Pub Date : 2024-11-01Epub Date: 2024-11-14DOI: 10.1146/annurev-genet-111523-102000
Jonathan Jui, Daniel Goldman
Sight is one of our most precious senses. People fear losing their sight more than any other disability. Thus, restoring sight to the blind is an important goal of vision scientists. Proregenerative species, such as zebrafish, provide a system for studying endogenous mechanisms underlying retina regeneration. Nonregenerative species, such as mice, provide a system for testing strategies for stimulating retina regeneration. Key to retina regeneration in zebrafish and mice is the Müller glial cell, a malleable cell type that is amenable to a variety of regenerative strategies. Here, we review cellular and molecular mechanisms used by zebrafish to regenerate a retina, as well as the application of these mechanisms, and other strategies to stimulate retina regeneration in mice. Although our focus is on Müller glia (MG), niche components and their impact on MG reprogramming are also discussed.
{"title":"Müller Glial Cell-Dependent Regeneration of the Retina in Zebrafish and Mice.","authors":"Jonathan Jui, Daniel Goldman","doi":"10.1146/annurev-genet-111523-102000","DOIUrl":"10.1146/annurev-genet-111523-102000","url":null,"abstract":"<p><p>Sight is one of our most precious senses. People fear losing their sight more than any other disability. Thus, restoring sight to the blind is an important goal of vision scientists. Proregenerative species, such as zebrafish, provide a system for studying endogenous mechanisms underlying retina regeneration. Nonregenerative species, such as mice, provide a system for testing strategies for stimulating retina regeneration. Key to retina regeneration in zebrafish and mice is the Müller glial cell, a malleable cell type that is amenable to a variety of regenerative strategies. Here, we review cellular and molecular mechanisms used by zebrafish to regenerate a retina, as well as the application of these mechanisms, and other strategies to stimulate retina regeneration in mice. Although our focus is on Müller glia (MG), niche components and their impact on MG reprogramming are also discussed.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":" ","pages":"67-90"},"PeriodicalIF":8.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-14DOI: 10.1146/annurev-genet-111523-102459
Jessica Sherry, E Hesper Rego
Pathogen diversity within an infected organism has traditionally been explored through the lens of genetic heterogeneity. Hallmark studies have characterized how genetic diversity within pathogen subpopulations contributes to treatment escape and infectious disease progression. However, recent studies have begun to reveal the mechanisms by which phenotypic heterogeneity is established within genetically identical populations of invading pathogens. Furthermore, exciting new work highlights how these phenotypically heterogeneous subpopulations contribute to a pathogen population better equipped to handle the complex and fluctuating environment of a host organism. In this review, we focus on how bacterial pathogens, including Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa, and Mycobacterium tuberculosis, establish and maintain phenotypic heterogeneity, and we explore recent work demonstrating causative links between this heterogeneity and infection outcome.
{"title":"Phenotypic Heterogeneity in Pathogens.","authors":"Jessica Sherry, E Hesper Rego","doi":"10.1146/annurev-genet-111523-102459","DOIUrl":"10.1146/annurev-genet-111523-102459","url":null,"abstract":"<p><p>Pathogen diversity within an infected organism has traditionally been explored through the lens of genetic heterogeneity. Hallmark studies have characterized how genetic diversity within pathogen subpopulations contributes to treatment escape and infectious disease progression. However, recent studies have begun to reveal the mechanisms by which phenotypic heterogeneity is established within genetically identical populations of invading pathogens. Furthermore, exciting new work highlights how these phenotypically heterogeneous subpopulations contribute to a pathogen population better equipped to handle the complex and fluctuating environment of a host organism. In this review, we focus on how bacterial pathogens, including <i>Staphylococcus aureus</i>, <i>Salmonella typhimurium</i>, <i>Pseudomonas aeruginosa</i>, and <i>Mycobacterium tuberculosis</i>, establish and maintain phenotypic heterogeneity, and we explore recent work demonstrating causative links between this heterogeneity and infection outcome.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":" ","pages":"183-209"},"PeriodicalIF":8.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141858886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-14DOI: 10.1146/annurev-genet-072220-030822
Christine E Holt
The remit of this review is to give an autobiographical account of our discovery of the role of local protein synthesis in axon guidance. The paper reporting our initial findings was published in 2001. Here, I describe some of the work that led to this publication, the skepticism our findings initially received, and the subsequent exciting years of follow-up work that helped gradually to convince the neuroscience community of the existence and functional importance of local protein synthesis in multiple aspects of axon biology-guidance, branching, synaptogenesis, and maintenance. The journey has been an exhilarating one, taking me into a new field of RNA biology, with many unexpected twists and turns. In retelling it here, I have tried to recall the major influences on my thinking at the time rather than give a comprehensive review, and I apologize for any omissions due to my own ignorance during that era.
{"title":"Biological Roles of Local Protein Synthesis in Axons: A Journey of Discovery.","authors":"Christine E Holt","doi":"10.1146/annurev-genet-072220-030822","DOIUrl":"10.1146/annurev-genet-072220-030822","url":null,"abstract":"<p><p>The remit of this review is to give an autobiographical account of our discovery of the role of local protein synthesis in axon guidance. The paper reporting our initial findings was published in 2001. Here, I describe some of the work that led to this publication, the skepticism our findings initially received, and the subsequent exciting years of follow-up work that helped gradually to convince the neuroscience community of the existence and functional importance of local protein synthesis in multiple aspects of axon biology-guidance, branching, synaptogenesis, and maintenance. The journey has been an exhilarating one, taking me into a new field of RNA biology, with many unexpected twists and turns. In retelling it here, I have tried to recall the major influences on my thinking at the time rather than give a comprehensive review, and I apologize for any omissions due to my own ignorance during that era.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":" ","pages":"1-18"},"PeriodicalIF":8.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1146/annurev-genet-111523-102614
Claire S Leblond, Thomas Rolland, Eli Barthome, Zakaria Mougin, Mathis Fleury, Christine Ecker, Stéf Bonnot-Briey, Freddy Cliquet, Anne-Claude Tabet, Anna Maruani, Boris Chaumette, Jonathan Green, Richard Delorme, Thomas Bourgeron
Autism represents a large spectrum of diverse individuals with varying underlying genetic architectures and needs. For some individuals, a single de novo or ultrarare genetic variant has a large effect on the intensity of specific dimensions of the phenotype, while, for others, a combination of thousands of variants commonly found in the general population are involved. The variants with large impact are found in up to 30% of autistic individuals presenting with intellectual disability, significant speech delay, motor delay, and/or seizures. The common variants are shared with those found in individuals with attention-deficit/hyperactivity disorder, major depressive disorders, greater educational attainment, and higher cognitive performance, suggesting overlapping genetic architectures. The genetic variants modulate the function of chromatin remodeling and synaptic proteins that influence the connectivity of neuronal circuits and, in interaction with the environment of each individual, the subsequent cognitive and personal trajectory of the child. Overall, this genetic heterogeneity mirrors the phenotypic diversity of autistic individuals and provides a helpful bridge between biomedical and neurodiversity perspectives. We propose that participative and multidisciplinary research should use this information to understand better the assessment, treatments, and accommodations that individuals with autism and families need.
{"title":"A Genetic Bridge Between Medicine and Neurodiversity for Autism.","authors":"Claire S Leblond, Thomas Rolland, Eli Barthome, Zakaria Mougin, Mathis Fleury, Christine Ecker, Stéf Bonnot-Briey, Freddy Cliquet, Anne-Claude Tabet, Anna Maruani, Boris Chaumette, Jonathan Green, Richard Delorme, Thomas Bourgeron","doi":"10.1146/annurev-genet-111523-102614","DOIUrl":"10.1146/annurev-genet-111523-102614","url":null,"abstract":"<p><p>Autism represents a large spectrum of diverse individuals with varying underlying genetic architectures and needs. For some individuals, a single de novo or ultrarare genetic variant has a large effect on the intensity of specific dimensions of the phenotype, while, for others, a combination of thousands of variants commonly found in the general population are involved. The variants with large impact are found in up to 30% of autistic individuals presenting with intellectual disability, significant speech delay, motor delay, and/or seizures. The common variants are shared with those found in individuals with attention-deficit/hyperactivity disorder, major depressive disorders, greater educational attainment, and higher cognitive performance, suggesting overlapping genetic architectures. The genetic variants modulate the function of chromatin remodeling and synaptic proteins that influence the connectivity of neuronal circuits and, in interaction with the environment of each individual, the subsequent cognitive and personal trajectory of the child. Overall, this genetic heterogeneity mirrors the phenotypic diversity of autistic individuals and provides a helpful bridge between biomedical and neurodiversity perspectives. We propose that participative and multidisciplinary research should use this information to understand better the assessment, treatments, and accommodations that individuals with autism and families need.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":"58 1","pages":"487-512"},"PeriodicalIF":8.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-14DOI: 10.1146/annurev-genet-111523-102725
Amy H Buck, Esther N M Nolte-'t Hoen
In the last decade, it has become clear that extracellular vesicles (EVs) are a ubiquitous component of living systems. These small membrane-enclosed particles can confer diverse functions to the cells that release, capture, or coexist with them in an environment. We use examples across living systems to produce a conceptual framework that classifies three modes by which EVs exert functions: (a) EV release that serves a function for producing cells, (b) EV modification of the extracellular environment, and (c) EV interactions with, and alteration of, receiving cells. We provide an overview of the inherent properties of EVs (i.e., their nature) as well as factors in the environment and receiving cell (i.e., nurture) that determine whether transmission of EV cargo leads to functional cellular responses. This review broadens the context for ruminating on EV functions and highlights the emergent properties of EVs that define their role in biology and will shape their applications in medicine.
近十年来,人们已经清楚地认识到,细胞外囊泡(EVs)是生命系统中无处不在的组成部分。这些被膜包裹的小颗粒可以为释放、捕获它们或与它们共存于环境中的细胞赋予各种功能。我们利用生命系统中的实例建立了一个概念框架,将 EVs 发挥其功能的三种模式进行了分类:(a)EV 释放,为产生细胞提供功能;(b)EV 改变细胞外环境;以及(c)EV 与接收细胞相互作用并改变接收细胞。我们概述了 EVs 的固有特性(即其本质)以及环境和接收细胞中决定 EV 货物运输是否会导致功能性细胞反应的因素(即养育)。这篇综述拓宽了研究EV功能的背景,突出了EV的新特性,这些特性决定了EV在生物学中的作用,并将影响其在医学中的应用。
{"title":"The Nature and Nurture of Extracellular Vesicle-Mediated Signaling.","authors":"Amy H Buck, Esther N M Nolte-'t Hoen","doi":"10.1146/annurev-genet-111523-102725","DOIUrl":"10.1146/annurev-genet-111523-102725","url":null,"abstract":"<p><p>In the last decade, it has become clear that extracellular vesicles (EVs) are a ubiquitous component of living systems. These small membrane-enclosed particles can confer diverse functions to the cells that release, capture, or coexist with them in an environment. We use examples across living systems to produce a conceptual framework that classifies three modes by which EVs exert functions: (<i>a</i>) EV release that serves a function for producing cells, (<i>b</i>) EV modification of the extracellular environment, and (<i>c</i>) EV interactions with, and alteration of, receiving cells. We provide an overview of the inherent properties of EVs (i.e., their nature) as well as factors in the environment and receiving cell (i.e., nurture) that determine whether transmission of EV cargo leads to functional cellular responses. This review broadens the context for ruminating on EV functions and highlights the emergent properties of EVs that define their role in biology and will shape their applications in medicine.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":" ","pages":"409-432"},"PeriodicalIF":8.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-14DOI: 10.1146/annurev-genet-111523-102051
Lauren Bayer Horowitz, Shai Shaham
Programmed cell death (PCD) is an essential component of animal development, and aberrant cell death underlies many disorders. Understanding mechanisms that govern PCD during development can provide insight into cell death programs that are disrupted in disease. Key steps mediating apoptosis, a highly conserved cell death program employing caspase proteases, were first uncovered in the nematode Caenorhabditis elegans, a powerful model system for PCD research. Recent studies in C. elegans also unearthed conserved nonapoptotic caspase-independent cell death programs that function during development. Here, we discuss recent advances in understanding cell death during C. elegans development. We review insights expanding the molecular palette behind the execution of apoptotic and nonapoptotic cell death, as well as new discoveries revealing the mechanistic underpinnings of dying cell engulfment and clearance. A number of open questions are also discussed that will continue to propel the field over the coming years.
{"title":"Apoptotic and Nonapoptotic Cell Death in <i>Caenorhabditis elegans</i> Development.","authors":"Lauren Bayer Horowitz, Shai Shaham","doi":"10.1146/annurev-genet-111523-102051","DOIUrl":"10.1146/annurev-genet-111523-102051","url":null,"abstract":"<p><p>Programmed cell death (PCD) is an essential component of animal development, and aberrant cell death underlies many disorders. Understanding mechanisms that govern PCD during development can provide insight into cell death programs that are disrupted in disease. Key steps mediating apoptosis, a highly conserved cell death program employing caspase proteases, were first uncovered in the nematode <i>Caenorhabditis elegans</i>, a powerful model system for PCD research. Recent studies in <i>C. elegans</i> also unearthed conserved nonapoptotic caspase-independent cell death programs that function during development. Here, we discuss recent advances in understanding cell death during <i>C. elegans</i> development. We review insights expanding the molecular palette behind the execution of apoptotic and nonapoptotic cell death, as well as new discoveries revealing the mechanistic underpinnings of dying cell engulfment and clearance. A number of open questions are also discussed that will continue to propel the field over the coming years.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":" ","pages":"113-134"},"PeriodicalIF":8.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-14DOI: 10.1146/annurev-genet-111523-102550
Timothy J DeLory, Jonathan Romiguier, Olav Rueppell, Karen M Kapheim
Social insects have the highest rates of meiotic recombination among Metazoa, but there is considerable variation within the Hymenoptera. We synthesize the literature to investigate several hypotheses for these elevated recombination rates. We reexamine the long-standing Red Queen hypothesis, considering how social aspects of immunity could lead to increases in recombination. We examine the possibility of positive feedback between gene duplication and recombination rate in the context of caste specialization. We introduce a novel hypothesis that recombination rate may be driven up by direct selection on recombination activity in response to increases in lifespan. Finally, we find that the role of population size in recombination rate evolution remains opaque, despite the long-standing popularity of this hypothesis. Moreover, our review emphasizes how the varied life histories of social insect species provide an effective framework for advancing a broader understanding of adaptively driven variation in recombination rates.
{"title":"Recombination Rate Variation in Social Insects: An Adaptive Perspective.","authors":"Timothy J DeLory, Jonathan Romiguier, Olav Rueppell, Karen M Kapheim","doi":"10.1146/annurev-genet-111523-102550","DOIUrl":"10.1146/annurev-genet-111523-102550","url":null,"abstract":"<p><p>Social insects have the highest rates of meiotic recombination among Metazoa, but there is considerable variation within the Hymenoptera. We synthesize the literature to investigate several hypotheses for these elevated recombination rates. We reexamine the long-standing Red Queen hypothesis, considering how social aspects of immunity could lead to increases in recombination. We examine the possibility of positive feedback between gene duplication and recombination rate in the context of caste specialization. We introduce a novel hypothesis that recombination rate may be driven up by direct selection on recombination activity in response to increases in lifespan. Finally, we find that the role of population size in recombination rate evolution remains opaque, despite the long-standing popularity of this hypothesis. Moreover, our review emphasizes how the varied life histories of social insect species provide an effective framework for advancing a broader understanding of adaptively driven variation in recombination rates.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":" ","pages":"159-181"},"PeriodicalIF":8.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141578834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1146/annurev-genet-111523-102338
Wouter Smet, Ikram Blilou
Deserts are hostile environments to plant life due to exposure to abiotic stresses, including high temperature, heat, high light, low water availability, and poor soil quality. Desert plants have evolved to cope with these stresses, and for thousands of years humans have used these plants as sources of food, fiber, and medicine. Due to desertification, the amount of arable land is reduced every year; hence, the usage of these species as substitutes for some crops might become one of the solutions for food production and land remediation. Additionally, increasing our understanding of how these plants have adapted to their environment could aid in the generation of more resistant staple crops. In this review, we examine three desert plant species and discuss their developmental aspects, physiological adaptations, and genetic diversity and the related genomic resources available to date. We also address major environmental challenges and threats faced by these species as well as their potential use for improving food security through stimulating stress resistance in crops.
{"title":"Developmental and Genetic Aspects of Desert Crops.","authors":"Wouter Smet, Ikram Blilou","doi":"10.1146/annurev-genet-111523-102338","DOIUrl":"10.1146/annurev-genet-111523-102338","url":null,"abstract":"<p><p>Deserts are hostile environments to plant life due to exposure to abiotic stresses, including high temperature, heat, high light, low water availability, and poor soil quality. Desert plants have evolved to cope with these stresses, and for thousands of years humans have used these plants as sources of food, fiber, and medicine. Due to desertification, the amount of arable land is reduced every year; hence, the usage of these species as substitutes for some crops might become one of the solutions for food production and land remediation. Additionally, increasing our understanding of how these plants have adapted to their environment could aid in the generation of more resistant staple crops. In this review, we examine three desert plant species and discuss their developmental aspects, physiological adaptations, and genetic diversity and the related genomic resources available to date. We also address major environmental challenges and threats faced by these species as well as their potential use for improving food security through stimulating stress resistance in crops.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":"58 1","pages":"91-112"},"PeriodicalIF":8.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1146/annurev-genet-111523-102603
Jeremy B Searle, Fernando Pardo-Manuel de Villena
Meiotic drive is the biased transmission of alleles from heterozygotes, contrary to Mendel's laws, and reflects intragenomic conflict rather than organism-level Darwinian selection. Theory has been developed as to how centromeric properties can promote female meiotic drive and how conflict between the X and Y chromosomes in males can promote male meiotic drive. There are empirical data that fit both the centromere drive and sex chromosome drive models. Sex chromosome drive may have relevance to speciation through the buildup of Dobzhansky-Muller incompatibilities involving drive and suppressor systems, studied particularly in Drosophila. Centromere drive may promote fixation of chromosomal rearrangements involving the centromere, and those fixed rearrangements may contribute to reproductive isolation, studied particularly in the house mouse. Genome-wide tests suggest that meiotic drive promotes allele fixation with regularity, and those studying the genomics of speciation need to be aware of the potential impact of such fixations on reproductive isolation. New species can originate in many different ways (including multiple factors acting together), and a substantial body of work on meiotic drive point to it being one of the processes involved.
减数分裂驱动是杂合子等位基因的偏向传递,与孟德尔定律相反,反映了基因组内的冲突,而不是生物体层面的达尔文选择。关于中心粒特性如何促进雌性减数分裂驱动力,以及雄性 X 染色体和 Y 染色体之间的冲突如何促进雄性减数分裂驱动力的理论已经形成。一些经验数据同时符合中心体驱动和性染色体驱动模型。性染色体驱动可能通过涉及驱动和抑制系统的多布占斯基-穆勒不兼容性的积累而与物种形成有关,这一点在果蝇中的研究尤为突出。中心粒驱动可能会促进涉及中心粒的染色体重排的固定,而这些固定的重排可能会导致生殖隔离,这一点在家鼠中的研究尤为突出。全基因组测试表明,减数分裂驱动会有规律地促进等位基因的固定,研究物种灭绝基因组学的人需要意识到这种固定对生殖隔离的潜在影响。新物种的起源有多种不同方式(包括多种因素共同作用),大量关于减数分裂驱动的研究表明,减数分裂驱动是其中的一个过程。
{"title":"Meiotic Drive and Speciation.","authors":"Jeremy B Searle, Fernando Pardo-Manuel de Villena","doi":"10.1146/annurev-genet-111523-102603","DOIUrl":"10.1146/annurev-genet-111523-102603","url":null,"abstract":"<p><p>Meiotic drive is the biased transmission of alleles from heterozygotes, contrary to Mendel's laws, and reflects intragenomic conflict rather than organism-level Darwinian selection. Theory has been developed as to how centromeric properties can promote female meiotic drive and how conflict between the X and Y chromosomes in males can promote male meiotic drive. There are empirical data that fit both the centromere drive and sex chromosome drive models. Sex chromosome drive may have relevance to speciation through the buildup of Dobzhansky-Muller incompatibilities involving drive and suppressor systems, studied particularly in <i>Drosophila</i>. Centromere drive may promote fixation of chromosomal rearrangements involving the centromere, and those fixed rearrangements may contribute to reproductive isolation, studied particularly in the house mouse. Genome-wide tests suggest that meiotic drive promotes allele fixation with regularity, and those studying the genomics of speciation need to be aware of the potential impact of such fixations on reproductive isolation. New species can originate in many different ways (including multiple factors acting together), and a substantial body of work on meiotic drive point to it being one of the processes involved.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":"58 1","pages":"341-363"},"PeriodicalIF":8.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1146/annurev-genet-111523-102202
Deepthi Mahishi, Naman Agrawal, Wenshuai Jiang, Nilay Yapici
Obesity and anorexia are life-threatening diseases that are still poorly understood at the genetic and neuronal levels. Patients suffering from these conditions experience disrupted regulation of food consumption, leading to extreme weight gain or loss and, in severe situations, death from metabolic dysfunction. Despite the development of various behavioral and pharmacological interventions, current treatments often yield limited and short-lived success. To address this, a deeper understanding of the genetic and neural mechanisms underlying food perception and appetite regulation is essential for identifying new drug targets and developing more effective treatment methods. This review summarizes the progress of past research in understanding the genetic and neural mechanisms controlling food consumption and appetite regulation, focusing on two key model organisms: the fruit fly Drosophila melanogaster and the mouse Mus musculus. These studies investigate how the brain senses energy and nutrient deficiency, how sensory signals trigger appetitive behaviors, and how food intake is regulated through interconnected neural circuits in the brain.
{"title":"From Mammals to Insects: Exploring the Genetic and Neural Basis of Eating Behavior.","authors":"Deepthi Mahishi, Naman Agrawal, Wenshuai Jiang, Nilay Yapici","doi":"10.1146/annurev-genet-111523-102202","DOIUrl":"10.1146/annurev-genet-111523-102202","url":null,"abstract":"<p><p>Obesity and anorexia are life-threatening diseases that are still poorly understood at the genetic and neuronal levels. Patients suffering from these conditions experience disrupted regulation of food consumption, leading to extreme weight gain or loss and, in severe situations, death from metabolic dysfunction. Despite the development of various behavioral and pharmacological interventions, current treatments often yield limited and short-lived success. To address this, a deeper understanding of the genetic and neural mechanisms underlying food perception and appetite regulation is essential for identifying new drug targets and developing more effective treatment methods. This review summarizes the progress of past research in understanding the genetic and neural mechanisms controlling food consumption and appetite regulation, focusing on two key model organisms: the fruit fly <i>Drosophila melanogaster</i> and the mouse <i>Mus musculus</i>. These studies investigate how the brain senses energy and nutrient deficiency, how sensory signals trigger appetitive behaviors, and how food intake is regulated through interconnected neural circuits in the brain.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":"58 1","pages":"455-485"},"PeriodicalIF":8.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142715096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}