首页 > 最新文献

Transport in Porous Media最新文献

英文 中文
Investigation of the Multi-particle Arch Formation on the Single Slot of a Sand Filter: CFD–DEM Study in Packed-Bed of Sand Particles 砂滤器单槽上多颗粒拱形形成的研究:沙粒填料床的 CFD-DEM 研究
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-08-29 DOI: 10.1007/s11242-024-02120-w
Fatemeh Razavi, Ali Mohammadtabar, Carlos F. Lange

In this study, we present a successful application of the Computational Fluid Dynamics–Discrete Element Method (CFD–DEM) for simulating the complex phenomenon of multi-particle arch formation within high-concentration packed-bed environments. We investigate the roles of physical forces in this phenomenon, shedding light on aspects that are challenging to explore through experimentation. Our research is motivated by the desire to comprehend the conditions and parameters influencing the formation, stability, disruption, and reformation of multi-particle sand arches within filter openings. This arching phenomenon serves as an efficient particle retention mechanism, particularly in heavy oil production wells. We delve into factors like particle size, shape, and particle size distribution that may impact multi-particle arch performance. Additionally, we explore the physics behind multi-particle arching by examining the effects of various physical forces on arch performance. Utilizing a Computational Fluid Dynamics–Discrete Element Model, we investigate the multi-particle arching phenomenon under steady-state flow conditions in packed-bed environments. Our approach employs the unresolved coupling method in STAR-CCM+ (Siemens PLM). We test various filter slot geometries, including straight slots, keystone slots, wire-wrapped screens (WWS), and seamed slots, all under laminar flow conditions. Our findings highlight the significance of gravity, inter-particle forces, and interactions between the filter wall and the particles in multi-particle arch formation at both the slot opening and microscale levels. We confirm that a multi-particle arch can be formed within a specific slot width. Interestingly, while maintaining a constant slot width, we observe that the slot length has an insignificant effect on multi-particle arch formation and stability. In summary, our CFD–DEM model successfully simulates and predicts multi-particle arch formation, stabilization, breakage, and reformation, allowing for comprehensive testing of the effects of various parameters. This research offers valuable insights into a complex phenomenon that is crucial in packed-bed filtration systems.

在本研究中,我们介绍了计算流体动力学-离散元素法(CFD-DEM)在模拟高浓度填料床环境中多粒子拱形形成这一复杂现象中的成功应用。我们研究了物理力在这一现象中的作用,揭示了通过实验探索具有挑战性的方面。我们的研究动机是希望了解影响过滤器开口内多颗粒砂拱形成、稳定、破坏和重组的条件和参数。这种拱形现象是一种有效的颗粒截留机制,尤其是在重油生产井中。我们深入研究了可能影响多颗粒拱形性能的粒度、形状和粒度分布等因素。此外,我们还通过研究各种物理力对拱形性能的影响,探索多颗粒拱形背后的物理学原理。利用计算流体动力学-离散元件模型,我们研究了填料床环境中稳态流动条件下的多粒子起拱现象。我们的方法采用了 STAR-CCM+ (Siemens PLM) 中的未解决耦合方法。在层流条件下,我们测试了各种滤槽几何形状,包括直槽、楔形槽、线绕滤网(WWS)和缝合槽。我们的研究结果强调了重力、颗粒间的作用力以及过滤壁和颗粒之间的相互作用在槽口和微观层面上对多颗粒拱形形成的重要作用。我们证实,在特定的槽宽内可以形成多颗粒拱形。有趣的是,在保持槽宽不变的情况下,我们发现槽长对多粒子拱的形成和稳定性影响不大。总之,我们的 CFD-DEM 模型成功地模拟和预测了多粒子拱的形成、稳定、断裂和重整,并对各种参数的影响进行了全面测试。这项研究为了解填料床过滤系统中至关重要的复杂现象提供了宝贵的见解。
{"title":"Investigation of the Multi-particle Arch Formation on the Single Slot of a Sand Filter: CFD–DEM Study in Packed-Bed of Sand Particles","authors":"Fatemeh Razavi,&nbsp;Ali Mohammadtabar,&nbsp;Carlos F. Lange","doi":"10.1007/s11242-024-02120-w","DOIUrl":"10.1007/s11242-024-02120-w","url":null,"abstract":"<div><p>In this study, we present a successful application of the Computational Fluid Dynamics–Discrete Element Method (CFD–DEM) for simulating the complex phenomenon of multi-particle arch formation within high-concentration packed-bed environments. We investigate the roles of physical forces in this phenomenon, shedding light on aspects that are challenging to explore through experimentation. Our research is motivated by the desire to comprehend the conditions and parameters influencing the formation, stability, disruption, and reformation of multi-particle sand arches within filter openings. This arching phenomenon serves as an efficient particle retention mechanism, particularly in heavy oil production wells. We delve into factors like particle size, shape, and particle size distribution that may impact multi-particle arch performance. Additionally, we explore the physics behind multi-particle arching by examining the effects of various physical forces on arch performance. Utilizing a Computational Fluid Dynamics–Discrete Element Model, we investigate the multi-particle arching phenomenon under steady-state flow conditions in packed-bed environments. Our approach employs the unresolved coupling method in STAR-CCM+ (Siemens PLM). We test various filter slot geometries, including straight slots, keystone slots, wire-wrapped screens (WWS), and seamed slots, all under laminar flow conditions. Our findings highlight the significance of gravity, inter-particle forces, and interactions between the filter wall and the particles in multi-particle arch formation at both the slot opening and microscale levels. We confirm that a multi-particle arch can be formed within a specific slot width. Interestingly, while maintaining a constant slot width, we observe that the slot length has an insignificant effect on multi-particle arch formation and stability. In summary, our CFD–DEM model successfully simulates and predicts multi-particle arch formation, stabilization, breakage, and reformation, allowing for comprehensive testing of the effects of various parameters. This research offers valuable insights into a complex phenomenon that is crucial in packed-bed filtration systems.\u0000</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 12","pages":"2455 - 2475"},"PeriodicalIF":2.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linearity of the Co-moving Velocity 同向运动速度的线性度
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-08-28 DOI: 10.1007/s11242-024-02121-9
Alex Hansen

The co-moving velocity is a new variable in the description of immiscible two-phase flow in porous media. It is the saturation-weighted average over the derivatives of the seepage velocities of the two immiscible fluids with respect to saturation. Based on analysis of relative permeability data and computational modeling, it has been proposed that the co-moving velocity is linear when plotted against the derivative of the average seepage velocity with respect to the saturation, the flow derivative. I show here that it is enough to demand that the co-moving velocity is characterized by an additive parameter in addition to the flow derivative to be linear. This has profound consequences for relative permeability theory as it leads to a differential equation relating the two relative permeabilities describing the flow. I present this equation together with two solutions.

共渗速度是描述多孔介质中不相溶两相流的一个新变量。它是两种不相溶流体的渗流速度相对于饱和度的导数的饱和加权平均值。根据对相对渗透率数据和计算模型的分析,有人提出,当与平均渗流速度相对于饱和度的导数(即流动导数)作图时,共渗速度是线性的。我在这里指出,要使同向运动速度具有线性,只需在流动导数之外再加上一个附加参数即可。这对相对渗透率理论有着深远的影响,因为它导致了一个与描述流动的两个相对渗透率相关的微分方程。我将介绍这个方程以及两个解决方案。
{"title":"Linearity of the Co-moving Velocity","authors":"Alex Hansen","doi":"10.1007/s11242-024-02121-9","DOIUrl":"10.1007/s11242-024-02121-9","url":null,"abstract":"<div><p>The co-moving velocity is a new variable in the description of immiscible two-phase flow in porous media. It is the saturation-weighted average over the derivatives of the seepage velocities of the two immiscible fluids with respect to saturation. Based on analysis of relative permeability data and computational modeling, it has been proposed that the co-moving velocity is linear when plotted against the derivative of the average seepage velocity with respect to the saturation, the flow derivative. I show here that it is enough to demand that the co-moving velocity is characterized by an additive parameter in addition to the flow derivative to be linear. This has profound consequences for relative permeability theory as it leads to a differential equation relating the two relative permeabilities describing the flow. I present this equation together with two solutions.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 13","pages":"2477 - 2489"},"PeriodicalIF":2.7,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02121-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recovery and Sweep Efficiency in a Cross-Sectional Problem of Immiscible Displacement with Gravity Override and Capillary Imbibition 带有重力覆盖和毛细管浸润的不相溶置换横截面问题中的回收和扫频效率
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-08-14 DOI: 10.1007/s11242-024-02119-3
Anna Chernova, Andrey Afanasyev

We consider a cross-sectional study of immiscible displacement under the influence of gravity, anisotropic permeability, and capillary effects. We propose the similarity criteria characterizing the relative role of these effects and qualitatively different flows. We present a classification of the flow regimes in four limiting cases of the displacement. The recovery and sweep efficiencies in such cases can be compromised by the gravity override, channeling, and coning effects. In the phase plane, we constrain the parameter ranges at which these effects become relevant. We then aim at evaluating the range of the similarity criteria characterized by the maximum efficiencies and describe the placements of horizontal wells allowing to reach these maxima. We show that the placement of the producing well is generally more relevant. In the limiting cases, the variety of placements can be merged in groups by their efficiencies. We eventually come up with the maps of the maximal efficiencies and associated placements allowing for a quick assessment of the optimal injection scenarios. The proposed classification of the flow regimes and the calculated maps can be useful in evaluating various scenarios of waterflooding and gas injection.

我们考虑了在重力、各向异性渗透性和毛细管效应影响下的不相溶位移横截面研究。我们提出了描述这些效应的相对作用和不同流动性质的相似性标准。我们对四种极限位移情况下的流动机制进行了分类。在这些情况下,恢复和扫描效率可能会受到重力覆盖、通道和锥形效应的影响。在相位平面上,我们限制了这些效应相关的参数范围。然后,我们旨在评估以最大效率为特征的相似性标准范围,并描述能够达到这些最大值的水平井位置。我们的研究表明,生产井的位置通常更具相关性。在有限的情况下,可以根据效率将各种布局合并为一组。最终,我们绘制出了最大效率图和相关位置图,以便快速评估最佳注水方案。所提出的流态分类和计算出的地图可用于评估各种注水和注气方案。
{"title":"Recovery and Sweep Efficiency in a Cross-Sectional Problem of Immiscible Displacement with Gravity Override and Capillary Imbibition","authors":"Anna Chernova,&nbsp;Andrey Afanasyev","doi":"10.1007/s11242-024-02119-3","DOIUrl":"10.1007/s11242-024-02119-3","url":null,"abstract":"<div><p>We consider a cross-sectional study of immiscible displacement under the influence of gravity, anisotropic permeability, and capillary effects. We propose the similarity criteria characterizing the relative role of these effects and qualitatively different flows. We present a classification of the flow regimes in four limiting cases of the displacement. The recovery and sweep efficiencies in such cases can be compromised by the gravity override, channeling, and coning effects. In the phase plane, we constrain the parameter ranges at which these effects become relevant. We then aim at evaluating the range of the similarity criteria characterized by the maximum efficiencies and describe the placements of horizontal wells allowing to reach these maxima. We show that the placement of the producing well is generally more relevant. In the limiting cases, the variety of placements can be merged in groups by their efficiencies. We eventually come up with the maps of the maximal efficiencies and associated placements allowing for a quick assessment of the optimal injection scenarios. The proposed classification of the flow regimes and the calculated maps can be useful in evaluating various scenarios of waterflooding and gas injection.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 12","pages":"2431 - 2453"},"PeriodicalIF":2.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-Scale Prediction Model of Oxygen Diffusion in Concrete Under Dry Conditions 干燥条件下混凝土中氧气扩散的跨尺度预测模型
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-07-29 DOI: 10.1007/s11242-024-02116-6
Chuanye Su, Jun Xu, Wei She, Chuanqing Fu

The rate of oxygen diffusion directly affects the distribution of oxygen concentration within concrete, which in turn influences the corrosion performance of reinforcing steel within the concrete. However, research on cross-scale prediction models for oxygen diffusion in dry concrete is still lacking. In this study, the complex pore structure of concrete is simplified into a sponge model, and three types of diffusion are quantitatively characterized based on the pore size distribution density function. The influence of porosity, water–cement ratio, hydration degree, gel–space ratio and pore tortuosity on the oxygen diffusion coefficient is considered, and a cross-scale prediction model for oxygen diffusion in dry concrete is established. Secondly, an oxygen diffusion coefficient determination device developed independently is used to measure the oxygen diffusion coefficient of concrete specimens under dry conditions. The results show that the experimental values agree well with the calculated values, and the model is compared with other models proposed by scholars, verifying its superiority and accuracy. Finally, a parameter sensitivity analysis is conducted on five microscale parameters and their influence on the behavior of oxygen transmission into concrete is discussed. The establishment of the cross-scale prediction model for oxygen diffusion in dry concrete will first provide a positive role in the theoretical research on reinforcement expansion and cracking, and secondly, it will be able to better explain the mechanism of oxygen diffusion in concrete.

氧扩散速度直接影响混凝土中氧浓度的分布,进而影响混凝土中钢筋的腐蚀性能。然而,关于干混凝土中氧扩散的跨尺度预测模型的研究仍然缺乏。本研究将混凝土复杂的孔隙结构简化为海绵模型,并根据孔径分布密度函数对三种扩散类型进行了定量表征。考虑了孔隙率、水灰比、水化程度、凝胶空隙率和孔隙迂回度对氧扩散系数的影响,建立了干硬性混凝土中氧扩散的跨尺度预测模型。其次,利用自主研发的氧扩散系数测定装置测量了干燥条件下混凝土试件的氧扩散系数。结果表明,实验值与计算值吻合良好,并将该模型与其他学者提出的模型进行了比较,验证了其优越性和准确性。最后,对五个微尺度参数进行了参数敏感性分析,讨论了它们对混凝土中氧气传输行为的影响。干拌混凝土中氧扩散跨尺度预测模型的建立,首先将为钢筋膨胀开裂的理论研究提供积极的作用,其次能够更好地解释混凝土中氧扩散的机理。
{"title":"Cross-Scale Prediction Model of Oxygen Diffusion in Concrete Under Dry Conditions","authors":"Chuanye Su,&nbsp;Jun Xu,&nbsp;Wei She,&nbsp;Chuanqing Fu","doi":"10.1007/s11242-024-02116-6","DOIUrl":"10.1007/s11242-024-02116-6","url":null,"abstract":"<div><p>The rate of oxygen diffusion directly affects the distribution of oxygen concentration within concrete, which in turn influences the corrosion performance of reinforcing steel within the concrete. However, research on cross-scale prediction models for oxygen diffusion in dry concrete is still lacking. In this study, the complex pore structure of concrete is simplified into a sponge model, and three types of diffusion are quantitatively characterized based on the pore size distribution density function. The influence of porosity, water–cement ratio, hydration degree, gel–space ratio and pore tortuosity on the oxygen diffusion coefficient is considered, and a cross-scale prediction model for oxygen diffusion in dry concrete is established. Secondly, an oxygen diffusion coefficient determination device developed independently is used to measure the oxygen diffusion coefficient of concrete specimens under dry conditions. The results show that the experimental values agree well with the calculated values, and the model is compared with other models proposed by scholars, verifying its superiority and accuracy. Finally, a parameter sensitivity analysis is conducted on five microscale parameters and their influence on the behavior of oxygen transmission into concrete is discussed. The establishment of the cross-scale prediction model for oxygen diffusion in dry concrete will first provide a positive role in the theoretical research on reinforcement expansion and cracking, and secondly, it will be able to better explain the mechanism of oxygen diffusion in concrete.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 12","pages":"2357 - 2385"},"PeriodicalIF":2.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Local Aperture Heterogeneity on Invading Fluid Connectivity During Rough Fracture Drainage 粗糙断裂排水过程中局部孔隙异质性对侵入流体连通性的影响
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-07-29 DOI: 10.1007/s11242-024-02117-5
Tomos Phillips, Tom Bultreys, Jeroen Van Stappen, Kamaljit Singh, Sahyuo Achuo Dze, Stefanie Van Offenwert, Ben Callow, Mostafa Borji, Erik Clemens Boersheim, Vladimir Novak, Christian M. Schlepütz, Veerle Cnudde, Florian Doster, Andreas Busch

Determining the (in)efficiency of wetting phase displacement by an invading non-wetting phase (drainage) in a single fracture is key to modelling upscaled properties such as relative permeability and capillary pressure. These constitutive relationships are fundamental to quantifying the contribution, or lack thereof, of conductive fracture systems to long-term leakage rates. Single-fracture-scale modelling and experimental studies have investigated this process, however, a lack of visualization of drainage in a truly representative sample at sufficient spatial and temporal resolution limits their predictive insights. Here, we used fast synchrotron X-ray tomography to image drainage in a natural geological fracture by capturing consecutive 2.75 μm voxel images with a 1 s scan time. Drainage was conducted under capillary-dominated conditions, where percolation-type patterns are expected. We observe this continuously connected invasion (capillary fingering) only to be valid in local regions with relative roughness, λb ≤ 0.56. Fractal dimension analysis of these invasion patterns strongly aligns with capillary fingering patterns previously reported in low λb fractures and porous media. Connected invasion is prevented from being the dominant invasion mechanism globally due to high aperture heterogeneity, where we observe disconnected invasion (snap-off, fragmented clusters) to be pervasive in local regions where λb ≥ 0.67. Our results indicate that relative roughness has significant control on flow as it influences fluid conductivity and thus provides an important metric to predict invasion dynamics during slow drainage.

确定单个断裂中润湿相被侵入的非润湿相(排水)置换的(非)效率,是模拟相对渗透率和毛细管压力等放大属性的关键。这些构成关系对于量化导电断裂系统对长期渗漏率的贡献(或缺乏贡献)至关重要。单个断裂尺度的建模和实验研究已经对这一过程进行了调查,然而,由于缺乏足够空间和时间分辨率的真正代表性样本的排水可视化,限制了它们的预测见解。在这里,我们使用快速同步辐射 X 射线断层扫描技术,以 1 秒的扫描时间连续捕捉 2.75 μm 的体素图像,对天然地质断裂中的排水过程进行成像。排水是在毛细管主导的条件下进行的,预计会出现渗流型模式。我们观察到这种连续连接的入侵(毛细管指状)仅在相对粗糙度 λb ≤ 0.56 的局部区域有效。这些入侵模式的分形维度分析与之前在低λb断裂和多孔介质中报道的毛细管指状模式非常吻合。由于孔径的高度异质性,连接入侵无法成为全局性的主要入侵机制,我们观察到断开入侵(断裂、碎片集群)在 λb ≥ 0.67 的局部区域普遍存在。我们的研究结果表明,相对粗糙度会影响流体的传导性,因此对流动具有重要的控制作用,从而为预测缓慢排水过程中的入侵动态提供了一个重要指标。
{"title":"Influence of Local Aperture Heterogeneity on Invading Fluid Connectivity During Rough Fracture Drainage","authors":"Tomos Phillips,&nbsp;Tom Bultreys,&nbsp;Jeroen Van Stappen,&nbsp;Kamaljit Singh,&nbsp;Sahyuo Achuo Dze,&nbsp;Stefanie Van Offenwert,&nbsp;Ben Callow,&nbsp;Mostafa Borji,&nbsp;Erik Clemens Boersheim,&nbsp;Vladimir Novak,&nbsp;Christian M. Schlepütz,&nbsp;Veerle Cnudde,&nbsp;Florian Doster,&nbsp;Andreas Busch","doi":"10.1007/s11242-024-02117-5","DOIUrl":"10.1007/s11242-024-02117-5","url":null,"abstract":"<div><p>Determining the (in)efficiency of wetting phase displacement by an invading non-wetting phase (drainage) in a single fracture is key to modelling upscaled properties such as relative permeability and capillary pressure. These constitutive relationships are fundamental to quantifying the contribution, or lack thereof, of conductive fracture systems to long-term leakage rates. Single-fracture-scale modelling and experimental studies have investigated this process, however, a lack of visualization of drainage in a truly representative sample at sufficient spatial and temporal resolution limits their predictive insights. Here, we used fast synchrotron X-ray tomography to image drainage in a natural geological fracture by capturing consecutive 2.75 μm voxel images with a 1 s scan time. Drainage was conducted under capillary-dominated conditions, where percolation-type patterns are expected. We observe this continuously connected invasion (capillary fingering) only to be valid in local regions with relative roughness, <i>λ</i><sub><i>b</i></sub> ≤ 0.56. Fractal dimension analysis of these invasion patterns strongly aligns with capillary fingering patterns previously reported in low <i>λ</i><sub><i>b</i></sub> fractures and porous media. Connected invasion is prevented from being the dominant invasion mechanism globally due to high aperture heterogeneity, where we observe disconnected invasion (snap-off, fragmented clusters) to be pervasive in local regions where <i>λ</i><sub><i>b</i></sub> ≥ 0.67. Our results indicate that relative roughness has significant control on flow as it influences fluid conductivity and thus provides an important metric to predict invasion dynamics during slow drainage.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 12","pages":"2387 - 2403"},"PeriodicalIF":2.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02117-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pore-Scale Simulation of Interphase Multicomponent Mass Transfer Using a Non-Newtonian Model 利用非牛顿模型对相间多组分传质进行孔隙尺度模拟
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-07-23 DOI: 10.1007/s11242-024-02115-7
Alínia Rodrigues dos Santos, Matheus da Cunha Brito, Manoel Silvino Batalha de Araujo

This study investigates multiphase flow with non-Newtonian fluid at pore scale, using the Compressive Continuum Species Transfer (C-CST) method in a microchannel and 2D porous media, with emphasis on drainage and mass transfer between fluids through the Volume of Fluid (VOF) method. The object of study is the multiphase flow in oil reservoirs, where immiscible fluids coexist in the porous media. The use of recovery methods becomes relevant in scenarios of low reservoir energy or when the physical properties of the oil compromise the flow. The influence of petroleum rheology, especially heavy crude oil with non-Newtonian viscoelastic behaviour, is considered. Recovery methods, such as the injection of CO2, aim to optimize the flow by modifying the rheological properties of the fluid. This article aims to conduct a numerical analysis using the C-CST method with Direct Numerical Simulation (DNS) and volume tracking techniques to capture an interface between fluids. The main objective is to numerically implement a non-Newtonian rheological model in the linear momentum conservation equation, comparing the flow between non-Newtonian and Newtonian fluids at pore scale, and analysing the mass transfer at the flow interface with this new approach.

本研究采用压缩连续物种转移(C-CST)方法,在微通道和二维多孔介质中研究孔隙尺度非牛顿流体的多相流,重点是通过流体体积(VOF)方法研究流体之间的排水和传质。研究对象是油藏中的多相流,其中多孔介质中存在不相溶流体。在油藏能量较低或石油的物理特性影响流动的情况下,采油方法的使用就变得非常重要。本文考虑了石油流变学的影响,尤其是具有非牛顿粘弹性行为的重质原油。二氧化碳注入等采油方法旨在通过改变流体的流变特性来优化流动。本文旨在利用 C-CST 方法、直接数值模拟(DNS)和体积跟踪技术进行数值分析,以捕捉流体之间的界面。主要目的是在线性动量守恒方程中数值化非牛顿流变模型,比较非牛顿流体和牛顿流体在孔隙尺度上的流动情况,并用这种新方法分析流动界面的传质情况。
{"title":"Pore-Scale Simulation of Interphase Multicomponent Mass Transfer Using a Non-Newtonian Model","authors":"Alínia Rodrigues dos Santos,&nbsp;Matheus da Cunha Brito,&nbsp;Manoel Silvino Batalha de Araujo","doi":"10.1007/s11242-024-02115-7","DOIUrl":"10.1007/s11242-024-02115-7","url":null,"abstract":"<div><p>This study investigates multiphase flow with non-Newtonian fluid at pore scale, using the Compressive Continuum Species Transfer (C-CST) method in a microchannel and 2D porous media, with emphasis on drainage and mass transfer between fluids through the Volume of Fluid (VOF) method. The object of study is the multiphase flow in oil reservoirs, where immiscible fluids coexist in the porous media. The use of recovery methods becomes relevant in scenarios of low reservoir energy or when the physical properties of the oil compromise the flow. The influence of petroleum rheology, especially heavy crude oil with non-Newtonian viscoelastic behaviour, is considered. Recovery methods, such as the injection of CO<sub>2</sub>, aim to optimize the flow by modifying the rheological properties of the fluid. This article aims to conduct a numerical analysis using the C-CST method with Direct Numerical Simulation (DNS) and volume tracking techniques to capture an interface between fluids. The main objective is to numerically implement a non-Newtonian rheological model in the linear momentum conservation equation, comparing the flow between non-Newtonian and Newtonian fluids at pore scale, and analysing the mass transfer at the flow interface with this new approach.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 12","pages":"2327 - 2356"},"PeriodicalIF":2.7,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141773029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the Filling of a Spherical Pore Body with a Nonwetting Fluid: A Modeling Approach and Computational Fluid Dynamics analysis 用非润湿流体填充球形孔隙体的研究:建模方法与计算流体力学分析
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-07-23 DOI: 10.1007/s11242-024-02114-8
Amgad Salama, Jisheng Kou, Shuyu Sun, Mahmoud Hefny

Understanding the dynamics of the filling process of a pore body with a nonwetting fluid is important in the context of dynamic pore network models and others. It can justify many of the assumptions behind the different rules that describe how the network behaves during imbibition and drainage processes. It also provides insight into the different regimes pertinent to this system. The filling process starts with the contact line pinning at the pore entrance. Three regimes can be identified during the filling process that is related to how the contact line advances. In the first two regimes, the contact line pins at the pore entrance while the emerging droplet develops, and in the third one, the contact line departs the entrance of the pore and advances along the pore surface. During the first regime, which is brief, the curvature of the meniscus increases, and likewise, the corresponding capillary pressure, while in the other two regimes, the curvature decreases and so does the capillary pressure. Such behavior results in the rate at which the nonwetting fluid invades the pore to change. It initially decreases, then increases as the meniscus advances. The radius of curvature of the meniscus, eventually, increases to infinity for which the interface assumes a flat configuration. A one-dimensional modeling approach is developed that accounts for all these regimes. The model also considers the two immiscible fluids over a wide spectrum of contrast in viscosity. Information about the mean velocity of the invading fluid, the location of the contact line, the radius of curvature of the meniscus, the volume of the emerging droplet, and several others are among the details that the model provides. A computational fluid dynamics (CFD) simulation has also been considered to confirm the proposed fates of the interface and to provide a framework for comparisons. The results of the validation process show, generally, a very good match between the model and the CFD analysis.

在动态孔隙网络模型和其他模型中,了解非润湿流体填充孔隙体的动态过程非常重要。它可以证明描述孔隙网络在吸水和排水过程中行为的不同规则背后的许多假设。它还能让我们深入了解与该系统相关的不同状态。充填过程始于孔隙入口处的接触线钉合。在充填过程中,可以识别出与接触线前进方式有关的三种状态。在前两种情况下,接触线固定在孔隙入口处,同时出现液滴;在第三种情况下,接触线离开孔隙入口,沿着孔隙表面前进。在短暂的第一种情况下,半月板曲率增大,相应的毛细管压力也随之增大;而在另外两种情况下,半月板曲率减小,毛细管压力也随之减小。这种行为导致非润湿流体侵入孔隙的速度发生变化。一开始会降低,然后随着半月板的移动而升高。半月板的曲率半径最终会增大到无穷大,此时界面会呈现扁平状。我们开发了一种一维建模方法,可以考虑所有这些情况。该模型还考虑了两种不相溶流体在粘度对比范围内的情况。模型还提供了入侵流体的平均速度、接触线位置、半月板曲率半径、新出现液滴的体积等详细信息。此外,还考虑了计算流体动力学(CFD)模拟,以确认所提出的界面命运,并提供一个比较框架。验证过程的结果表明,模型与 CFD 分析之间总体上非常吻合。
{"title":"Investigation of the Filling of a Spherical Pore Body with a Nonwetting Fluid: A Modeling Approach and Computational Fluid Dynamics analysis","authors":"Amgad Salama,&nbsp;Jisheng Kou,&nbsp;Shuyu Sun,&nbsp;Mahmoud Hefny","doi":"10.1007/s11242-024-02114-8","DOIUrl":"10.1007/s11242-024-02114-8","url":null,"abstract":"<div><p>Understanding the dynamics of the filling process of a pore body with a nonwetting fluid is important in the context of dynamic pore network models and others. It can justify many of the assumptions behind the different rules that describe how the network behaves during imbibition and drainage processes. It also provides insight into the different regimes pertinent to this system. The filling process starts with the contact line pinning at the pore entrance. Three regimes can be identified during the filling process that is related to how the contact line advances. In the first two regimes, the contact line pins at the pore entrance while the emerging droplet develops, and in the third one, the contact line departs the entrance of the pore and advances along the pore surface. During the first regime, which is brief, the curvature of the meniscus increases, and likewise, the corresponding capillary pressure, while in the other two regimes, the curvature decreases and so does the capillary pressure. Such behavior results in the rate at which the nonwetting fluid invades the pore to change. It initially decreases, then increases as the meniscus advances. The radius of curvature of the meniscus, eventually, increases to infinity for which the interface assumes a flat configuration. A one-dimensional modeling approach is developed that accounts for all these regimes. The model also considers the two immiscible fluids over a wide spectrum of contrast in viscosity. Information about the mean velocity of the invading fluid, the location of the contact line, the radius of curvature of the meniscus, the volume of the emerging droplet, and several others are among the details that the model provides. A computational fluid dynamics (CFD) simulation has also been considered to confirm the proposed fates of the interface and to provide a framework for comparisons. The results of the validation process show, generally, a very good match between the model and the CFD analysis.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 12","pages":"2301 - 2325"},"PeriodicalIF":2.7,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02114-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141772860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of Models for Nonlinear Oscillatory Flow Through a Hexagonal Sphere Pack 评估流经六边形球包的非线性振荡流模型
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-07-18 DOI: 10.1007/s11242-024-02110-y
Lukas Unglehrt, Michael Manhart

We review models for unsteady porous media flow in the volume-averaging framework and we discuss the theoretical relations between the models and the definition of the model coefficients (and the uncertainty therein). The different models are compared against direct numerical simulations of oscillatory flow through a hexagonal sphere pack. The model constants are determined based on their definition in terms of the Stokes flow, the potential flow and steady nonlinear flow. Thus, the discrepancies between the model predictions and the simulation data can be attributed to shortcomings of the models’ parametrisation. We found that an extension of the dynamic permeability model of Pride et al. (PRB 47(9):4964–4978, 1993) with a Forchheimer-type nonlinearity performs very well for linear flow and for nonlinear flow at low and medium frequencies, but the Forchheimer term with a coefficient obtained from the steady-state overpredicts the nonlinear drag at high frequencies. The model reduces to the unsteady Forchheimer equation with an acceleration coefficient based on the static viscous tortuosity for low frequencies. The unsteady Forchheimer equation with an acceleration coefficient based on the high-frequency limit of the dynamic tortuosity has large errors for linear flow at medium and high frequencies, but low errors for nonlinear flow at all frequencies. This is explained by an error cancellation between the inertial and the nonlinear drag.

我们回顾了体积平均框架下的非稳态多孔介质流模型,并讨论了模型之间的理论关系以及模型系数(及其不确定性)的定义。我们将不同的模型与通过六边形球包的振荡流动的直接数值模拟进行了比较。模型常数是根据斯托克斯流、势流和稳定非线性流的定义确定的。因此,模型预测与模拟数据之间的差异可归因于模型参数化的缺陷。我们发现,Pride 等(PRB 47(9):4964-4978,1993 年)的动态渗透模型扩展了 Forchheimer 型非线性,在低频和中频的线性流和非线性流中表现很好,但带有稳态系数的 Forchheimer 项在高频时对非线性阻力的预测过高。在低频情况下,该模型简化为带有基于静态粘性湍流的加速度系数的非稳态福赫海默方程。对于中高频率的线性流动,加速度系数基于动态曲率的高频极限的非稳态福克海默方程误差较大,但对于所有频率的非线性流动,误差较小。这是因为惯性阻力和非线性阻力之间存在误差抵消。
{"title":"Assessment of Models for Nonlinear Oscillatory Flow Through a Hexagonal Sphere Pack","authors":"Lukas Unglehrt,&nbsp;Michael Manhart","doi":"10.1007/s11242-024-02110-y","DOIUrl":"10.1007/s11242-024-02110-y","url":null,"abstract":"<div><p>We review models for unsteady porous media flow in the volume-averaging framework and we discuss the theoretical relations between the models and the definition of the model coefficients (and the uncertainty therein). The different models are compared against direct numerical simulations of oscillatory flow through a hexagonal sphere pack. The model constants are determined based on their definition in terms of the Stokes flow, the potential flow and steady nonlinear flow. Thus, the discrepancies between the model predictions and the simulation data can be attributed to shortcomings of the models’ parametrisation. We found that an extension of the dynamic permeability model of Pride et al. (PRB 47(9):4964–4978, 1993) with a Forchheimer-type nonlinearity performs very well for linear flow and for nonlinear flow at low and medium frequencies, but the Forchheimer term with a coefficient obtained from the steady-state overpredicts the nonlinear drag at high frequencies. The model reduces to the unsteady Forchheimer equation with an acceleration coefficient based on the static viscous tortuosity for low frequencies. The unsteady Forchheimer equation with an acceleration coefficient based on the high-frequency limit of the dynamic tortuosity has large errors for linear flow at medium and high frequencies, but low errors for nonlinear flow at all frequencies. This is explained by an error cancellation between the inertial and the nonlinear drag.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 10-11","pages":"2183 - 2213"},"PeriodicalIF":2.7,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02110-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient Flow in Porous Electrosprays 多孔电纺丝中的瞬态流动
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-07-18 DOI: 10.1007/s11242-024-02113-9
Peter L. Wright, Richard E. Wirz

Porous ionic electrospray emitters have received significant interest for space propulsion due to their performance and operational simplicity. We have developed a diffusion equation for describing the transient flow response in a porous electrospray emitter, which allows for the prediction of the settling time for flow in the porous emitter. This equation accounts for both the change in liquid storage at exposed pores on the emitter with pressure and viscous diffusion through Darcy’s law. Transient flow solutions are provided for the most common emitter topologies: pillar, cone, and wedge. Transient flow solutions describe the settling time and magnitude of current overshoot from porous electrosprays, while providing useful guidelines for reducing transient response time through emitter design. Comparing diffusion of pressure to the onset delay model for electrospray emission shows that diffusion is most relevant at higher voltages and when a porous reservoir is used. Accounting for multiple emission sites on the wedge geometry shows that emission sites settle in proportion to emission site spacing to the power − 1.74.

多孔离子电喷雾发射器由于其性能和操作简便性,在太空推进方面受到了极大的关注。我们开发了一个描述多孔电喷雾发射器中瞬态流动响应的扩散方程,可以预测多孔发射器中流动的沉降时间。该方程既考虑了辐射器上暴露孔隙中液体存储量随压力的变化,也考虑了通过达西定律进行的粘性扩散。瞬态流解决方案适用于最常见的发射器拓扑结构:柱形、锥形和楔形。瞬态流解决方案描述了多孔电喷雾器的沉淀时间和电流过冲幅度,同时为通过发射器设计缩短瞬态响应时间提供了有用的指导。将压力扩散与电喷雾发射的起始延迟模型进行比较后发现,在电压较高和使用多孔储层时,压力扩散最为重要。对楔形几何体上的多个发射点进行核算后发现,发射点的沉降与发射点间距成正比,功率为 -1.74。
{"title":"Transient Flow in Porous Electrosprays","authors":"Peter L. Wright,&nbsp;Richard E. Wirz","doi":"10.1007/s11242-024-02113-9","DOIUrl":"10.1007/s11242-024-02113-9","url":null,"abstract":"<div><p>Porous ionic electrospray emitters have received significant interest for space propulsion due to their performance and operational simplicity. We have developed a diffusion equation for describing the transient flow response in a porous electrospray emitter, which allows for the prediction of the settling time for flow in the porous emitter. This equation accounts for both the change in liquid storage at exposed pores on the emitter with pressure and viscous diffusion through Darcy’s law. Transient flow solutions are provided for the most common emitter topologies: pillar, cone, and wedge. Transient flow solutions describe the settling time and magnitude of current overshoot from porous electrosprays, while providing useful guidelines for reducing transient response time through emitter design. Comparing diffusion of pressure to the onset delay model for electrospray emission shows that diffusion is most relevant at higher voltages and when a porous reservoir is used. Accounting for multiple emission sites on the wedge geometry shows that emission sites settle in proportion to emission site spacing to the power − 1.74.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 12","pages":"2277 - 2299"},"PeriodicalIF":2.7,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pore-Scale Simulation for the Fully-Developed Flow Through a Fixed-Bed Reactor Regularly Packed with Mono-Sized Spheres with Extension to Random Packing 固定床反应器中规则填料单粒径球体的充分发展流动的孔隙尺度模拟,并扩展至随机填料
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-07-16 DOI: 10.1007/s11242-024-02100-0
Liang-Ching Cheng, Shwin-Chung Wong

This work conducts pore-scale numerical computations to reveal the hydrodynamic characteristics of the fully-developed flow through a fixed-bed reactor regularly packed with mono-sized spheres. One of the main purposes is to obtain invariant standard values which can be used as the benchmarks for those results from randomly packing methods such as Monte Carlo or DEM. Also, a repeatable and verifiable process is introduced to forecast the pressure drop and the mass flow rate in a packed bed without running any numerical simulation.

The mono-sized spheres in the present simulations are in FCC, BCC, or SC arrangement. For each packing, different Reynolds numbers and lattice angles are considered. For these regular arrangements, it is revealed that the cross-section of the reactor can be clearly separated into two regions: the more loosely-packed near-wall region and the densely-packed core region, with a boundary at a half-sphere diameter distance from the wall. The mass flow rates into the two regions will self-adjust themselves in proportion. Consequently, separate average Reynolds numbers in the near-wall, Rew, and the core region, Reco, are defined. Comparison of our computational results for fully-developed conditions with the experimental data for regular packings is presented. However, the inevitable presence of the entrance effect in the experiments on insufficiently-long regular packed beds forbids pertinent comparison. This work then continues to present a simplified model to predict the pressure drop through a reactor randomly packed with mono-sized spheres. The empirical correlations of CD (times) d/L with Rew or Reco in respective regions are derived. These correlations can be used to evaluate the pressure drop through a reactor at a given total mass flow rate, which is proportioned in each region. A linear interpolation or extrapolation procedure is proposed to evaluate the (Delta) P based on the ((1/Delta) PFCC)-({varepsilon }_{text{FCC}}), ((1/Delta Ptext{BCC}))-({varepsilon }_{text{BCC}}), and ((1/Delta) PSC)-({varepsilon }_{text{SC}}) relations, with given average void fraction (varepsilon), diameter and length of the container, particle diameter, and total mass flow rate. The reliability of the simplified model has been validated through the comparison with empirical correlations and Monte Carlo simulation in the literature.

这项工作进行了孔隙尺度数值计算,以揭示流经固定床反应器的完全发展流的流体力学特征,该反应器规则地填满了单尺寸球体。主要目的之一是获得不变的标准值,这些值可作为蒙特卡罗或 DEM 等随机填料方法得出的结果的基准。此外,还引入了一个可重复、可验证的过程,在不运行任何数值模拟的情况下预测填料床中的压降和质量流量。对于每种填料,都考虑了不同的雷诺数和晶格角度。对于这些规则排列,可以发现反应器的横截面可明显分为两个区域:堆积较松散的近壁区域和堆积较密集的核心区域,其边界位于距壁半球直径的距离处。进入这两个区域的质量流量将按比例自行调整。因此,近壁区域 Rew 和核心区域 Reco 的平均雷诺数是分开定义的。我们将完全膨胀条件下的计算结果与常规填料的实验数据进行了比较。然而,由于在长度不足的规则填料床实验中不可避免地存在入口效应,因此无法进行相关比较。随后,这项工作继续提出了一个简化模型,用于预测通过随机填满单尺寸球体的反应器的压降。得出了 CD (times) d/L 与相应区域的 Rew 或 Reco 的经验相关性。这些相关关系可用于评估在给定总质量流量下通过反应器的压降,而总质量流量在每个区域都是成比例的。建议使用线性内插法或外推法来评估基于 ((1/Delta) PFCC)-({varepsilon }_{text/{FCC}})、((1/Delta Ptext{BCC}))-({varepsilon }_{text/{BCC}})、((1/Delta Ptext{BCC}))-({varepsilon }_{text/{BCC}})的 P、和 ((1/Delta) PSC)-({varepsilon }_{text/{SC}})关系,给定平均空隙率 (varepsilon/)、容器直径和长度、颗粒直径和总质量流量。通过与文献中的经验相关性和蒙特卡罗模拟进行比较,验证了简化模型的可靠性。
{"title":"Pore-Scale Simulation for the Fully-Developed Flow Through a Fixed-Bed Reactor Regularly Packed with Mono-Sized Spheres with Extension to Random Packing","authors":"Liang-Ching Cheng,&nbsp;Shwin-Chung Wong","doi":"10.1007/s11242-024-02100-0","DOIUrl":"10.1007/s11242-024-02100-0","url":null,"abstract":"<div><p>This work conducts pore-scale numerical computations to reveal the hydrodynamic characteristics of the fully-developed flow through a fixed-bed reactor regularly packed with mono-sized spheres. One of the main purposes is to obtain invariant standard values which can be used as the benchmarks for those results from randomly packing methods such as Monte Carlo or DEM. Also, a repeatable and verifiable process is introduced to forecast the pressure drop and the mass flow rate in a packed bed without running any numerical simulation.</p><p>The mono-sized spheres in the present simulations are in FCC, BCC, or SC arrangement. For each packing, different Reynolds numbers and lattice angles are considered. For these regular arrangements, it is revealed that the cross-section of the reactor can be clearly separated into two regions: the more loosely-packed near-wall region and the densely-packed core region, with a boundary at a half-sphere diameter distance from the wall. The mass flow rates into the two regions will self-adjust themselves in proportion. Consequently, separate average Reynolds numbers in the near-wall, <i>Re</i><sub><i>w</i></sub>, and the core region, <i>Re</i><sub><i>co</i></sub>, are defined. Comparison of our computational results for fully-developed conditions with the experimental data for regular packings is presented. However, the inevitable presence of the entrance effect in the experiments on insufficiently-long regular packed beds forbids pertinent comparison. This work then continues to present a simplified model to predict the pressure drop through a reactor randomly packed with mono-sized spheres. The empirical correlations of <i>C</i><sub><i>D</i></sub> <span>(times)</span> <i>d</i>/<i>L</i> with <i>Re</i><sub><i>w</i></sub> or <i>Re</i><sub><i>co</i></sub> in respective regions are derived. These correlations can be used to evaluate the pressure drop through a reactor at a given total mass flow rate, which is proportioned in each region. A linear interpolation or extrapolation procedure is proposed to evaluate the <span>(Delta)</span> <i>P</i> based on the <span>((1/Delta)</span> <i>P</i><sub>FCC</sub>)-<span>({varepsilon }_{text{FCC}})</span>, <span>((1/Delta Ptext{BCC})</span>)-<span>({varepsilon }_{text{BCC}})</span>, and <span>((1/Delta)</span> <i>P</i><sub>SC</sub>)-<span>({varepsilon }_{text{SC}})</span> relations, with given average void fraction <span>(varepsilon)</span>, diameter and length of the container, particle diameter, and total mass flow rate. The reliability of the simplified model has been validated through the comparison with empirical correlations and Monte Carlo simulation in the literature.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 10-11","pages":"1933 - 1965"},"PeriodicalIF":2.7,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141640425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Transport in Porous Media
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1