首页 > 最新文献

Antioxidants & redox signaling最新文献

英文 中文
Exosomal miR-196a-5p Secreted by Bone Marrow Mesenchymal Stem Cells Inhibits Ferroptosis and Promotes Drug Resistance of Acute Myeloid Leukemia. 骨髓间充质干细胞分泌的外泌体miR-196a-5p抑制铁下垂并促进急性髓系白血病耐药
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-06-01 Epub Date: 2025-05-19 DOI: 10.1089/ars.2024.0882
Bingjie Fan, Li Wang, Tianzhen Hu, Lin Zheng, Jishi Wang

Background: Ferroptosis is a nonapoptotic type of cell death characterized by an increase in lipid reactive oxygen species (ROS). Acute myeloid leukemia (AML)-derived bone marrow mesenchymal stem cells (AML-BMSCs) support the progression and drug resistance of AML by secreting various bioactive substances, including exosomes. However, the role of BMSCs in regulating lipid metabolism and ferroptosis in AML remains unexplored. Results: Exosomes secreted by AML-BMSCs increased the expression of miR-196a-5p in AML cells. MiR-196a-5p promoted the proliferation of AML cells, reduced lipid ROS and ferroptosis, and was associated with poor prognosis in AML patients. Mechanistically, miR-196a-5p inhibited the expression level of neural precursor cell expressed developmentally down-regulated 4-like (NEDD4L). Co-immunoprecipitation (CO-IP) analysis showed that NEDD4L was bound to long-chain acyl-CoA synthetase (ACSL)3 and promoted ubiquitin-mediated degradation of ACSL3 protein. In addition, we also demonstrated that AML-BMSCs highly expressed Ras-associated binding protein 7A (RAB7A), which was associated with exosomal miR-196a-5p release. Importantly, cytarabine (Ara-C) activated the expression of RAB7A and promoted the secretion of exosomal miR-196a-5p, which weakened the ubiquitination of ACSL3 by NEDD4L, leading to ferroptosis inhibition and Ara-C resistance in AML. Innovation: This is the first time that exosomes secreted by BMSCs (BMSCs-exos) have been linked to ferroptosis in AML cells, thereby expanding our understanding of the mechanism of drug resistance in AML cells. High miR-196a-5p expression reduced lipid ROS levels and ferroptosis in AML cells by inhibiting NEDD4L-mediated ubiquitination of ACSL3. Conclusion: This study identified a new network through which BMSCs-exos regulate ferroptosis in AML cells. We combined BMSCs and AML cells to provide new ideas for drug research targeting exosome secretion and ferroptosis. Antioxid. Redox Signal. 42, 933-953.

背景:铁死亡是一种以脂质活性氧(ROS)增加为特征的非凋亡型细胞死亡。急性髓性白血病(AML)来源的骨髓间充质干细胞(AML- bmscs)通过分泌包括外泌体在内的多种生物活性物质来支持AML的进展和耐药。然而,骨髓间充质干细胞在AML中调节脂质代谢和铁下垂中的作用仍未被探索。结果:AML- bmscs分泌的外泌体增加了AML细胞中miR-196a-5p的表达。MiR-196a-5p促进AML细胞增殖,降低脂质ROS和铁下垂,并与AML患者预后不良相关。在机制上,miR-196a-5p抑制了表达发育下调4-like (NEDD4L)的神经前体细胞的表达水平。共免疫沉淀(CO-IP)分析显示NEDD4L与长链酰基辅酶a合成酶(ACSL)3结合,促进泛素介导的ACSL3蛋白降解。此外,我们还证明AML-BMSCs高表达ras相关结合蛋白7A (RAB7A),这与外泌体miR-196a-5p的释放有关。重要的是,阿糖胞苷(Ara-C)激活RAB7A的表达,促进外泌体miR-196a-5p的分泌,从而削弱NEDD4L对ACSL3的泛素化作用,导致AML中铁沉抑制和Ara-C耐药。创新:这是首次将骨髓间充质干细胞分泌的外泌体(BMSCs-exos)与AML细胞中的铁凋亡联系起来,从而扩大了我们对AML细胞耐药机制的理解。miR-196a-5p高表达通过抑制nedd4l介导的ACSL3泛素化,降低AML细胞的脂质ROS水平和铁下垂。结论:本研究发现了一个bmscs外显子调控AML细胞铁凋亡的新网络。我们将骨髓间充质干细胞与AML细胞结合,为靶向外泌体分泌和铁凋亡的药物研究提供新的思路。Antioxid。氧化还原信号:00000 - 00000。
{"title":"Exosomal miR-196a-5p Secreted by Bone Marrow Mesenchymal Stem Cells Inhibits Ferroptosis and Promotes Drug Resistance of Acute Myeloid Leukemia.","authors":"Bingjie Fan, Li Wang, Tianzhen Hu, Lin Zheng, Jishi Wang","doi":"10.1089/ars.2024.0882","DOIUrl":"10.1089/ars.2024.0882","url":null,"abstract":"<p><p><b><i>Background:</i></b> Ferroptosis is a nonapoptotic type of cell death characterized by an increase in lipid reactive oxygen species (ROS). Acute myeloid leukemia (AML)-derived bone marrow mesenchymal stem cells (AML-BMSCs) support the progression and drug resistance of AML by secreting various bioactive substances, including exosomes. However, the role of BMSCs in regulating lipid metabolism and ferroptosis in AML remains unexplored. <b><i>Results:</i></b> Exosomes secreted by AML-BMSCs increased the expression of miR-196a-5p in AML cells. MiR-196a-5p promoted the proliferation of AML cells, reduced lipid ROS and ferroptosis, and was associated with poor prognosis in AML patients. Mechanistically, miR-196a-5p inhibited the expression level of neural precursor cell expressed developmentally down-regulated 4-like (NEDD4L). Co-immunoprecipitation (CO-IP) analysis showed that NEDD4L was bound to long-chain acyl-CoA synthetase (ACSL)3 and promoted ubiquitin-mediated degradation of ACSL3 protein. In addition, we also demonstrated that AML-BMSCs highly expressed Ras-associated binding protein 7A (RAB7A), which was associated with exosomal miR-196a-5p release. Importantly, cytarabine (Ara-C) activated the expression of RAB7A and promoted the secretion of exosomal miR-196a-5p, which weakened the ubiquitination of ACSL3 by NEDD4L, leading to ferroptosis inhibition and Ara-C resistance in AML. <b><i>Innovation:</i></b> This is the first time that exosomes secreted by BMSCs (BMSCs-exos) have been linked to ferroptosis in AML cells, thereby expanding our understanding of the mechanism of drug resistance in AML cells. High miR-196a-5p expression reduced lipid ROS levels and ferroptosis in AML cells by inhibiting NEDD4L-mediated ubiquitination of ACSL3. <b><i>Conclusion:</i></b> This study identified a new network through which BMSCs-exos regulate ferroptosis in AML cells. We combined BMSCs and AML cells to provide new ideas for drug research targeting exosome secretion and ferroptosis. <i>Antioxid. Redox Signal.</i> 42, 933-953.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"933-953"},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144101030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remote Organ Damage Induced by Stroke: Molecular Mechanisms and Comprehensive Interventions. 脑卒中所致远端器官损伤:分子机制和综合干预。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-06-01 Epub Date: 2025-04-02 DOI: 10.1089/ars.2024.0720
Jie Wang, Sen Gao, Yue Cui, Xun-Zhi Liu, Xiang-Xin Chen, Chun-Hua Hang, Wei Li

Significance: Damage after stroke is not only limited to the brain but also often occurs in remote organs, including the heart, lung, liver, kidney, digestive tract, and spleen, which are frequently affected by complex pathophysiological changes. The organs in the human body are closely connected, and signals transmitted through various molecular substances could regulate the pathophysiological changes of remote organs. Recent Advances: The latest studies have shown that inflammatory response plays an important role in remote organ damage after stroke, and can aggravate remote organ damage by activating oxidative stress, sympathetic axis, and hypothalamic axis, and disturbing immunological homeostasis. Remote organ damage can also cause damage to the brain, aggravating inflammatory response and oxidative damage. Critical Issues: Therefore, an in-depth exploration of inflammatory and oxidative mechanisms and adopting corresponding comprehensive intervention strategies have become necessary to reduce damage to remote organs and promote brain protection. Future Directions: The comprehensive intervention strategy involves multifaceted treatment methods such as inflammation regulation, antioxidants, and neural stem cell differentiation. It provides a promising treatment alternative for the comprehensive recovery of stroke patients and an inspiration for future research and treatment. The various organs of the human body are interconnected at the molecular level. Only through comprehensive intervention at the molecular and organ levels can we save remote organ damage and protect the brain after stroke to the greatest extent. Antioxid. Redox Signal. 42, 885-904.

意义:脑卒中后的损害不仅限于大脑,还常发生远端脏器,如心、肺、肝、肾、消化道、脾等,这些脏器常受复杂的病理生理变化影响。人体各器官紧密相连,通过各种分子物质传递的信号可以调节远端器官的病理生理变化。最新研究表明,炎症反应在脑卒中后远端脏器损伤中起重要作用,可通过激活氧化应激、交感神经轴和下丘脑轴,扰乱免疫稳态等方式加重远端脏器损伤。远端器官损伤也会对大脑造成损伤,加重炎症反应和氧化损伤。关键问题:因此,深入探索炎症和氧化机制,并采取相应的综合干预策略,减少对远端器官的损伤,促进脑保护已成为必要。未来方向:综合干预策略涉及多方面的治疗方法,如炎症调节、抗氧化剂和神经干细胞分化。它为中风患者的全面康复提供了一种有希望的治疗选择,并为未来的研究和治疗提供了灵感。人体的各个器官在分子水平上是相互联系的。只有通过分子和器官水平的综合干预,才能最大限度地挽救远端器官损伤,保护脑卒中后的大脑。Antioxid。氧化还原信号:00000 - 00000。
{"title":"Remote Organ Damage Induced by Stroke: Molecular Mechanisms and Comprehensive Interventions.","authors":"Jie Wang, Sen Gao, Yue Cui, Xun-Zhi Liu, Xiang-Xin Chen, Chun-Hua Hang, Wei Li","doi":"10.1089/ars.2024.0720","DOIUrl":"10.1089/ars.2024.0720","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Damage after stroke is not only limited to the brain but also often occurs in remote organs, including the heart, lung, liver, kidney, digestive tract, and spleen, which are frequently affected by complex pathophysiological changes. The organs in the human body are closely connected, and signals transmitted through various molecular substances could regulate the pathophysiological changes of remote organs. <b><i>Recent Advances:</i></b> The latest studies have shown that inflammatory response plays an important role in remote organ damage after stroke, and can aggravate remote organ damage by activating oxidative stress, sympathetic axis, and hypothalamic axis, and disturbing immunological homeostasis. Remote organ damage can also cause damage to the brain, aggravating inflammatory response and oxidative damage. <b><i>Critical Issues:</i></b> Therefore, an in-depth exploration of inflammatory and oxidative mechanisms and adopting corresponding comprehensive intervention strategies have become necessary to reduce damage to remote organs and promote brain protection. <b><i>Future Directions:</i></b> The comprehensive intervention strategy involves multifaceted treatment methods such as inflammation regulation, antioxidants, and neural stem cell differentiation. It provides a promising treatment alternative for the comprehensive recovery of stroke patients and an inspiration for future research and treatment. The various organs of the human body are interconnected at the molecular level. Only through comprehensive intervention at the molecular and organ levels can we save remote organ damage and protect the brain after stroke to the greatest extent. <i>Antioxid. Redox Signal.</i> 42, 885-904.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"885-904"},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143762522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial Reactive Oxygen Species: Key Players in Cardiovascular Health and Disease. 内皮活性氧:心血管健康与疾病的关键角色》。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-06-01 Epub Date: 2024-09-30 DOI: 10.1089/ars.2024.0706
Siobhan M Craige, Gaganpreet Kaur, Jacob M Bond, Amada D Caliz, Shashi Kant, John F Keaney

Significance: Endothelial cells (ECs) line the entire vasculature system and serve as both barriers and facilitators of intra- and interorgan communication. Positioned to rapidly sense internal and external stressors, ECs dynamically adjust their functionality. Endothelial dysfunction occurs when the ability of ECs to react to stressors is impaired, which precedes many cardiovascular diseases (CVDs). While EC reactive oxygen species (ROS) have historically been implicated as mediators of endothelial dysfunction, more recent studies highlight the central role of ROS in physiological endothelial signaling. Recent Advances: New evidence has uncovered that EC ROS are fundamental in determining how ECs interact with their environment and respond to stress. EC ROS levels are mediated by external factors such as diet and pathogens, as well as inherent characteristics, including sex and location. Changes in EC ROS impact EC function, leading to changes in metabolism, cell communication, and potentially disrupted signaling in CVDs. Critical Issues: Current endothelial biology concepts integrate the dual nature of ROS, emphasizing the importance of EC ROS in physiological stress adaptation and their contribution to CVDs. Understanding the discrete, localized signaling of EC ROS will be critical in preventing adverse cardiovascular outcomes. Future Directions: Exploring how the EC ROS environment alters EC function and cross-cellular communication is critical. Considering the inherent heterogeneity among EC populations and understanding how EC ROS contribute to this diversity and the role of sexual dimorphism in the EC ROS environment will be fundamental for developing new effective cardiovascular treatment strategies. Antioxid. Redox Signal. 42, 905-932.

意义重大:内皮细胞(EC)遍布整个血管系统,既是器官内和器官间交流的屏障,也是器官内和器官间交流的促进因素。内皮细胞能迅速感知内部和外部压力,动态调整自身功能。当内皮细胞对压力源的反应能力受损时,就会出现内皮细胞功能障碍,这在许多心血管疾病发生之前就会出现。虽然血管内皮活性氧(ROS)历来被认为是内皮功能障碍的介质,但最近的研究强调了 ROS 在生理内皮信号传导中的核心作用:新的证据表明,内皮细胞 ROS 是决定内皮细胞如何与环境相互作用并对压力做出反应的根本因素。内皮细胞的 ROS 水平受饮食和病原体等外部因素以及性别和位置等固有特性的影响。内皮细胞 ROS 的变化会影响内皮细胞的功能,导致新陈代谢、细胞通讯发生变化,并可能破坏心血管疾病的信号传导:当前的内皮生物学概念整合了 ROS 的双重性质,强调了 EC ROS 在生理压力适应中的重要性及其对心血管疾病的影响。了解内皮细胞 ROS 的离散、局部信号传导对于预防不良心血管后果至关重要:探索心肌ROS环境如何改变心肌功能和跨细胞通讯至关重要。考虑到心肌细胞群体之间固有的异质性,了解心肌细胞 ROS 如何导致这种多样性以及心肌细胞 ROS 环境中性双态性的作用,对于开发新的、有效的心血管治疗策略至关重要。
{"title":"Endothelial Reactive Oxygen Species: Key Players in Cardiovascular Health and Disease.","authors":"Siobhan M Craige, Gaganpreet Kaur, Jacob M Bond, Amada D Caliz, Shashi Kant, John F Keaney","doi":"10.1089/ars.2024.0706","DOIUrl":"10.1089/ars.2024.0706","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Endothelial cells (ECs) line the entire vasculature system and serve as both barriers and facilitators of intra- and interorgan communication. Positioned to rapidly sense internal and external stressors, ECs dynamically adjust their functionality. Endothelial dysfunction occurs when the ability of ECs to react to stressors is impaired, which precedes many cardiovascular diseases (CVDs). While EC reactive oxygen species (ROS) have historically been implicated as mediators of endothelial dysfunction, more recent studies highlight the central role of ROS in physiological endothelial signaling. <b><i>Recent Advances:</i></b> New evidence has uncovered that EC ROS are fundamental in determining how ECs interact with their environment and respond to stress. EC ROS levels are mediated by external factors such as diet and pathogens, as well as inherent characteristics, including sex and location. Changes in EC ROS impact EC function, leading to changes in metabolism, cell communication, and potentially disrupted signaling in CVDs. <b><i>Critical Issues:</i></b> Current endothelial biology concepts integrate the dual nature of ROS, emphasizing the importance of EC ROS in physiological stress adaptation and their contribution to CVDs. Understanding the discrete, localized signaling of EC ROS will be critical in preventing adverse cardiovascular outcomes. <b><i>Future Directions:</i></b> Exploring how the EC ROS environment alters EC function and cross-cellular communication is critical. Considering the inherent heterogeneity among EC populations and understanding how EC ROS contribute to this diversity and the role of sexual dimorphism in the EC ROS environment will be fundamental for developing new effective cardiovascular treatment strategies. <i>Antioxid. Redox Signal.</i> 42, 905-932.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"905-932"},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adverse Effects of Nrf2 in Different Organs and the Related Diseases. Nrf2在不同器官及相关疾病中的不良作用。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-06-01 Epub Date: 2024-12-24 DOI: 10.1089/ars.2024.0586
Xuemei Jin, Long Chen, Yuelan Yang, Rongshao Tan, Chunjie Jiang

Significance: Under normal physiological conditions, Nrf2 undergoes ubiquitination and subsequent proteasome degradation to maintain its basal activity. Oxidative stress can trigger Nrf2 activation, prompting its translocation to the nucleus where it functions as a transcription factor, activating various antioxidant pathways, and conferring antioxidant properties. Recent Advances: While extensive research has shown Nrf2's protective role in various diseases, emerging evidence suggests that Nrf2 activation can also produce harmful effects. Critical Issues: This review examines the pathological contexts in which Nrf2 assumes different roles, emphasizing the mechanisms and conditions that result in adverse outcomes. Future Directions: Persistent Nrf2 activation may have deleterious consequences, necessitating further investigation into the specific conditions and mechanisms through which Nrf2 exerts its harmful effects. Antioxid. Redox Signal. 42, 973-985.

意义:在正常生理条件下,Nrf2通过泛素化和随后的蛋白酶体降解来维持其基础活性。氧化应激可触发Nrf2激活,促使其易位到细胞核,在那里它作为转录因子发挥作用,激活各种抗氧化途径,并赋予抗氧化特性。最新进展:虽然大量研究表明Nrf2在多种疾病中具有保护作用,但新出现的证据表明Nrf2激活也会产生有害影响。关键问题:这篇综述探讨了Nrf2在病理环境中发挥不同作用,强调了导致不良结果的机制和条件。未来方向:Nrf2持续激活可能会产生有害后果,需要进一步研究Nrf2发挥其有害作用的具体条件和机制。Antioxid。氧化还原信号:00000 - 00000。
{"title":"Adverse Effects of Nrf2 in Different Organs and the Related Diseases.","authors":"Xuemei Jin, Long Chen, Yuelan Yang, Rongshao Tan, Chunjie Jiang","doi":"10.1089/ars.2024.0586","DOIUrl":"10.1089/ars.2024.0586","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Under normal physiological conditions, Nrf2 undergoes ubiquitination and subsequent proteasome degradation to maintain its basal activity. Oxidative stress can trigger Nrf2 activation, prompting its translocation to the nucleus where it functions as a transcription factor, activating various antioxidant pathways, and conferring antioxidant properties. <b><i>Recent Advances:</i></b> While extensive research has shown Nrf2's protective role in various diseases, emerging evidence suggests that Nrf2 activation can also produce harmful effects. <b><i>Critical Issues:</i></b> This review examines the pathological contexts in which Nrf2 assumes different roles, emphasizing the mechanisms and conditions that result in adverse outcomes. <b><i>Future Directions:</i></b> Persistent Nrf2 activation may have deleterious consequences, necessitating further investigation into the specific conditions and mechanisms through which Nrf2 exerts its harmful effects. <i>Antioxid. Redox Signal.</i> 42, 973-985.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"973-985"},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modes of Mitochondrial Reactive Oxygen Species Production in Inflammation. 炎症中线粒体活性氧产生的模式。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-06-01 Epub Date: 2025-04-26 DOI: 10.1089/ars.2024.0737
Miguel González-Hernández, Laura Gallardo-Andalucía, Pablo Hernansanz-Agustín

Background: Inflammation is one of the most important pathways in innate immunity and its relationship with redox biology is becoming increasingly clear in the last decades. However, the specific redox modes and pathways by which inflammation is produced are not yet well defined. Significance: In this review, we provide a general explanation of the reactive oxygen species (ROS) production and quenching modes occurring in mammalian mitochondria, as well as a summary of the most recent advances in mitochondrial redox biology and bioenergetics regarding sodium (Na+) homeostasis. In addition, we provide a collection of examples in which several inflammatory pathways have been associated with specific modes of either mitochondrial ROS production or quenching. Innovation: The role of Na+ in mitochondrial biology is being developed. Since its discovery as a second messenger, the research of its role in the immune system has emerged. Now, the role of Na+ in mitochondrial bioenergetics has recently been identified, which owns unprecedented applications. The potential implication of Na+ in inflammatory mechanisms grows as its role does not only cover ROS production and respiration but also the control through the management of mitochondrial membrane potential. Future directions: Na+ is becoming relevant for mitochondrial biology. Thus, processes regarding mitochondrial bioenergetics, redox state, or metabolism may probably need to include the study of Na+ in their road map. Some of these pathways are involved in inflammation and more are possibly to come. This review is expected to serve as a bridge between both fields. Antioxid. Redox Signal. 42, 868-884.

背景:炎症是先天免疫中最重要的途径之一,其与氧化还原生物学的关系在过去的几十年里变得越来越清楚。然而,炎症产生的具体氧化还原模式和途径尚未明确。意义:本文综述了哺乳动物线粒体中活性氧(ROS)的产生和猝灭模式,并综述了线粒体氧化还原生物学和生物能量学在钠(Na+)稳态方面的最新进展。此外,我们还提供了一系列例子,其中几种炎症途径与线粒体ROS产生或猝灭的特定模式有关。创新:Na+在线粒体生物学中的作用正在被开发。自从它作为第二信使被发现以来,关于它在免疫系统中的作用的研究已经出现。现在,Na+在线粒体生物能量学中的作用最近被确定,它具有前所未有的应用。Na+在炎症机制中的潜在意义越来越大,因为它的作用不仅包括ROS的产生和呼吸,还包括通过管理线粒体膜电位进行控制。未来方向:Na+与线粒体生物学相关。因此,有关线粒体生物能量学、氧化还原状态或代谢的过程可能需要在其路线图中包括Na+的研究。其中一些途径与炎症有关,可能还有更多的途径。这项审查预计将成为这两个领域之间的桥梁。Antioxid。氧化还原信号:00000 - 00000。
{"title":"Modes of Mitochondrial Reactive Oxygen Species Production in Inflammation.","authors":"Miguel González-Hernández, Laura Gallardo-Andalucía, Pablo Hernansanz-Agustín","doi":"10.1089/ars.2024.0737","DOIUrl":"10.1089/ars.2024.0737","url":null,"abstract":"<p><p><b><i>Background:</i></b> Inflammation is one of the most important pathways in innate immunity and its relationship with redox biology is becoming increasingly clear in the last decades. However, the specific redox modes and pathways by which inflammation is produced are not yet well defined. <b><i>Significance:</i></b> In this review, we provide a general explanation of the reactive oxygen species (ROS) production and quenching modes occurring in mammalian mitochondria, as well as a summary of the most recent advances in mitochondrial redox biology and bioenergetics regarding sodium (Na<sup>+</sup>) homeostasis. In addition, we provide a collection of examples in which several inflammatory pathways have been associated with specific modes of either mitochondrial ROS production or quenching. <b><i>Innovation:</i></b> The role of Na<sup>+</sup> in mitochondrial biology is being developed. Since its discovery as a second messenger, the research of its role in the immune system has emerged. Now, the role of Na<sup>+</sup> in mitochondrial bioenergetics has recently been identified, which owns unprecedented applications. The potential implication of Na<sup>+</sup> in inflammatory mechanisms grows as its role does not only cover ROS production and respiration but also the control through the management of mitochondrial membrane potential. <b><i>Future directions:</i></b> Na<sup>+</sup> is becoming relevant for mitochondrial biology. Thus, processes regarding mitochondrial bioenergetics, redox state, or metabolism may probably need to include the study of Na<sup>+</sup> in their road map. Some of these pathways are involved in inflammation and more are possibly to come. This review is expected to serve as a bridge between both fields. <i>Antioxid. Redox Signal.</i> 42, 868-884.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"868-884"},"PeriodicalIF":5.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143969532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cystathionine γ-Lyase Attenuates Vascular Smooth Muscle Cell Senescence via Foxm1-Gas1 Pathway to Mediate Arterial Stiffness. 胱硫醚 γ 裂解酶通过 Foxm1-Gas1 通路减缓血管平滑肌细胞衰老,从而调节动脉僵化
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-05-01 Epub Date: 2024-09-30 DOI: 10.1089/ars.2024.0602
Qian Lin, Changting Cui, Ying Zhao, Yuefeng Geng, Huimin Gao, Xiaodie Shao, Ling Cheng, Haitao Li, Bin Geng

Aims: Arterial stiffness, a hallmark of vascular aging, significantly contributes to hypertension and impaired organ perfusion. Vascular smooth muscle cell (VSMC) dysfunction, particularly VSMC senescence and its interaction with stiffness, is crucial in the pathogenesis of arterial stiffness. Although hydrogen sulfide (H2S) and its key enzyme cystathionine γ-lyase (CSE) are known to play roles in cardiovascular diseases, their effects on arterial stiffness are not well understood. Methods & Results: First, we observed a downregulation of CSE/H2S in the aortic media during biological aging and angiotensin II (AngII)-induced aging. The VSMC-specific CSE knockout mice were created by loxp-cre (Tagln-cre) system and which exacerbated AngII-induced aortic aging and stiffness in vivo and VSMC senescence and stiffness in vitro. Conversely, the CSE agonist norswertianolin mitigated these effects. Next, we identified growth arrest-specific 1 (Gas1) as a crucial target of CSE/H2S and found it to be a downstream target gene of forkhead box protein M1 (Foxm1). siRNA knockdown Foxm1 increased Gas1 transcription and reduced the protective effects of H2S on VSMC senescence and stiffness. Finally, we demonstrated that CSE/H2S sulfhydrates Foxm1 at the C210 site, regulating its nuclear translocation and activity, thus reducing VSMC senescence and stiffness. Innovation: Our findings highlight the protective role of CSE/H2S in arterial stiffness, emphasizing the novel contributions of CSE, Gas1, and Foxm1 to VSMC senescence and stiffness. Conclusion: Endogenous CSE/H2S in VSMCs reduces VSMC senescence and stiffness, thereby attenuating arterial stiffness and aging, partly through sulfhydration-mediated activation of Foxm1 and subsequent inhibition of Gas1 signaling pathways. Antioxid. Redox Signal. 42, 655-671.

目的 动脉僵化是血管老化的标志,是导致高血压和器官灌注受损的重要原因。血管平滑肌细胞(VSMC)功能障碍,尤其是血管平滑肌细胞衰老及其与动脉僵化的相互作用,在动脉僵化的发病机制中至关重要。虽然硫化氢(H2S)及其关键酶胱硫醚γ-赖氨酸酶(CSE)在心血管疾病中的作用众所周知,但它们对动脉僵化的影响却不甚了解。方法与结果 首先,我们观察到在生物衰老和血管紧张素 II(AngII)诱导的衰老过程中,主动脉介质中的 CSE/H2S 下调。通过loxp-cre(Tagln-cre)系统建立的VSMC特异性CSE基因敲除小鼠,加剧了AngII诱导的体内主动脉衰老和僵化以及体外VSMC衰老和僵化。相反,CSE 激动剂 norswertianolin 可减轻这些影响。siRNA 敲除 Foxm1 增加了 Gas1 的转录,降低了 H2S 对 VSMC 衰老和僵化的保护作用。最后,我们证明了 CSE/H2S 可在 C210 位点巯基化 Foxm1,调节其核转位和活性,从而减少 VSMC 的衰老和僵化。创新 我们的研究结果突出了 CSE/H2S 在动脉僵化中的保护作用,强调了 CSE、Gas1 和 Foxm1 对 VSMC 衰老和僵化的新贡献。结论 VSMC 中的内源性 CSE/H2S 可减少 VSMC 的衰老和僵化,从而减轻动脉僵化和老化,部分原因是硫酸化介导的 Foxm1 激活和随后的 Gas1 信号通路抑制。
{"title":"Cystathionine γ-Lyase Attenuates Vascular Smooth Muscle Cell Senescence via Foxm1-Gas1 Pathway to Mediate Arterial Stiffness.","authors":"Qian Lin, Changting Cui, Ying Zhao, Yuefeng Geng, Huimin Gao, Xiaodie Shao, Ling Cheng, Haitao Li, Bin Geng","doi":"10.1089/ars.2024.0602","DOIUrl":"10.1089/ars.2024.0602","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Arterial stiffness, a hallmark of vascular aging, significantly contributes to hypertension and impaired organ perfusion. Vascular smooth muscle cell (VSMC) dysfunction, particularly VSMC senescence and its interaction with stiffness, is crucial in the pathogenesis of arterial stiffness. Although hydrogen sulfide (H<sub>2</sub>S) and its key enzyme cystathionine γ-lyase (CSE) are known to play roles in cardiovascular diseases, their effects on arterial stiffness are not well understood. <b><i>Methods & Results:</i></b> First, we observed a downregulation of CSE/H<sub>2</sub>S in the aortic media during biological aging and angiotensin II (AngII)-induced aging. The VSMC-specific CSE knockout mice were created by loxp-cre (Tagln-cre) system and which exacerbated AngII-induced aortic aging and stiffness <i>in vivo</i> and VSMC senescence and stiffness <i>in vitro</i>. Conversely, the CSE agonist norswertianolin mitigated these effects. Next, we identified growth arrest-specific 1 (Gas1) as a crucial target of CSE/H<sub>2</sub>S and found it to be a downstream target gene of forkhead box protein M1 (Foxm1). siRNA knockdown Foxm1 increased Gas1 transcription and reduced the protective effects of H<sub>2</sub>S on VSMC senescence and stiffness. Finally, we demonstrated that CSE/H<sub>2</sub>S sulfhydrates Foxm1 at the C210 site, regulating its nuclear translocation and activity, thus reducing VSMC senescence and stiffness. <b><i>Innovation:</i></b> Our findings highlight the protective role of CSE/H<sub>2</sub>S in arterial stiffness, emphasizing the novel contributions of CSE, Gas1, and Foxm1 to VSMC senescence and stiffness. <b><i>Conclusion:</i></b> Endogenous CSE/H<sub>2</sub>S in VSMCs reduces VSMC senescence and stiffness, thereby attenuating arterial stiffness and aging, partly through sulfhydration-mediated activation of Foxm1 and subsequent inhibition of Gas1 signaling pathways. <i>Antioxid. Redox Signal.</i> 42, 655-671.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"655-671"},"PeriodicalIF":5.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Angiotensin-Converting Enzyme-Dependent Intrarenal Angiotensin II Contributes to CTP: Phosphoethanolamine Cytidylyltransferase Downregulation, Mitochondrial Membranous Disruption, and Reactive Oxygen Species Overgeneration in Diabetic Tubulopathy. 血管紧张素转换酶依赖性肾上腺内血管紧张素 II 导致糖尿病肾小管病变中的 CTP:磷脂酰乙醇胺胞苷酸基转移酶下调、线粒体膜破坏和活性氧过量生成。
IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-05-01 Epub Date: 2024-11-04 DOI: 10.1089/ars.2024.0637
Xia-Qing Li, Zhang-Zhang Xiao, Ke Ma, Xia-Yun Liu, Huan-Huan Liu, Bo Hu, Qian Zhao, Hong-Yue Li, Rui-Chang Chen, Yu Meng, Liang-Hong Yin

Aims: The limited therapeutic options for diabetic tubulopathy (DT) in early diabetic kidney disease (DKD) reflect the difficulty of targeting renal tubular compartment. While renin-angiotensin-aldosterone system (RAS) inhibitors are commonly utilized in the management of DKD, how intrarenal RAS contributes to diabetic tubular injury is not fully understood. Mitochondrial disruption and reactive oxygen species (ROS) overgeneration have been involved in diabetic tubular injury. Herein, we aim to test the hypothesis that angiotensin-converting enzyme (ACE)-dependent intrarenal angiotensin II (AngII) disrupts tubular mitochondrial membranous homeostasis and causes excessive ROS generation in DT. Results: Mice suffered from renal tubular mitochondrial disruption and ROS overgeneration following high-fat diet/streptozocin-type 2 diabetic induction. Intrarenal AngII generation is ACE-dependent in DT. Local AngII accumulation in renal tissues was achieved by intrarenal artery injection. ACE-dependent intrarenal AngII-treated mice exhibit markedly elevated levels of makers of tubular injury. CTP: Phosphoethanolamine cytidylyltransferase (PCYT2), the primary regulatory enzyme for the biosynthesis of phosphatidylethanolamine, was enriched in renal tubules according to single-cell RNA sequencing. ACE-dependent intrarenal AngII-induced tubular membranous disruption, ROS overgeneration, and PCYT2 downregulation. The diabetic ambiance deteriorated the detrimental effect of ACE-dependent intrarenal AngII on renal tubules. Captopril, the ACE inhibitor (ACEI), showed efficiency in partially ameliorating ACE-dependent intrarenal AngII-induced tubular deterioration pre- and post-diabetic induction. Innovation and Conclusion: This study uncovers a critical role of ACE-dependent intrarenal AngII in mitochondrial membranous disruption, ROS overgeneration, and PCYT2 deficiency in diabetic renal tubules, providing novel insight into DT pathogenesis and ACEI-combined therapeutic targets. Antioxid. Redox Signal. 42, 767-786.

目的:早期糖尿病肾病(DKD)中糖尿病肾小管病变(DT)的治疗方案有限,这反映了针对肾小管区室的治疗难度很大。虽然肾素-血管紧张素-醛固酮系统(RAS)抑制剂通常用于治疗糖尿病肾病,但肾内 RAS 如何导致糖尿病肾小管损伤尚未完全明了。线粒体破坏和活性氧(ROS)过度生成与糖尿病肾小管损伤有关。在此,我们旨在验证血管紧张素转换酶(ACE)依赖性肾内血管紧张素 II(AngII)破坏糖尿病肾小管线粒体膜稳态并导致 ROS 生成过多的假设。结果小鼠在高脂饮食/链脲佐菌素 2 型糖尿病诱导后出现肾小管线粒体破坏和 ROS 过度生成。在 DT 中,肾小管内 AngII 的生成依赖于 ACE。肾动脉内注射实现了肾组织内 AngII 的局部蓄积。ACE依赖性肾内AngII处理的小鼠表现出明显升高的肾小管损伤制造者水平。CTP:根据单细胞RNA测序,肾小管中富含磷脂酰乙醇胺胞苷酸转移酶(PCYT2),它是磷脂酰乙醇胺生物合成的主要调节酶。ACE依赖性肾内AngII诱导肾小管膜破坏、ROS过度生成和PCYT2下调。糖尿病环境恶化了 ACE 依赖性肾内 AngII 对肾小管的有害影响。ACE抑制剂(ACEI)卡托普利(Captopril)在部分程度上改善了糖尿病诱导前后ACE依赖性肾内AngII诱导的肾小管恶化。创新与结论:本研究揭示了 ACE 依赖性肾内 AngII 在糖尿病肾小管线粒体膜破坏、ROS 过度生成和 PCYT2 缺乏中的关键作用,为 DT 发病机制和 ACEI 联合治疗靶点提供了新的见解。抗氧化。氧化还原信号。00, 000-000.
{"title":"Angiotensin-Converting Enzyme-Dependent Intrarenal Angiotensin II Contributes to CTP: Phosphoethanolamine Cytidylyltransferase Downregulation, Mitochondrial Membranous Disruption, and Reactive Oxygen Species Overgeneration in Diabetic Tubulopathy.","authors":"Xia-Qing Li, Zhang-Zhang Xiao, Ke Ma, Xia-Yun Liu, Huan-Huan Liu, Bo Hu, Qian Zhao, Hong-Yue Li, Rui-Chang Chen, Yu Meng, Liang-Hong Yin","doi":"10.1089/ars.2024.0637","DOIUrl":"10.1089/ars.2024.0637","url":null,"abstract":"<p><p><b><i>Aims:</i></b> The limited therapeutic options for diabetic tubulopathy (DT) in early diabetic kidney disease (DKD) reflect the difficulty of targeting renal tubular compartment. While renin-angiotensin-aldosterone system (RAS) inhibitors are commonly utilized in the management of DKD, how intrarenal RAS contributes to diabetic tubular injury is not fully understood. Mitochondrial disruption and reactive oxygen species (ROS) overgeneration have been involved in diabetic tubular injury. Herein, we aim to test the hypothesis that angiotensin-converting enzyme (ACE)-dependent intrarenal angiotensin II (AngII) disrupts tubular mitochondrial membranous homeostasis and causes excessive ROS generation in DT. <b><i>Results:</i></b> Mice suffered from renal tubular mitochondrial disruption and ROS overgeneration following high-fat diet/streptozocin-type 2 diabetic induction. Intrarenal AngII generation is ACE-dependent in DT. Local AngII accumulation in renal tissues was achieved by intrarenal artery injection. ACE-dependent intrarenal AngII-treated mice exhibit markedly elevated levels of makers of tubular injury. CTP: Phosphoethanolamine cytidylyltransferase (PCYT2), the primary regulatory enzyme for the biosynthesis of phosphatidylethanolamine, was enriched in renal tubules according to single-cell RNA sequencing. ACE-dependent intrarenal AngII-induced tubular membranous disruption, ROS overgeneration, and PCYT2 downregulation. The diabetic ambiance deteriorated the detrimental effect of ACE-dependent intrarenal AngII on renal tubules. Captopril, the ACE inhibitor (ACEI), showed efficiency in partially ameliorating ACE-dependent intrarenal AngII-induced tubular deterioration pre- and post-diabetic induction. <b><i>Innovation and Conclusion:</i></b> This study uncovers a critical role of ACE-dependent intrarenal AngII in mitochondrial membranous disruption, ROS overgeneration, and PCYT2 deficiency in diabetic renal tubules, providing novel insight into DT pathogenesis and ACEI-combined therapeutic targets. <i>Antioxid. Redox Signal.</i> 42, 767-786.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"767-786"},"PeriodicalIF":6.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the Molecular Interplay Between Oxygen Transport, Cellular Oxygen Sensing, and Mitochondrial Respiration. 探索氧运输、细胞氧感应和线粒体呼吸之间的分子相互作用。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-05-01 Epub Date: 2025-01-23 DOI: 10.1089/ars.2023.0428
Sirsendu Jana, Abdu I Alayash

Significance: The mitochondria play a key role in maintaining oxygen homeostasis under normal oxygen tension (normoxia) and during oxygen deprivation (hypoxia). This is a critical balancing act between the oxygen content of the blood, the tissue oxygen sensing mechanisms, and the mitochondria, which ultimately consume most oxygen for energy production. Recent Advances: We describe the well-defined role of the mitochondria in oxygen metabolism with a special focus on the impact on blood physiology and pathophysiology. Critical Issues: Fundamental questions remain regarding the impact of mitochondrial responses to changes in overall blood oxygen content under normoxic and hypoxic states and in the case of impaired oxygen sensing in various cardiovascular and pulmonary complications including blood disorders involving hemolysis and hemoglobin toxicity, ischemia reperfusion, and even in COVID-19 disease. Future Directions: Understanding the nature of the crosstalk among normal homeostatic pathways, oxygen carrying by hemoglobin, utilization of oxygen by the mitochondrial respiratory chain machinery, and oxygen sensing by hypoxia-inducible factor proteins, may provide a target for future therapeutic interventions. Antioxid. Redox Signal. 42, 730-750.

意义:线粒体在正常氧张力(normmoxia)和缺氧(hypoxia)下维持氧稳态中起关键作用。这是血液含氧量、组织氧感应机制和线粒体之间的关键平衡,线粒体最终消耗大部分氧气用于能量生产。最近的进展:我们描述了线粒体在氧代谢中的明确作用,特别关注对血液生理和病理生理的影响。关键问题:在常氧和缺氧状态下,以及在各种心血管和肺部并发症(包括溶血和血红蛋白毒性、缺血再灌注等血液疾病)中,甚至在COVID-19疾病中,线粒体反应对总体血氧含量变化的影响仍然存在一些基本问题。未来方向:了解正常体内平衡途径、血红蛋白携带氧气、线粒体呼吸链机制对氧气的利用以及缺氧诱导因子蛋白对氧气的感知之间的串扰的本质,可能为未来的治疗干预提供一个靶点。Antioxid。氧化还原信号:00000 - 00000。
{"title":"Exploring the Molecular Interplay Between Oxygen Transport, Cellular Oxygen Sensing, and Mitochondrial Respiration.","authors":"Sirsendu Jana, Abdu I Alayash","doi":"10.1089/ars.2023.0428","DOIUrl":"10.1089/ars.2023.0428","url":null,"abstract":"<p><p><b><i>Significance:</i></b> The mitochondria play a key role in maintaining oxygen homeostasis under normal oxygen tension (normoxia) and during oxygen deprivation (hypoxia). This is a critical balancing act between the oxygen content of the blood, the tissue oxygen sensing mechanisms, and the mitochondria, which ultimately consume most oxygen for energy production. <b><i>Recent Advances:</i></b> We describe the well-defined role of the mitochondria in oxygen metabolism with a special focus on the impact on blood physiology and pathophysiology. <b><i>Critical Issues:</i></b> Fundamental questions remain regarding the impact of mitochondrial responses to changes in overall blood oxygen content under normoxic and hypoxic states and in the case of impaired oxygen sensing in various cardiovascular and pulmonary complications including blood disorders involving hemolysis and hemoglobin toxicity, ischemia reperfusion, and even in COVID-19 disease. <b><i>Future Directions:</i></b> Understanding the nature of the crosstalk among normal homeostatic pathways, oxygen carrying by hemoglobin, utilization of oxygen by the mitochondrial respiratory chain machinery, and oxygen sensing by hypoxia-inducible factor proteins, may provide a target for future therapeutic interventions. <i>Antioxid. Redox Signal.</i> 42, 730-750.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"730-750"},"PeriodicalIF":5.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143021884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Succinate Activates Uncoupling Protein 2 to Suppress Neuroinflammation and Confer Protection Following Intracerebral Hemorrhage. 琥珀酸能激活 UCP2,从而抑制神经炎症并在脑出血后提供保护。
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-05-01 Epub Date: 2024-09-30 DOI: 10.1089/ars.2024.0573
Yecheng Wang, Caiyun Huang, Xiaoying Wang, Rong Cheng, Xue Li, Jiahao Wang, Lu Zhang, Fuhao Li, Hao Wang, Xinyu Li, Yi Li, Yiqing Xia, Jian Cheng, Xiaofan Pan, Jia Jia, Guo-Dong Xiao

Aims: Succinate, a metabolite in the tricarboxylic acid cycle, is increasingly recognized to play essential roles in inflammation by functioning either as an intracellular or extracellular signaling molecule. However, the role and mechanisms of succinate in inflammation remain elusive. Here, we investigated the mechanism underlying the effects of succinate on neuroinflammation in intracerebral hemorrhage (ICH) models. [Figure: see text] Results: We unexpectedly found that succinate robustly inhibited neuroinflammation and conferred protection following ICH. Mechanistically, the oxidation of succinate by succinate dehydrogenase (SDH) drove reverse electron transport (RET) at mitochondrial complex I, leading to mitochondrial superoxide production in microglia. Complex I-derived superoxides, in turn, activated uncoupling protein 2 (UCP2). By using mice with specific deletion of UCP2 in microglia/macrophages, we showed that UCP2 was needed for succinate to inhibit neuroinflammation, confer protection, and activate downstream 5'-adenosine monophosphate-activated protein kinase (AMPK) following ICH. Moreover, knockdown of SDH, complex I, or AMPK abolished the therapeutic effects of succinate following ICH. Innovation and Conclusion: We provide evidence that driving complex I RET to activate UCP2 is a novel mechanism of succinate-mediated intracellular signaling and a mechanism underlying the inhibition of neuroinflammation by succinate. Antioxid. Redox Signal. 42, 687-710.

目的:琥珀酸是三羧酸循环中的一种代谢产物,它作为细胞内或细胞外的信号分子在炎症中发挥着重要作用,这一点已被越来越多的人所认识。然而,琥珀酸盐在炎症中的作用和机制仍然难以捉摸。在此,我们研究了琥珀酸盐对脑出血(ICH)模型中神经炎症的影响机制:结果:我们意外地发现,琥珀酸盐能强有力地抑制神经炎症并在 ICH 后提供保护。从机理上讲,琥珀酸脱氢酶(SDH)对琥珀酸的氧化作用推动了线粒体复合体 I 的反向电子传递(RET),导致小胶质细胞线粒体产生超氧化物。复合体 I 产生的超氧化物反过来又激活了解偶联蛋白 2(UCP2)。通过使用在小胶质细胞/巨噬细胞中特异性删除 UCP2 的小鼠,我们发现 UCP2 是琥珀酸抑制神经炎症、提供保护和激活 ICH 后下游 AMP 激活蛋白激酶(AMPK)所必需的。此外,SDH、复合物I或AMPK的敲除会取消琥珀酸在ICH后的治疗效果:我们提供的证据表明,驱动复合体I RET激活UCP2是琥珀酸酯细胞内信号传导的一种新机制,也是琥珀酸酯抑制神经炎症的一种机制。
{"title":"Succinate Activates Uncoupling Protein 2 to Suppress Neuroinflammation and Confer Protection Following Intracerebral Hemorrhage.","authors":"Yecheng Wang, Caiyun Huang, Xiaoying Wang, Rong Cheng, Xue Li, Jiahao Wang, Lu Zhang, Fuhao Li, Hao Wang, Xinyu Li, Yi Li, Yiqing Xia, Jian Cheng, Xiaofan Pan, Jia Jia, Guo-Dong Xiao","doi":"10.1089/ars.2024.0573","DOIUrl":"10.1089/ars.2024.0573","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Succinate, a metabolite in the tricarboxylic acid cycle, is increasingly recognized to play essential roles in inflammation by functioning either as an intracellular or extracellular signaling molecule. However, the role and mechanisms of succinate in inflammation remain elusive. Here, we investigated the mechanism underlying the effects of succinate on neuroinflammation in intracerebral hemorrhage (ICH) models. [Figure: see text] <b><i>Results:</i></b> We unexpectedly found that succinate robustly inhibited neuroinflammation and conferred protection following ICH. Mechanistically, the oxidation of succinate by succinate dehydrogenase (SDH) drove reverse electron transport (RET) at mitochondrial complex I, leading to mitochondrial superoxide production in microglia. Complex I-derived superoxides, in turn, activated uncoupling protein 2 (UCP2). By using mice with specific deletion of UCP2 in microglia/macrophages, we showed that UCP2 was needed for succinate to inhibit neuroinflammation, confer protection, and activate downstream 5'-adenosine monophosphate-activated protein kinase (AMPK) following ICH. Moreover, knockdown of SDH, complex I, or AMPK abolished the therapeutic effects of succinate following ICH. <b><i>Innovation and Conclusion:</i></b> We provide evidence that driving complex I RET to activate UCP2 is a novel mechanism of succinate-mediated intracellular signaling and a mechanism underlying the inhibition of neuroinflammation by succinate. <i>Antioxid. Redox Signal.</i> 42, 687-710.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"687-710"},"PeriodicalIF":5.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Potential of Targeting APE1/Ref-1 as a Therapeutic Intervention for Duchenne Muscular Dystrophy. 靶向APE1/Ref-1作为杜氏肌营养不良症治疗干预的潜力
IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-05-01 Epub Date: 2024-12-27 DOI: 10.1089/ars.2024.0620
Hannah Lalunio, Nicole Stupka, Craig A Goodman, Alan Hayes

Significance: Inflammation and oxidative stress play crucial roles in the development and progression of skeletal muscle diseases. This review aims to examine the existing evidence regarding the involvement and inhibition of APE1/Ref-1 (apurinic/apyrimidinic endonuclease 1/redox factor 1) in diseases, then extrapolate this evidence to the context of skeletal muscle and discuss the potential beneficial effects of APE1/Ref-1 inhibition in ameliorating myopathy with a particular focus on dystrophic pathology. Critical Issues: Currently, therapeutic interventions targeting pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor erythroid 2-related factor 2 (NRF2), have shown limited efficacy in both clinical and preclinical settings. Thus, there is a need for a more comprehensive treatment approach. Recent Advances: APE1/Ref-1 is a multifunctional protein that was initially identified as being involved in DNA repair. However, newer research has revealed its additional role as a redox-sensitive regulator of transcription factors, including NF-κB and NRF2. Numerous studies have reported increased expression of APE1/Ref-1 in various disorders and have demonstrated the beneficial effects of inhibiting its redox function using the small molecular inhibitor, APX3330. Although these pathways are similarly dysregulated in neuromuscular disorders, the specific role of APE1/Ref-1 in skeletal muscle remains unclear, with only a limited number of studies noting its presence in this tissue. Future Directions: Further studies investigating the role of APE1/Ref-1 in skeletal muscle and identifying whether APE1/Ref-1 is up- or downregulated in dystrophic skeletal muscle would be required to determine whether upregulating or inhibiting the redox function of APE1/Ref-1 will alleviate chronic inflammation and heightened oxidative stress. Antioxid. Redox Signal. 42, 641-654.

意义:炎症和氧化应激在骨骼肌疾病的发生发展中起着至关重要的作用。本综述旨在研究APE1/Ref-1(无尿嘧啶/无嘧啶内切酶1/氧化还原因子1)在疾病中的参与和抑制的现有证据,然后将这些证据推断到骨骼肌的背景下,并讨论APE1/Ref-1抑制在改善肌病方面的潜在有益作用,特别是对营养不良病理的关注。关键问题:目前,靶向途径的治疗干预,如活化B细胞的核因子κB轻链增强剂(NF-κB)和核因子红细胞2相关因子2 (NRF2),在临床和临床前环境中均显示出有限的疗效。因此,需要一种更全面的治疗方法。最新进展:APE1/Ref-1是一种多功能蛋白,最初被发现参与DNA修复。然而,较新的研究揭示了它作为转录因子(包括NF-κB和NRF2)的氧化还原敏感调节剂的额外作用。大量研究报道了APE1/Ref-1在各种疾病中的表达增加,并证明了使用小分子抑制剂APX3330抑制其氧化还原功能的有益作用。尽管这些通路在神经肌肉疾病中同样失调,但APE1/Ref-1在骨骼肌中的具体作用尚不清楚,只有有限数量的研究注意到它在该组织中的存在。未来方向:需要进一步研究APE1/Ref-1在骨骼肌中的作用,并确定APE1/Ref-1在营养不良骨骼肌中是上调还是下调,以确定上调或抑制APE1/Ref-1的氧化还原功能是否会减轻慢性炎症和氧化应激升高。Antioxid。氧化还原信号:00000 - 00000。
{"title":"The Potential of Targeting APE1/Ref-1 as a Therapeutic Intervention for Duchenne Muscular Dystrophy.","authors":"Hannah Lalunio, Nicole Stupka, Craig A Goodman, Alan Hayes","doi":"10.1089/ars.2024.0620","DOIUrl":"10.1089/ars.2024.0620","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Inflammation and oxidative stress play crucial roles in the development and progression of skeletal muscle diseases. This review aims to examine the existing evidence regarding the involvement and inhibition of APE1/Ref-1 (apurinic/apyrimidinic endonuclease 1/redox factor 1) in diseases, then extrapolate this evidence to the context of skeletal muscle and discuss the potential beneficial effects of APE1/Ref-1 inhibition in ameliorating myopathy with a particular focus on dystrophic pathology. <b><i>Critical Issues:</i></b> Currently, therapeutic interventions targeting pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor erythroid 2-related factor 2 (NRF2), have shown limited efficacy in both clinical and preclinical settings. Thus, there is a need for a more comprehensive treatment approach. <b><i>Recent Advances:</i></b> APE1/Ref-1 is a multifunctional protein that was initially identified as being involved in DNA repair. However, newer research has revealed its additional role as a redox-sensitive regulator of transcription factors, including NF-κB and NRF2. Numerous studies have reported increased expression of APE1/Ref-1 in various disorders and have demonstrated the beneficial effects of inhibiting its redox function using the small molecular inhibitor, APX3330. Although these pathways are similarly dysregulated in neuromuscular disorders, the specific role of APE1/Ref-1 in skeletal muscle remains unclear, with only a limited number of studies noting its presence in this tissue. <b><i>Future Directions:</i></b> Further studies investigating the role of APE1/Ref-1 in skeletal muscle and identifying whether APE1/Ref-1 is up- or downregulated in dystrophic skeletal muscle would be required to determine whether upregulating or inhibiting the redox function of APE1/Ref-1 will alleviate chronic inflammation and heightened oxidative stress. <i>Antioxid. Redox Signal.</i> 42, 641-654.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"641-654"},"PeriodicalIF":5.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Antioxidants & redox signaling
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1