulated genome). These features can be modified to enhance cell type or tissue tropism and control transgene expression, respectively. Several engineered AAV capsids with unique tropisms have been identified, including variants with enhanced central nervous system transduction, cell type specificity, and retrograde transport in neurons. Pairing these AAVs with modern gene regulatory elements and state-of-the-art reporter, sensor, and effector cargo enables highly specific transgene expression for anatomical and functional analyses of brain cells and circuits. Here, we discuss recent advances that provide a comprehensive (capsid and cargo) AAV toolkit for genetic access to molecularly defined brain cell types. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Adeno-Associated Virus Toolkit to Target Diverse Brain Cells.","authors":"Rosemary C. Challis, Sripriya Ravindra Kumar, Xinhong Chen, David Goertsen, G. M. Coughlin, A. Hori, Miguel R. Chuapoco, T. Otis, T. F. Miles, V. Gradinaru","doi":"10.1146/annurev-neuro-111020-100834","DOIUrl":"https://doi.org/10.1146/annurev-neuro-111020-100834","url":null,"abstract":"Recombinant adeno-associated viruses (AAVs) are commonly used gene delivery vehicles for neuroscience research. They have two engineerable features: the capsid (outer protein shell) and cargo (encapsulated genome). These features can be modified to enhance cell type or tissue tropism and control transgene expression, respectively. Several engineered AAV capsids with unique tropisms have been identified, including variants with enhanced central nervous system transduction, cell type specificity, and retrograde transport in neurons. Pairing these AAVs with modern gene regulatory elements and state-of-the-art reporter, sensor, and effector cargo enables highly specific transgene expression for anatomical and functional analyses of brain cells and circuits. Here, we discuss recent advances that provide a comprehensive (capsid and cargo) AAV toolkit for genetic access to molecularly defined brain cell types. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":""},"PeriodicalIF":13.9,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48597804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-08DOI: 10.1146/annurev-neuro-111020-085500
Patricia Rubio Arzola, R. Shansky
Any experiment conducted in a rodent laboratory is done so against the backdrop of each animal's physiological state at the time of the experiment. This physiological state can be the product of multiple factors, both internal (e.g., animal sex, strain, hormone cycles, or circadian rhythms) and external (e.g., housing conditions, social status, and light/dark phases). Each of these factors has the potential to influence experimental outcomes, either independently or via interactions with others, and yet there is little consistency across laboratories in terms of the weight with which they are considered in experimental design. Such discrepancies-both in practice and in reporting-likely contribute to the perception of a reproducibility crisis in the field of behavioral neuroscience. In this review, we discuss how several of these sources of variability can impact outcomes within the realm of common learning and memory paradigms. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Considering Organismal Physiology in Laboratory Studies of Rodent Behavior.","authors":"Patricia Rubio Arzola, R. Shansky","doi":"10.1146/annurev-neuro-111020-085500","DOIUrl":"https://doi.org/10.1146/annurev-neuro-111020-085500","url":null,"abstract":"Any experiment conducted in a rodent laboratory is done so against the backdrop of each animal's physiological state at the time of the experiment. This physiological state can be the product of multiple factors, both internal (e.g., animal sex, strain, hormone cycles, or circadian rhythms) and external (e.g., housing conditions, social status, and light/dark phases). Each of these factors has the potential to influence experimental outcomes, either independently or via interactions with others, and yet there is little consistency across laboratories in terms of the weight with which they are considered in experimental design. Such discrepancies-both in practice and in reporting-likely contribute to the perception of a reproducibility crisis in the field of behavioral neuroscience. In this review, we discuss how several of these sources of variability can impact outcomes within the realm of common learning and memory paradigms. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":""},"PeriodicalIF":13.9,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49032371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-06DOI: 10.1146/annurev-neuro-110920-013544
K. Janacsek, Tanya M. Evans, Mariann M. Kiss, Leela Shah, H. Blumenfeld, M. Ullman
Cognitive neuroscience has highlighted the cerebral cortex while often overlooking subcortical structures. This cortical proclivity is found in basic and translational research on many aspects of cognition, especially higher cognitive domains such as language, reading, music, and math. We suggest that, for both anatomical and evolutionary reasons, multiple subcortical structures play substantial roles across higher and lower cognition. We present a comprehensive review of existing evidence, which indeed reveals extensive subcortical contributions in multiple cognitive domains. We argue that the findings are overall both real and important. Next, we advance a theoretical framework to capture the nature of (sub)cortical contributions to cognition. Finally, we propose how new subcortical cognitive roles can be identified by leveraging anatomical and evolutionary principles, and we describe specific methods that can be used to reveal subcortical cognition. Altogether, this review aims to advance cognitive neuroscience by highlighting subcortical cognition and facilitating its future investigation. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
{"title":"Subcortical Cognition: The Fruit Below the Rind.","authors":"K. Janacsek, Tanya M. Evans, Mariann M. Kiss, Leela Shah, H. Blumenfeld, M. Ullman","doi":"10.1146/annurev-neuro-110920-013544","DOIUrl":"https://doi.org/10.1146/annurev-neuro-110920-013544","url":null,"abstract":"Cognitive neuroscience has highlighted the cerebral cortex while often overlooking subcortical structures. This cortical proclivity is found in basic and translational research on many aspects of cognition, especially higher cognitive domains such as language, reading, music, and math. We suggest that, for both anatomical and evolutionary reasons, multiple subcortical structures play substantial roles across higher and lower cognition. We present a comprehensive review of existing evidence, which indeed reveals extensive subcortical contributions in multiple cognitive domains. We argue that the findings are overall both real and important. Next, we advance a theoretical framework to capture the nature of (sub)cortical contributions to cognition. Finally, we propose how new subcortical cognitive roles can be identified by leveraging anatomical and evolutionary principles, and we describe specific methods that can be used to reveal subcortical cognition. Altogether, this review aims to advance cognitive neuroscience by highlighting subcortical cognition and facilitating its future investigation. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":""},"PeriodicalIF":13.9,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43715681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}