The functional difference between the maternal and paternal genome, which is characterized by epigenetic modifications during gametogenesis, that is genomic imprinting, prevents mammalian embryos from parthenogenesis. Genomic imprinting leads to nonequivalent expression of imprinted genes from the maternal and paternal alleles. However, our research showed that alteration of maternal imprinting by oocyte reconstruction using nongrowing oocytes together with deletion of the H19 gene, provides appropriate expression of maternally imprinted genes. Here we discuss that further alteration of paternally imprinted gene expressions at chromosomes 7 and 12 allows the ng/fg parthenogenetic embryos to develop to term, suggesting that the paternal contribution is obligatory for the descendant.
{"title":"Paternal dual barrier by Ifg2-H19 and Dlk1-Gtl2 to parthenogenesis in mice.","authors":"T Kono, M Kawahara, Q Wu, H Hiura, Y Obata","doi":"10.1007/3-540-31437-7_3","DOIUrl":"https://doi.org/10.1007/3-540-31437-7_3","url":null,"abstract":"<p><p>The functional difference between the maternal and paternal genome, which is characterized by epigenetic modifications during gametogenesis, that is genomic imprinting, prevents mammalian embryos from parthenogenesis. Genomic imprinting leads to nonequivalent expression of imprinted genes from the maternal and paternal alleles. However, our research showed that alteration of maternal imprinting by oocyte reconstruction using nongrowing oocytes together with deletion of the H19 gene, provides appropriate expression of maternally imprinted genes. Here we discuss that further alteration of paternally imprinted gene expressions at chromosomes 7 and 12 allows the ng/fg parthenogenetic embryos to develop to term, suggesting that the paternal contribution is obligatory for the descendant.</p>","PeriodicalId":80277,"journal":{"name":"Ernst Schering Research Foundation workshop","volume":" 60","pages":"23-33"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/3-540-31437-7_3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26195182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2006-01-01DOI: 10.1007/3-540-30822-9_12
S Heymans
Acute viral myocarditis is the main cause of cardiac failure in young patients and accounts for up to 60% of "idiopathic" dilated cardiomyopathy. The clinical course of viral myocarditis is mostly insidious with limited cardiac inflammation and dysfunction. However, overwhelming inflammation may occur in a subset of patients, leading to fulminant cardiac injury, whereas others develop chronic heart failure due to autoimmune myocarditis. Today, little effective treatment exists for patients, apart from general supportive therapy and antifailure regimens. Urokinase-type plasminogen activator (u-PA) and matrix metalloproteinases (MMP) have been implicated in cardiac inflammation, matrix remodeling, and wound healing after cardiac injury. The present review will assess the mechanism by which these proteinases mediate cardiac dilatation, fibrosis, and dysfunction after cardiac stress or injury, in order to understand how inhibition of proteinases may provide a novel therapeutic tool to prevent cardiac dilatation and failure during viral myocarditis.
{"title":"Inflammation and cardiac remodeling during viral myocarditis.","authors":"S Heymans","doi":"10.1007/3-540-30822-9_12","DOIUrl":"https://doi.org/10.1007/3-540-30822-9_12","url":null,"abstract":"<p><p>Acute viral myocarditis is the main cause of cardiac failure in young patients and accounts for up to 60% of \"idiopathic\" dilated cardiomyopathy. The clinical course of viral myocarditis is mostly insidious with limited cardiac inflammation and dysfunction. However, overwhelming inflammation may occur in a subset of patients, leading to fulminant cardiac injury, whereas others develop chronic heart failure due to autoimmune myocarditis. Today, little effective treatment exists for patients, apart from general supportive therapy and antifailure regimens. Urokinase-type plasminogen activator (u-PA) and matrix metalloproteinases (MMP) have been implicated in cardiac inflammation, matrix remodeling, and wound healing after cardiac injury. The present review will assess the mechanism by which these proteinases mediate cardiac dilatation, fibrosis, and dysfunction after cardiac stress or injury, in order to understand how inhibition of proteinases may provide a novel therapeutic tool to prevent cardiac dilatation and failure during viral myocarditis.</p>","PeriodicalId":80277,"journal":{"name":"Ernst Schering Research Foundation workshop","volume":" 55","pages":"197-218"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/3-540-30822-9_12","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25737262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2006-01-01DOI: 10.1007/3-540-30822-9_18
U Kühl, M Pauschinger, W Poller, H P Schultheiss
Ongoing viral persistence in the myocardium is associated with an adverse prognosis of cardiomyopathy eventually resulting in a reduced capacity for work and thus it is associated with enormous social costs. Experimental and clinical data highlight that an imbalance of the cytokine network and a defect in the cytokine-induced immune response may constitute major causes leading to the development of virus persistence and progression of myocardial dysfunction. Reversibility of cardiac impairment during the early stages of the disease and the arising chance of specific treatment options demand early diagnosis and treatment of the disease. Our pilot data on anti-viral treatment using INF-beta showed beneficial clinical effects and suggest that some of the ventricular dysfunction and wall motion abnormalities resolved after elimination of the responsible agents. The data also suggest that elimination of cardiotropic viruses and associated clinical effects may occur even in DCM patients presenting with a long history.
{"title":"Anti-viral treatment in patients with virus-induced cardiomyopathy.","authors":"U Kühl, M Pauschinger, W Poller, H P Schultheiss","doi":"10.1007/3-540-30822-9_18","DOIUrl":"https://doi.org/10.1007/3-540-30822-9_18","url":null,"abstract":"<p><p>Ongoing viral persistence in the myocardium is associated with an adverse prognosis of cardiomyopathy eventually resulting in a reduced capacity for work and thus it is associated with enormous social costs. Experimental and clinical data highlight that an imbalance of the cytokine network and a defect in the cytokine-induced immune response may constitute major causes leading to the development of virus persistence and progression of myocardial dysfunction. Reversibility of cardiac impairment during the early stages of the disease and the arising chance of specific treatment options demand early diagnosis and treatment of the disease. Our pilot data on anti-viral treatment using INF-beta showed beneficial clinical effects and suggest that some of the ventricular dysfunction and wall motion abnormalities resolved after elimination of the responsible agents. The data also suggest that elimination of cardiotropic viruses and associated clinical effects may occur even in DCM patients presenting with a long history.</p>","PeriodicalId":80277,"journal":{"name":"Ernst Schering Research Foundation workshop","volume":" 55","pages":"323-42"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/3-540-30822-9_18","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25724603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stem cells in reproduction and in the brain. Proceedings of a workshop. September 1-3, 2005. Kobe, Japan.","authors":"J. Morser, S. Nishikawa, H. Schöler","doi":"10.1007/3-540-31437-7","DOIUrl":"https://doi.org/10.1007/3-540-31437-7","url":null,"abstract":"","PeriodicalId":80277,"journal":{"name":"Ernst Schering Research Foundation workshop","volume":"60 1","pages":"1-244"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/3-540-31437-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51554271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2006-01-01DOI: 10.1007/978-3-540-37635-4_2
W Guba
Targeting protein superfamilies via chemogenomics is based on a similarity clustering of gene sequences and molecular structures of ligands. Both target and ligand clusters are linked by generating binding affinity profiles of chemotypes vs a target panel. The application of this multidimensional similarity paradigm will be described in the context of Lead Generation to identify novel chemical hit classes for G-protein coupled receptors.
{"title":"Chemogenomics strategies for G-protein coupled receptor hit finding.","authors":"W Guba","doi":"10.1007/978-3-540-37635-4_2","DOIUrl":"https://doi.org/10.1007/978-3-540-37635-4_2","url":null,"abstract":"<p><p>Targeting protein superfamilies via chemogenomics is based on a similarity clustering of gene sequences and molecular structures of ligands. Both target and ligand clusters are linked by generating binding affinity profiles of chemotypes vs a target panel. The application of this multidimensional similarity paradigm will be described in the context of Lead Generation to identify novel chemical hit classes for G-protein coupled receptors.</p>","PeriodicalId":80277,"journal":{"name":"Ernst Schering Research Foundation workshop","volume":" 58","pages":"21-9"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26031567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2006-01-01DOI: 10.1007/978-3-540-37635-4_7
M A Koch, H Waldmann
The majority of all proteins are modularly built from a limited set of approximately 1,000 structural domains. The knowledge of a common protein fold topology in the ligand-sensing cores of protein domains can be exploited for the design of small-molecule libraries in the development of inhibitors and ligands. Thus, a novel strategy of clustering protein domain cores based exclusively on structure similarity considerations (protein structure similarity clustering, PSSC) has been successfully applied to the development of small-molecule inhibitors of acetylcholinesterase and the 11beta-hydroxysteroid dehydrogenases based on the structure of a naturally occurring Cdc25 inhibitor. The efficiency of making use of the scaffolds of natural products as biologically prevalidated starting points for the design of compound libraries is further highlighted by the development of benzopyran-based FXR ligands.
{"title":"Protein structure similarity clustering and natural product structure as guiding principles for chemical genomics.","authors":"M A Koch, H Waldmann","doi":"10.1007/978-3-540-37635-4_7","DOIUrl":"https://doi.org/10.1007/978-3-540-37635-4_7","url":null,"abstract":"<p><p>The majority of all proteins are modularly built from a limited set of approximately 1,000 structural domains. The knowledge of a common protein fold topology in the ligand-sensing cores of protein domains can be exploited for the design of small-molecule libraries in the development of inhibitors and ligands. Thus, a novel strategy of clustering protein domain cores based exclusively on structure similarity considerations (protein structure similarity clustering, PSSC) has been successfully applied to the development of small-molecule inhibitors of acetylcholinesterase and the 11beta-hydroxysteroid dehydrogenases based on the structure of a naturally occurring Cdc25 inhibitor. The efficiency of making use of the scaffolds of natural products as biologically prevalidated starting points for the design of compound libraries is further highlighted by the development of benzopyran-based FXR ligands.</p>","PeriodicalId":80277,"journal":{"name":"Ernst Schering Research Foundation workshop","volume":" 58","pages":"89-109"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26031572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stem cell commitment and differentiation entails the successive loss of self-renewal and developmental potential, and results in the final restriction to a terminally differentiated mature cell type. Hematopoiesis, the development of blood cells from hematopoietic stem cells in bone marrow, is particularly well studied, and at different branching points within the hematopoietic system multiple developmental intermediates have been identified. Here we describe a Flt3+ CD11b+ multipotent progenitor that can be amplified in vitro by a specific cytokine combination to high cell numbers, and following adoptive transfer into syngeneic mice, it generates dendritic cells but also additional mature cell types. By employing gene expression profiling with DNA microarrays and knockout mouse models, we demonstrate that the helix-loop-helix (HLH) transcription factor Id2 (inhibitor of DNA binding/differentiation 2) acts as a molecular switch in development of Langerhans cells (LCs), the cutaneous contingent of dendritic cells (DCs), and of specific DC subsets and B cells.
{"title":"Molecular switches and developmental potential of adult stem cells.","authors":"M Zenke, T Hieronymus","doi":"10.1007/3-540-31437-7_6","DOIUrl":"https://doi.org/10.1007/3-540-31437-7_6","url":null,"abstract":"<p><p>Stem cell commitment and differentiation entails the successive loss of self-renewal and developmental potential, and results in the final restriction to a terminally differentiated mature cell type. Hematopoiesis, the development of blood cells from hematopoietic stem cells in bone marrow, is particularly well studied, and at different branching points within the hematopoietic system multiple developmental intermediates have been identified. Here we describe a Flt3+ CD11b+ multipotent progenitor that can be amplified in vitro by a specific cytokine combination to high cell numbers, and following adoptive transfer into syngeneic mice, it generates dendritic cells but also additional mature cell types. By employing gene expression profiling with DNA microarrays and knockout mouse models, we demonstrate that the helix-loop-helix (HLH) transcription factor Id2 (inhibitor of DNA binding/differentiation 2) acts as a molecular switch in development of Langerhans cells (LCs), the cutaneous contingent of dendritic cells (DCs), and of specific DC subsets and B cells.</p>","PeriodicalId":80277,"journal":{"name":"Ernst Schering Research Foundation workshop","volume":" 60","pages":"69-79"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26193765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2006-01-01DOI: 10.1007/3-540-30822-9_11
A L P Caforio, N G Mahon, W J McKenna
Criteria of organ-specific autoimmunity are fulfilled in a subset of patients with myocarditis/dilated cardiomyopathy (DCM). In particular, circulating heart-reactive autoantibodies are found in such patients and symptom-free relatives. These autoantibodies are directed against multiple antigens, some of which are expressed in the heart (organ-specific), others in heart and some skeletal muscle fibres (partially heart-specific) or in heart and skeletal muscle (muscle-specific). Distinct autoantibodies have different frequency in disease and normal controls. Different techniques detect one or more antibodies, thus they cannot be used interchangeably for screening. It is unknown whether the same patients produce more antibodies or different patient groups develop autoimmunity to distinct antigens. IgG antibodies, shown to be cardiac- and disease-specific for myocarditis/DCM, can be used as autoimmune markers for relatives at risk as well as for identifying patients in whom immunosuppression may be beneficial. Some autoantibodies may also have a functional role, but further work is needed.
{"title":"Clinical implications of anti-cardiac immunity in dilated cardiomyopathy.","authors":"A L P Caforio, N G Mahon, W J McKenna","doi":"10.1007/3-540-30822-9_11","DOIUrl":"https://doi.org/10.1007/3-540-30822-9_11","url":null,"abstract":"<p><p>Criteria of organ-specific autoimmunity are fulfilled in a subset of patients with myocarditis/dilated cardiomyopathy (DCM). In particular, circulating heart-reactive autoantibodies are found in such patients and symptom-free relatives. These autoantibodies are directed against multiple antigens, some of which are expressed in the heart (organ-specific), others in heart and some skeletal muscle fibres (partially heart-specific) or in heart and skeletal muscle (muscle-specific). Distinct autoantibodies have different frequency in disease and normal controls. Different techniques detect one or more antibodies, thus they cannot be used interchangeably for screening. It is unknown whether the same patients produce more antibodies or different patient groups develop autoimmunity to distinct antigens. IgG antibodies, shown to be cardiac- and disease-specific for myocarditis/DCM, can be used as autoimmune markers for relatives at risk as well as for identifying patients in whom immunosuppression may be beneficial. Some autoantibodies may also have a functional role, but further work is needed.</p>","PeriodicalId":80277,"journal":{"name":"Ernst Schering Research Foundation workshop","volume":" 55","pages":"169-93"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/3-540-30822-9_11","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25737261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The discovery that drastic changes in DNA methylation and histone modifications are common in human tumors has inspired various laboratories and pharmaceutical companies to develop and study epigenetic drugs. One of the most promising groups of agents is the inhibitors of histone deacetylases (HDACs), which have different biochemical and biologic properties but have a single common activity: induction of acetylation in histones, the key proteins in nucleosome and chromatin structure. HDAC inhibitors may act through the transcriptional reactivation of dormant tumor-suppressor genes. However, their pleiotropic nature leaves open the possibility that their well-known differentiation, cell-cycle arrest, and apoptotic properties are also involved in other functions associated with HDAC inhibition. Many phase I clinical trials indicate that HDAC inhibitors appear to be well-tolerated drugs. Thus, the field is ready for rigorous biologic and clinical scrutiny to validate the therapeutic potential of these drugs. HDAC inhibitors, probably in association with classical chemotherapy drugs or in combination with DNA-demethylating agents, could be promising drugs for cancer patients.
{"title":"CpG island methylation and histone modifications: biology and clinical significance.","authors":"M Esteller","doi":"10.1007/3-540-37633-x_7","DOIUrl":"https://doi.org/10.1007/3-540-37633-x_7","url":null,"abstract":"<p><p>The discovery that drastic changes in DNA methylation and histone modifications are common in human tumors has inspired various laboratories and pharmaceutical companies to develop and study epigenetic drugs. One of the most promising groups of agents is the inhibitors of histone deacetylases (HDACs), which have different biochemical and biologic properties but have a single common activity: induction of acetylation in histones, the key proteins in nucleosome and chromatin structure. HDAC inhibitors may act through the transcriptional reactivation of dormant tumor-suppressor genes. However, their pleiotropic nature leaves open the possibility that their well-known differentiation, cell-cycle arrest, and apoptotic properties are also involved in other functions associated with HDAC inhibition. Many phase I clinical trials indicate that HDAC inhibitors appear to be well-tolerated drugs. Thus, the field is ready for rigorous biologic and clinical scrutiny to validate the therapeutic potential of these drugs. HDAC inhibitors, probably in association with classical chemotherapy drugs or in combination with DNA-demethylating agents, could be promising drugs for cancer patients.</p>","PeriodicalId":80277,"journal":{"name":"Ernst Schering Research Foundation workshop","volume":" 57","pages":"115-26"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/3-540-37633-x_7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25933382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The imitation switch (ISWI) family of chromatin remodelling ATPases is found in organisms ranging from yeast to mammals. ISWI ATPases assemble chromatin and slide and space nucleosomes, making the chromatin template fluid and allowing appropriate regulation of events such as transcription, DNA replication, recombination and repair. The site of action of the ATPases is determined, in part by the tissue type in which the enzyme is expressed and in part by the nature of the proteins associated with the enzyme. The ISWI complexes are generally conserved in composition and function across species. Roles in gene expression and DNA replication in heterochromatin, gene activation and repression in euchromatin, and functions related to maintaining chromosome architecture are associated with different complexes. Defects in ISWI-associated proteins may be associated with neurodegenerative disease, anencephaly, William's syndrome and melanotic tumours. Finally, the mechanism by which yeast Isw Ib influences gene transcription is discussed.
{"title":"Imitation switch complexes.","authors":"J Mellor","doi":"10.1007/3-540-37633-x_4","DOIUrl":"https://doi.org/10.1007/3-540-37633-x_4","url":null,"abstract":"<p><p>The imitation switch (ISWI) family of chromatin remodelling ATPases is found in organisms ranging from yeast to mammals. ISWI ATPases assemble chromatin and slide and space nucleosomes, making the chromatin template fluid and allowing appropriate regulation of events such as transcription, DNA replication, recombination and repair. The site of action of the ATPases is determined, in part by the tissue type in which the enzyme is expressed and in part by the nature of the proteins associated with the enzyme. The ISWI complexes are generally conserved in composition and function across species. Roles in gene expression and DNA replication in heterochromatin, gene activation and repression in euchromatin, and functions related to maintaining chromosome architecture are associated with different complexes. Defects in ISWI-associated proteins may be associated with neurodegenerative disease, anencephaly, William's syndrome and melanotic tumours. Finally, the mechanism by which yeast Isw Ib influences gene transcription is discussed.</p>","PeriodicalId":80277,"journal":{"name":"Ernst Schering Research Foundation workshop","volume":" 57","pages":"61-87"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/3-540-37633-x_4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25933377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}