首页 > 最新文献

Transport in Porous Media最新文献

英文 中文
Pore-to-Core Upscaling of Two-Phase Flow in Mixed-Wet Porous Media: Part II-A Dynamic Pore-Network Modeling Approach 混合-湿润多孔介质中两相流动的孔隙-核心放大:第二部分--动态孔隙网络建模方法
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-09-14 DOI: 10.1007/s11242-024-02127-3
Mohammad Sedghi, Yanbin Gong, Bradley McCaskill, Shixun Bai, Rui Wang, Mohammad Piri, Shehadeh Masalmeh

We present a new, computationally efficient, and massively parallelized pore-network modeling (PNM) platform, referred to as the loosely-coupled dynamic PNM (LCD-PNM). To the best of our knowledge, this study introduces the first dynamic PNM framework that is capable of performing physics-based pore-scale simulations of two-phase flow processes in large-scale disordered pore networks under a wide range of fluid properties, wettability scenarios, and flow conditions. To validate the LCD-PNM platform, we perform primary drainage and waterflooding simulations under both water-wet and mixed-wet conditions on equivalent pore networks of Berea and Bentheimer sandstone miniature core plugs. We then compare the oil and water relative permeability and oil recovery curves predicted under steady-and unsteady-state simulations against their experimental counterparts. The pore networks have been extracted in a seamless and deterministic manner from micro-CT images of the entire core sample. For comparison, we also present the relative permeability predictions obtained from quasi-static PNM simulations to highlight the improvements we observe in the LCD-PNM results, such as more accurate predictions of oil breakthrough and relative permeability curves during the primary drainage processes. In our analysis, we find the dynamic simulation results to be in close agreement with experimental data. Additionally, we employ the LCD-PNM to investigate the effects of wettability and flow conditions on oil and water relative permeabilities and remaining oil saturation. To this end, we investigate different displacement flow regimes including viscous fingering, capillary fingering, and stable front displacement by adjusting injection flow rate and fluid viscosity ratio. The simulation results provide invaluable insights into the complex interplay between the viscous and capillary forces that controls pore-scale displacements and ultimately influences the macroscopic behavior of two-phase flow processes.

我们提出了一种新型、计算高效、大规模并行化的孔隙网络建模(PNM)平台,称为松耦合动态孔隙网络建模(LCD-PNM)。据我们所知,本研究首次引入了动态 PNM 框架,该框架能够在各种流体性质、润湿性方案和流动条件下,对大规模无序孔隙网络中的两相流动过程进行基于物理的孔隙尺度模拟。为了验证 LCD-PNM 平台,我们在贝里亚砂岩和本特海默砂岩微型岩心塞的等效孔隙网络上,在水湿和混湿条件下进行了一次排水和注水模拟。然后,我们将稳态和非稳态模拟预测的油水相对渗透率和采油曲线与实验结果进行比较。孔隙网络是从整个岩心样本的显微 CT 图像中以无缝和确定性的方式提取的。为了进行比较,我们还展示了通过准静态 PNM 模拟获得的相对渗透率预测结果,以突出我们在 LCD-PNM 结果中观察到的改进,例如在一次排水过程中对石油突破和相对渗透率曲线的更准确预测。在分析中,我们发现动态模拟结果与实验数据非常接近。此外,我们还利用 LCD-PNM 研究了润湿性和流动条件对油水相对渗透率和剩余油饱和度的影响。为此,我们通过调整注入流量和流体粘度比,研究了不同的位移流动机制,包括粘指法、毛细管指法和稳定前位移。模拟结果为我们提供了宝贵的见解,让我们了解控制孔隙尺度位移的粘滞力和毛细力之间复杂的相互作用,并最终影响两相流过程的宏观行为。
{"title":"Pore-to-Core Upscaling of Two-Phase Flow in Mixed-Wet Porous Media: Part II-A Dynamic Pore-Network Modeling Approach","authors":"Mohammad Sedghi,&nbsp;Yanbin Gong,&nbsp;Bradley McCaskill,&nbsp;Shixun Bai,&nbsp;Rui Wang,&nbsp;Mohammad Piri,&nbsp;Shehadeh Masalmeh","doi":"10.1007/s11242-024-02127-3","DOIUrl":"10.1007/s11242-024-02127-3","url":null,"abstract":"<div><p>We present a new, computationally efficient, and massively parallelized pore-network modeling (PNM) platform, referred to as the loosely-coupled dynamic PNM (LCD-PNM). To the best of our knowledge, this study introduces the first dynamic PNM framework that is capable of performing physics-based pore-scale simulations of two-phase flow processes in large-scale disordered pore networks under a wide range of fluid properties, wettability scenarios, and flow conditions. To validate the LCD-PNM platform, we perform primary drainage and waterflooding simulations under both water-wet and mixed-wet conditions on equivalent pore networks of Berea and Bentheimer sandstone miniature core plugs. We then compare the oil and water relative permeability and oil recovery curves predicted under steady-and unsteady-state simulations against their experimental counterparts. The pore networks have been extracted in a seamless and deterministic manner from micro-CT images of the entire core sample. For comparison, we also present the relative permeability predictions obtained from quasi-static PNM simulations to highlight the improvements we observe in the LCD-PNM results, such as more accurate predictions of oil breakthrough and relative permeability curves during the primary drainage processes. In our analysis, we find the dynamic simulation results to be in close agreement with experimental data. Additionally, we employ the LCD-PNM to investigate the effects of wettability and flow conditions on oil and water relative permeabilities and remaining oil saturation. To this end, we investigate different displacement flow regimes including viscous fingering, capillary fingering, and stable front displacement by adjusting injection flow rate and fluid viscosity ratio. The simulation results provide invaluable insights into the complex interplay between the viscous and capillary forces that controls pore-scale displacements and ultimately influences the macroscopic behavior of two-phase flow processes.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 13","pages":"2561 - 2600"},"PeriodicalIF":2.7,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pore-to-Core Upscaling of Two-Phase Flow in Mixed-Wet Porous Media: Part I—Seamless Pore-Network Extraction 混合-湿润多孔介质中两相流动的孔-孔放大:第一部分--无缝孔网提取
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-09-12 DOI: 10.1007/s11242-024-02126-4
Bradley McCaskill, Yanbin Gong, Ziqiang Qin, Mohammad Sedghi, Mohammad Piri, Shehadeh Masalmeh

We present a novel and efficient pore-network extraction (PNE) platform that utilizes a seamless merging algorithm to extract core-sized pore networks directly from high-resolution segmented micro-computed tomography images of rock samples. This platform has the distinct advantage of being parallel friendly, allowing the entire computational workload of the extraction process to be distributed across multiple compute nodes. The superior computational efficiency of this approach paves the way for the extraction of deterministic pore networks with physical dimensions that are comparable to those of core samples employed in conventional core-flooding experiments. Sensitivity analysis studies are performed on digital replicates of Berea and Bentheimer sandstone rock samples. To illustrate the role of a user-defined adjustment coefficient on the extraction process, a set of conventional-sized pore networks are extracted and analyzed for both rock samples. To ascertain the quality of these pore networks, comparisons are made with equivalent pore networks extracted using a well-characterized open-source pore-network extractor. After rigorous examination of these conventional-sized pore networks, the validated PNE platform is applied to extract miniature-core-sized pore networks, and their relevant statistics and petrophysical properties are presented. In addition, these networks are extensively utilized in both quasi-static and dynamic pore-network modeling (PNM) simulations of two-phase flow processes. The predicted two-phase flow properties of the rock samples are benchmarked against the corresponding experimental data and the results are presented in both the current and the second volume of this work.

我们提出了一种新颖高效的孔隙网络提取(PNE)平台,该平台利用无缝合并算法,直接从岩石样本的高分辨率分段微计算机断层扫描图像中提取岩芯大小的孔隙网络。该平台具有并行友好的显著优势,可将整个提取过程的计算工作量分布在多个计算节点上。这种方法的卓越计算效率为提取确定性孔隙网络铺平了道路,其物理尺寸可与传统岩芯充水实验中使用的岩芯样本相媲美。灵敏度分析研究是在贝里亚和本特海默砂岩岩石样本的数字副本上进行的。为了说明用户定义的调整系数在提取过程中的作用,对这两种岩石样本提取并分析了一组常规尺寸的孔隙网络。为了确定这些孔隙网络的质量,我们将其与使用特性良好的开源孔隙网络提取器提取的等效孔隙网络进行了比较。在对这些常规尺寸的孔隙网络进行严格检查之后,将经过验证的 PNE 平台应用于提取微型岩芯尺寸的孔隙网络,并介绍其相关统计数据和岩石物理特性。此外,这些网络还被广泛用于两相流过程的准静态和动态孔隙网络建模(PNM)模拟。岩石样本的预测两相流特性与相应的实验数据进行了比对,比对结果在本卷和第二卷中均有介绍。
{"title":"Pore-to-Core Upscaling of Two-Phase Flow in Mixed-Wet Porous Media: Part I—Seamless Pore-Network Extraction","authors":"Bradley McCaskill,&nbsp;Yanbin Gong,&nbsp;Ziqiang Qin,&nbsp;Mohammad Sedghi,&nbsp;Mohammad Piri,&nbsp;Shehadeh Masalmeh","doi":"10.1007/s11242-024-02126-4","DOIUrl":"10.1007/s11242-024-02126-4","url":null,"abstract":"<div><p>We present a novel and efficient pore-network extraction (PNE) platform that utilizes a seamless merging algorithm to extract core-sized pore networks directly from high-resolution segmented micro-computed tomography images of rock samples. This platform has the distinct advantage of being parallel friendly, allowing the entire computational workload of the extraction process to be distributed across multiple compute nodes. The superior computational efficiency of this approach paves the way for the extraction of deterministic pore networks with physical dimensions that are comparable to those of core samples employed in conventional core-flooding experiments. Sensitivity analysis studies are performed on digital replicates of Berea and Bentheimer sandstone rock samples. To illustrate the role of a user-defined adjustment coefficient on the extraction process, a set of conventional-sized pore networks are extracted and analyzed for both rock samples. To ascertain the quality of these pore networks, comparisons are made with equivalent pore networks extracted using a well-characterized open-source pore-network extractor. After rigorous examination of these conventional-sized pore networks, the validated PNE platform is applied to extract miniature-core-sized pore networks, and their relevant statistics and petrophysical properties are presented. In addition, these networks are extensively utilized in both quasi-static and dynamic pore-network modeling (PNM) simulations of two-phase flow processes. The predicted two-phase flow properties of the rock samples are benchmarked against the corresponding experimental data and the results are presented in both the current and the second volume of this work.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 13","pages":"2529 - 2560"},"PeriodicalIF":2.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Comparative Thermo-Hydraulic Performance of sCO2 and H2O as Heat-Exchange Fluids in Enhanced Geothermal Systems 强化地热系统中作为热交换流体的 sCO2 和 H2O 的热工水力性能对比分析
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-09-12 DOI: 10.1007/s11242-024-02128-2
Jerome Sfeir, George Moridis, Jean-Louis Briaud

The relative performance of H2O and sCO2 as geothermal working fluids (GWFs) in liquid-dominated enhanced geothermal systems (EGSs) was investigated in this study. Such systems rely on the injection of GWFs (geothermal working fluids) to sustain geothermal energy recovery, which is dominated by conduction-based heat exchange from the rock to the GWF in the hydraulic fracture. H2O is currently the only GWF considered for EGS operations, but supercritical CO2 has been proposed as a potential GWF because of its lower density and viscosity, which lead to the hypothesis of potentially significant thermal energy recovery. However, H2O appears to have an initial advantage because of its significantly higher thermal conductivity. We compared the performance of H2O and SCO2 as GWFs in a 3D stencil (minimum repeatable element) of an EGS involving a hydraulic fracture connecting the injection and the production wells, the main body of the EGS rock that provides the heat source, and boundaries that are sufficiently distant from the main body of the main body of the rock to maintain constant pressure and temperature conditions over a 30-year period of EGS operations In our studies we considered variations in the initial reservoir temperature, in the injection method (at a constant-rate and at a constant bottomhole pressure) and in the reservoir permeability, in an effort (a) not only to compare the EGS performance of H2O and sCO2 as GWFs but also (b) to determine the conditions (if any) under which sCO2 can be more effective than H2O. The results of the study indicated the overwhelming superiority of H2O as a GWF under any and all of the conditions covered by the study, producing fluids at dependably much higher temperatures and yielding invariably drastically higher energy recovery than sCO2 despite the consistently higher GWF injection and production rates attained with sCO2.

本研究调查了 H2O 和 sCO2 作为地热工作流体(GWFs)在液体为主的强化地热系统(EGSs)中的相对性能。这类系统依靠注入地热工作流体(GWFs)来维持地热能的回收,而地热能的回收主要是通过水力裂缝中岩石与地热工作流体之间的传导热交换来实现的。目前,H2O 是 EGS 作业中唯一考虑使用的 GWF,但超临界 CO2 因其密度和粘度较低而被提议作为一种潜在的 GWF,这导致了潜在的大量热能回收的假设。不过,由于 H2O 的热导率明显更高,因此似乎具有初步优势。我们比较了 H2O 和 SCO2 作为 GWF 在 EGS 的三维模版(最小可重复元素)中的性能,该模版涉及连接注入井和生产井的水力裂缝、提供热源的 EGS 岩石主体,以及与岩石主体足够远的边界,以便在 30 年的 EGS 运行期间保持恒定的压力和温度条件、在我们的研究中,我们考虑了储层初始温度的变化、注入方法的变化(恒定速率和恒定井底压力)以及储层渗透率的变化,目的是 (a) 不仅比较 H2O 和 sCO2 作为 GWF 的 EGS 性能,而且 (b) 确定在什么条件下(如果有的话)sCO2 比 H2O 更有效。研究结果表明,在研究涵盖的所有条件下,H2O 作为 GWF 都具有压倒性的优势,尽管 sCO2 的 GWF 注入率和生产率一直较高,但 H2O 产生的流体温度始终比 sCO2 高得多,能量回收率也始终比 sCO2 高得多。
{"title":"Analysis of Comparative Thermo-Hydraulic Performance of sCO2 and H2O as Heat-Exchange Fluids in Enhanced Geothermal Systems","authors":"Jerome Sfeir,&nbsp;George Moridis,&nbsp;Jean-Louis Briaud","doi":"10.1007/s11242-024-02128-2","DOIUrl":"10.1007/s11242-024-02128-2","url":null,"abstract":"<div><p>The relative performance of H<sub>2</sub>O and sCO<sub>2</sub> as geothermal working fluids (GWFs) in liquid-dominated enhanced geothermal systems (EGSs) was investigated in this study. Such systems rely on the injection of GWFs (geothermal working fluids) to sustain geothermal energy recovery, which is dominated by conduction-based heat exchange from the rock to the GWF in the hydraulic fracture. H<sub>2</sub>O is currently the only GWF considered for EGS operations, but supercritical CO<sub>2</sub> has been proposed as a potential GWF because of its lower density and viscosity, which lead to the hypothesis of potentially significant thermal energy recovery. However, H<sub>2</sub>O appears to have an initial advantage because of its significantly higher thermal conductivity. We compared the performance of H<sub>2</sub>O and SCO<sub>2</sub> as GWFs in a 3D stencil (minimum repeatable element) of an EGS involving a hydraulic fracture connecting the injection and the production wells, the main body of the EGS rock that provides the heat source, and boundaries that are sufficiently distant from the main body of the main body of the rock to maintain constant pressure and temperature conditions over a 30-year period of EGS operations In our studies we considered variations in the initial reservoir temperature, in the injection method (at a constant-rate and at a constant bottomhole pressure) and in the reservoir permeability, in an effort (a) not only to compare the EGS performance of H<sub>2</sub>O and sCO<sub>2</sub> as GWFs but also (b) to determine the conditions (if any) under which sCO<sub>2</sub> can be more effective than H<sub>2</sub>O. The results of the study indicated the overwhelming superiority of H<sub>2</sub>O as a GWF under any and all of the conditions covered by the study, producing fluids at dependably much higher temperatures and yielding invariably drastically higher energy recovery than sCO<sub>2</sub> despite the consistently higher GWF injection and production rates attained with sCO<sub>2</sub>.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 14","pages":"2693 - 2723"},"PeriodicalIF":2.7,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MHD Mixed Convection Flow Over a Permeable Vertical Flat Plate Embedded in a Darcy–Forchheimer Porous Medium 嵌入达西-福克海默多孔介质的可渗透垂直平板上的 MHD 混合对流
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-09-10 DOI: 10.1007/s11242-024-02124-6
John H. Merkin, Natalia C. Roșca, Alin V. Roșca, Ioan Pop

The purpose of this paper is to describe the stead MHD mixed convection flow over a permeable vertical flat plate embedded in a Darcy–Forchheimer porous medium. Using appropriate similarity variables, the partial differential equations are transformed into ordinary (similar) differential equations, which are numerically solved using the bvp4c function in MATLAB. The numerical results are used to present graphically and in tables, illustrations of the reduced skin friction, reduced Nusselt number, velocity, and temperature profiles. Dual (upper and lower branch) solutions are discovered in this exciting analysis. Although numerous studies on the mixed convection past a vertical plate embedded in a fluid-saturated porous medium exist, none of the researchers have focused on the Darcy–Forchheimer flow with asymptotic solutions. The behavior of the flow and heat transfer has been thoroughly analyzed with the variations in governing parameters, such as Darcy–Forchheimer (G,) suction/injection (S), MHD (M,) and mixed convection (lambda) parameters.

本文旨在描述嵌入达西-福克海默多孔介质的可渗透垂直平板上的稳定 MHD 混合对流。利用适当的相似变量,将偏微分方程转换为常(相似)微分方程,并使用 MATLAB 中的 bvp4c 函数对其进行数值求解。数值结果以图形和表格的形式展示了减小的表皮摩擦、减小的努塞尔特数、速度和温度曲线。在这一令人兴奋的分析中发现了双重(上分支和下分支)解决方案。尽管对嵌入流体饱和多孔介质中的垂直板上的混合对流进行了大量研究,但没有任何研究人员关注过具有渐近解的达西-福克海默(Darcy-Forchheimer)流动。随着达西-福克海默(Darcy-Forchheimer)(G,)吸入/注入(S,)、MHD(M,)和混合对流(lambda)参数等控制参数的变化,流动和传热行为得到了深入分析。
{"title":"MHD Mixed Convection Flow Over a Permeable Vertical Flat Plate Embedded in a Darcy–Forchheimer Porous Medium","authors":"John H. Merkin,&nbsp;Natalia C. Roșca,&nbsp;Alin V. Roșca,&nbsp;Ioan Pop","doi":"10.1007/s11242-024-02124-6","DOIUrl":"10.1007/s11242-024-02124-6","url":null,"abstract":"<div><p>The purpose of this paper is to describe the stead MHD mixed convection flow over a permeable vertical flat plate embedded in a Darcy–Forchheimer porous medium. Using appropriate similarity variables, the partial differential equations are transformed into ordinary (similar) differential equations, which are numerically solved using the bvp4c function in MATLAB. The numerical results are used to present graphically and in tables, illustrations of the reduced skin friction, reduced Nusselt number, velocity, and temperature profiles. Dual (upper and lower branch) solutions are discovered in this exciting analysis. Although numerous studies on the mixed convection past a vertical plate embedded in a fluid-saturated porous medium exist, none of the researchers have focused on the Darcy–Forchheimer flow with asymptotic solutions. The behavior of the flow and heat transfer has been thoroughly analyzed with the variations in governing parameters, such as Darcy–Forchheimer <span>(G,)</span> suction/injection <span>(S)</span>, MHD <span>(M,)</span> and mixed convection <span>(lambda)</span> parameters.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 13","pages":"2511 - 2528"},"PeriodicalIF":2.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02124-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large Scale Voxel-Based FEM Formulation for NMR Relaxation in Porous Media 多孔介质中核磁共振弛豫的大规模体素有限元计算
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-08-30 DOI: 10.1007/s11242-024-02118-4
Luiz F. Bez, Ricardo Leiderman, André Souza, Rodrigo B. de V. Azeredo, André M. B. Pereira

Nuclear magnetic resonance (NMR) techniques are key in the study of porous reservoir rocks. They can provide valuable insight into the pore size distribution of the pore space of a given rock sample due to its dependence on the magnetic fluid/matrix interaction. The pore space is often studied at the μm scale through the use of micro-CT images, which are often composed of hundreds of millions of voxels, posing significant challenges to numerical simulations. In this paper, we present an image-based, fully explicit, and matrix-free finite element implementation for the simulation of NMR relaxation process that is capable of handling such large 3D problems in single GPUs. The chosen explicit time-integration scheme uses a lumped capacitance formulation and stabilization via hyperbolization, and it is capable of handling arbitrary time-step sizes with controllable error levels. The image-based representation of the pore space is used for a memory-efficient, matrix-free formulation of the time integration using massively parallel processes on a single GPU. In addition, we propose the substitution of a global digital roughness correction factor that depends on the porous space’s geometry for a problem-independent local correction factor, based on nodal neighborhoods. We show that the numerical scheme converges with successive refinements as expected and that our local correction coefficient is capable of estimating the correct S/V parameter of several different classical geometries. We tested our formulation against an image-based Random Walk simulation of four digital rock core samples, achieving good agreement between them. We manage to simulate a giga-voxel image-based model on a personal use GPU (less than 10GB of memory use) in 33 min with our FEM implementation.

核磁共振(NMR)技术是研究多孔储层岩石的关键。由于核磁共振技术依赖于磁性流体/基质的相互作用,因此可以深入了解特定岩石样本孔隙空间的孔径分布。通过使用显微 CT 图像,通常可以在微米尺度上研究孔隙空间,而显微 CT 图像通常由数以亿计的体素组成,这给数值模拟带来了巨大挑战。在本文中,我们介绍了一种基于图像、完全显式和无矩阵的有限元实现方法,用于模拟核磁共振弛豫过程,能够在单 GPU 中处理此类大型三维问题。所选的显式时间积分方案使用了叠加电容公式,并通过超凸化实现稳定,能够以可控误差水平处理任意时间步长的问题。孔隙空间的基于图像的表示法可用于在单个 GPU 上使用大规模并行处理对时间积分进行内存效率高的无矩阵表述。此外,我们还提出以节点邻域为基础,用与问题无关的局部校正因子代替取决于多孔空间几何形状的全局数字粗糙度校正因子。我们的结果表明,数值方案随着连续细化而收敛,符合预期,而且我们的局部校正系数能够估算出几种不同经典几何形状的正确 S/V 参数。我们用基于图像的随机漫步模拟对四种数字岩芯样本进行了测试,两者之间取得了良好的一致性。使用我们的有限元实现,我们能够在个人使用的 GPU(内存使用不到 10GB)上在 33 分钟内模拟出基于图像的千兆像素模型。
{"title":"Large Scale Voxel-Based FEM Formulation for NMR Relaxation in Porous Media","authors":"Luiz F. Bez,&nbsp;Ricardo Leiderman,&nbsp;André Souza,&nbsp;Rodrigo B. de V. Azeredo,&nbsp;André M. B. Pereira","doi":"10.1007/s11242-024-02118-4","DOIUrl":"10.1007/s11242-024-02118-4","url":null,"abstract":"<div><p>Nuclear magnetic resonance (NMR) techniques are key in the study of porous reservoir rocks. They can provide valuable insight into the pore size distribution of the pore space of a given rock sample due to its dependence on the magnetic fluid/matrix interaction. The pore space is often studied at the μm scale through the use of micro-CT images, which are often composed of hundreds of millions of voxels, posing significant challenges to numerical simulations. In this paper, we present an image-based, fully explicit, and matrix-free finite element implementation for the simulation of NMR relaxation process that is capable of handling such large 3D problems in single GPUs. The chosen explicit time-integration scheme uses a lumped capacitance formulation and stabilization via hyperbolization, and it is capable of handling arbitrary time-step sizes with controllable error levels. The image-based representation of the pore space is used for a memory-efficient, matrix-free formulation of the time integration using massively parallel processes on a single GPU. In addition, we propose the substitution of a global digital roughness correction factor that depends on the porous space’s geometry for a problem-independent local correction factor, based on nodal neighborhoods. We show that the numerical scheme converges with successive refinements as expected and that our local correction coefficient is capable of estimating the correct <i>S</i>/<i>V</i> parameter of several different classical geometries. We tested our formulation against an image-based Random Walk simulation of four digital rock core samples, achieving good agreement between them. We manage to simulate a giga-voxel image-based model on a personal use GPU (less than 10GB of memory use) in 33 min with our FEM implementation.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 12","pages":"2405 - 2430"},"PeriodicalIF":2.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Pore-Level Study of Dense-Phase CO2 Foam Stability in the Presence of Oil 油类存在时密相二氧化碳泡沫稳定性的孔隙级研究
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-08-29 DOI: 10.1007/s11242-024-02122-8
Benyamine Benali, Martin A. Fernø, Hilde Halsøy, Zachary Paul Alcorn

Highlights

  • Pore-scale observations of dense-phase CO2 foam in realistic pore network revealed foam destabilization mechanisms at high-pressure conditions.

  • A comprehensive laboratory investigation of CO2 foam stability in the presence of oil at high pressure.

在现实孔隙网络中对致密相二氧化碳泡沫进行的孔隙尺度观测揭示了高压条件下的泡沫失稳机制。
{"title":"A Pore-Level Study of Dense-Phase CO2 Foam Stability in the Presence of Oil","authors":"Benyamine Benali,&nbsp;Martin A. Fernø,&nbsp;Hilde Halsøy,&nbsp;Zachary Paul Alcorn","doi":"10.1007/s11242-024-02122-8","DOIUrl":"10.1007/s11242-024-02122-8","url":null,"abstract":"<div><h2> Highlights</h2><div>\u0000 \u0000 \u0000<ul>\u0000 <li>\u0000 <p>Pore-scale observations of dense-phase CO<sub>2</sub> foam in realistic pore network revealed foam destabilization mechanisms at high-pressure conditions.</p>\u0000 </li>\u0000 <li>\u0000 <p>A comprehensive laboratory investigation of CO2 foam stability in the presence of oil at high pressure.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 13","pages":"2491 - 2509"},"PeriodicalIF":2.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02122-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the Multi-particle Arch Formation on the Single Slot of a Sand Filter: CFD–DEM Study in Packed-Bed of Sand Particles 砂滤器单槽上多颗粒拱形形成的研究:沙粒填料床的 CFD-DEM 研究
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-08-29 DOI: 10.1007/s11242-024-02120-w
Fatemeh Razavi, Ali Mohammadtabar, Carlos F. Lange

In this study, we present a successful application of the Computational Fluid Dynamics–Discrete Element Method (CFD–DEM) for simulating the complex phenomenon of multi-particle arch formation within high-concentration packed-bed environments. We investigate the roles of physical forces in this phenomenon, shedding light on aspects that are challenging to explore through experimentation. Our research is motivated by the desire to comprehend the conditions and parameters influencing the formation, stability, disruption, and reformation of multi-particle sand arches within filter openings. This arching phenomenon serves as an efficient particle retention mechanism, particularly in heavy oil production wells. We delve into factors like particle size, shape, and particle size distribution that may impact multi-particle arch performance. Additionally, we explore the physics behind multi-particle arching by examining the effects of various physical forces on arch performance. Utilizing a Computational Fluid Dynamics–Discrete Element Model, we investigate the multi-particle arching phenomenon under steady-state flow conditions in packed-bed environments. Our approach employs the unresolved coupling method in STAR-CCM+ (Siemens PLM). We test various filter slot geometries, including straight slots, keystone slots, wire-wrapped screens (WWS), and seamed slots, all under laminar flow conditions. Our findings highlight the significance of gravity, inter-particle forces, and interactions between the filter wall and the particles in multi-particle arch formation at both the slot opening and microscale levels. We confirm that a multi-particle arch can be formed within a specific slot width. Interestingly, while maintaining a constant slot width, we observe that the slot length has an insignificant effect on multi-particle arch formation and stability. In summary, our CFD–DEM model successfully simulates and predicts multi-particle arch formation, stabilization, breakage, and reformation, allowing for comprehensive testing of the effects of various parameters. This research offers valuable insights into a complex phenomenon that is crucial in packed-bed filtration systems.

在本研究中,我们介绍了计算流体动力学-离散元素法(CFD-DEM)在模拟高浓度填料床环境中多粒子拱形形成这一复杂现象中的成功应用。我们研究了物理力在这一现象中的作用,揭示了通过实验探索具有挑战性的方面。我们的研究动机是希望了解影响过滤器开口内多颗粒砂拱形成、稳定、破坏和重组的条件和参数。这种拱形现象是一种有效的颗粒截留机制,尤其是在重油生产井中。我们深入研究了可能影响多颗粒拱形性能的粒度、形状和粒度分布等因素。此外,我们还通过研究各种物理力对拱形性能的影响,探索多颗粒拱形背后的物理学原理。利用计算流体动力学-离散元件模型,我们研究了填料床环境中稳态流动条件下的多粒子起拱现象。我们的方法采用了 STAR-CCM+ (Siemens PLM) 中的未解决耦合方法。在层流条件下,我们测试了各种滤槽几何形状,包括直槽、楔形槽、线绕滤网(WWS)和缝合槽。我们的研究结果强调了重力、颗粒间的作用力以及过滤壁和颗粒之间的相互作用在槽口和微观层面上对多颗粒拱形形成的重要作用。我们证实,在特定的槽宽内可以形成多颗粒拱形。有趣的是,在保持槽宽不变的情况下,我们发现槽长对多粒子拱的形成和稳定性影响不大。总之,我们的 CFD-DEM 模型成功地模拟和预测了多粒子拱的形成、稳定、断裂和重整,并对各种参数的影响进行了全面测试。这项研究为了解填料床过滤系统中至关重要的复杂现象提供了宝贵的见解。
{"title":"Investigation of the Multi-particle Arch Formation on the Single Slot of a Sand Filter: CFD–DEM Study in Packed-Bed of Sand Particles","authors":"Fatemeh Razavi,&nbsp;Ali Mohammadtabar,&nbsp;Carlos F. Lange","doi":"10.1007/s11242-024-02120-w","DOIUrl":"10.1007/s11242-024-02120-w","url":null,"abstract":"<div><p>In this study, we present a successful application of the Computational Fluid Dynamics–Discrete Element Method (CFD–DEM) for simulating the complex phenomenon of multi-particle arch formation within high-concentration packed-bed environments. We investigate the roles of physical forces in this phenomenon, shedding light on aspects that are challenging to explore through experimentation. Our research is motivated by the desire to comprehend the conditions and parameters influencing the formation, stability, disruption, and reformation of multi-particle sand arches within filter openings. This arching phenomenon serves as an efficient particle retention mechanism, particularly in heavy oil production wells. We delve into factors like particle size, shape, and particle size distribution that may impact multi-particle arch performance. Additionally, we explore the physics behind multi-particle arching by examining the effects of various physical forces on arch performance. Utilizing a Computational Fluid Dynamics–Discrete Element Model, we investigate the multi-particle arching phenomenon under steady-state flow conditions in packed-bed environments. Our approach employs the unresolved coupling method in STAR-CCM+ (Siemens PLM). We test various filter slot geometries, including straight slots, keystone slots, wire-wrapped screens (WWS), and seamed slots, all under laminar flow conditions. Our findings highlight the significance of gravity, inter-particle forces, and interactions between the filter wall and the particles in multi-particle arch formation at both the slot opening and microscale levels. We confirm that a multi-particle arch can be formed within a specific slot width. Interestingly, while maintaining a constant slot width, we observe that the slot length has an insignificant effect on multi-particle arch formation and stability. In summary, our CFD–DEM model successfully simulates and predicts multi-particle arch formation, stabilization, breakage, and reformation, allowing for comprehensive testing of the effects of various parameters. This research offers valuable insights into a complex phenomenon that is crucial in packed-bed filtration systems.\u0000</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 12","pages":"2455 - 2475"},"PeriodicalIF":2.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linearity of the Co-moving Velocity 同向运动速度的线性度
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-08-28 DOI: 10.1007/s11242-024-02121-9
Alex Hansen

The co-moving velocity is a new variable in the description of immiscible two-phase flow in porous media. It is the saturation-weighted average over the derivatives of the seepage velocities of the two immiscible fluids with respect to saturation. Based on analysis of relative permeability data and computational modeling, it has been proposed that the co-moving velocity is linear when plotted against the derivative of the average seepage velocity with respect to the saturation, the flow derivative. I show here that it is enough to demand that the co-moving velocity is characterized by an additive parameter in addition to the flow derivative to be linear. This has profound consequences for relative permeability theory as it leads to a differential equation relating the two relative permeabilities describing the flow. I present this equation together with two solutions.

共渗速度是描述多孔介质中不相溶两相流的一个新变量。它是两种不相溶流体的渗流速度相对于饱和度的导数的饱和加权平均值。根据对相对渗透率数据和计算模型的分析,有人提出,当与平均渗流速度相对于饱和度的导数(即流动导数)作图时,共渗速度是线性的。我在这里指出,要使同向运动速度具有线性,只需在流动导数之外再加上一个附加参数即可。这对相对渗透率理论有着深远的影响,因为它导致了一个与描述流动的两个相对渗透率相关的微分方程。我将介绍这个方程以及两个解决方案。
{"title":"Linearity of the Co-moving Velocity","authors":"Alex Hansen","doi":"10.1007/s11242-024-02121-9","DOIUrl":"10.1007/s11242-024-02121-9","url":null,"abstract":"<div><p>The co-moving velocity is a new variable in the description of immiscible two-phase flow in porous media. It is the saturation-weighted average over the derivatives of the seepage velocities of the two immiscible fluids with respect to saturation. Based on analysis of relative permeability data and computational modeling, it has been proposed that the co-moving velocity is linear when plotted against the derivative of the average seepage velocity with respect to the saturation, the flow derivative. I show here that it is enough to demand that the co-moving velocity is characterized by an additive parameter in addition to the flow derivative to be linear. This has profound consequences for relative permeability theory as it leads to a differential equation relating the two relative permeabilities describing the flow. I present this equation together with two solutions.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 13","pages":"2477 - 2489"},"PeriodicalIF":2.7,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02121-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recovery and Sweep Efficiency in a Cross-Sectional Problem of Immiscible Displacement with Gravity Override and Capillary Imbibition 带有重力覆盖和毛细管浸润的不相溶置换横截面问题中的回收和扫频效率
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-08-14 DOI: 10.1007/s11242-024-02119-3
Anna Chernova, Andrey Afanasyev

We consider a cross-sectional study of immiscible displacement under the influence of gravity, anisotropic permeability, and capillary effects. We propose the similarity criteria characterizing the relative role of these effects and qualitatively different flows. We present a classification of the flow regimes in four limiting cases of the displacement. The recovery and sweep efficiencies in such cases can be compromised by the gravity override, channeling, and coning effects. In the phase plane, we constrain the parameter ranges at which these effects become relevant. We then aim at evaluating the range of the similarity criteria characterized by the maximum efficiencies and describe the placements of horizontal wells allowing to reach these maxima. We show that the placement of the producing well is generally more relevant. In the limiting cases, the variety of placements can be merged in groups by their efficiencies. We eventually come up with the maps of the maximal efficiencies and associated placements allowing for a quick assessment of the optimal injection scenarios. The proposed classification of the flow regimes and the calculated maps can be useful in evaluating various scenarios of waterflooding and gas injection.

我们考虑了在重力、各向异性渗透性和毛细管效应影响下的不相溶位移横截面研究。我们提出了描述这些效应的相对作用和不同流动性质的相似性标准。我们对四种极限位移情况下的流动机制进行了分类。在这些情况下,恢复和扫描效率可能会受到重力覆盖、通道和锥形效应的影响。在相位平面上,我们限制了这些效应相关的参数范围。然后,我们旨在评估以最大效率为特征的相似性标准范围,并描述能够达到这些最大值的水平井位置。我们的研究表明,生产井的位置通常更具相关性。在有限的情况下,可以根据效率将各种布局合并为一组。最终,我们绘制出了最大效率图和相关位置图,以便快速评估最佳注水方案。所提出的流态分类和计算出的地图可用于评估各种注水和注气方案。
{"title":"Recovery and Sweep Efficiency in a Cross-Sectional Problem of Immiscible Displacement with Gravity Override and Capillary Imbibition","authors":"Anna Chernova,&nbsp;Andrey Afanasyev","doi":"10.1007/s11242-024-02119-3","DOIUrl":"10.1007/s11242-024-02119-3","url":null,"abstract":"<div><p>We consider a cross-sectional study of immiscible displacement under the influence of gravity, anisotropic permeability, and capillary effects. We propose the similarity criteria characterizing the relative role of these effects and qualitatively different flows. We present a classification of the flow regimes in four limiting cases of the displacement. The recovery and sweep efficiencies in such cases can be compromised by the gravity override, channeling, and coning effects. In the phase plane, we constrain the parameter ranges at which these effects become relevant. We then aim at evaluating the range of the similarity criteria characterized by the maximum efficiencies and describe the placements of horizontal wells allowing to reach these maxima. We show that the placement of the producing well is generally more relevant. In the limiting cases, the variety of placements can be merged in groups by their efficiencies. We eventually come up with the maps of the maximal efficiencies and associated placements allowing for a quick assessment of the optimal injection scenarios. The proposed classification of the flow regimes and the calculated maps can be useful in evaluating various scenarios of waterflooding and gas injection.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 12","pages":"2431 - 2453"},"PeriodicalIF":2.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-Scale Prediction Model of Oxygen Diffusion in Concrete Under Dry Conditions 干燥条件下混凝土中氧气扩散的跨尺度预测模型
IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL Pub Date : 2024-07-29 DOI: 10.1007/s11242-024-02116-6
Chuanye Su, Jun Xu, Wei She, Chuanqing Fu

The rate of oxygen diffusion directly affects the distribution of oxygen concentration within concrete, which in turn influences the corrosion performance of reinforcing steel within the concrete. However, research on cross-scale prediction models for oxygen diffusion in dry concrete is still lacking. In this study, the complex pore structure of concrete is simplified into a sponge model, and three types of diffusion are quantitatively characterized based on the pore size distribution density function. The influence of porosity, water–cement ratio, hydration degree, gel–space ratio and pore tortuosity on the oxygen diffusion coefficient is considered, and a cross-scale prediction model for oxygen diffusion in dry concrete is established. Secondly, an oxygen diffusion coefficient determination device developed independently is used to measure the oxygen diffusion coefficient of concrete specimens under dry conditions. The results show that the experimental values agree well with the calculated values, and the model is compared with other models proposed by scholars, verifying its superiority and accuracy. Finally, a parameter sensitivity analysis is conducted on five microscale parameters and their influence on the behavior of oxygen transmission into concrete is discussed. The establishment of the cross-scale prediction model for oxygen diffusion in dry concrete will first provide a positive role in the theoretical research on reinforcement expansion and cracking, and secondly, it will be able to better explain the mechanism of oxygen diffusion in concrete.

氧扩散速度直接影响混凝土中氧浓度的分布,进而影响混凝土中钢筋的腐蚀性能。然而,关于干混凝土中氧扩散的跨尺度预测模型的研究仍然缺乏。本研究将混凝土复杂的孔隙结构简化为海绵模型,并根据孔径分布密度函数对三种扩散类型进行了定量表征。考虑了孔隙率、水灰比、水化程度、凝胶空隙率和孔隙迂回度对氧扩散系数的影响,建立了干硬性混凝土中氧扩散的跨尺度预测模型。其次,利用自主研发的氧扩散系数测定装置测量了干燥条件下混凝土试件的氧扩散系数。结果表明,实验值与计算值吻合良好,并将该模型与其他学者提出的模型进行了比较,验证了其优越性和准确性。最后,对五个微尺度参数进行了参数敏感性分析,讨论了它们对混凝土中氧气传输行为的影响。干拌混凝土中氧扩散跨尺度预测模型的建立,首先将为钢筋膨胀开裂的理论研究提供积极的作用,其次能够更好地解释混凝土中氧扩散的机理。
{"title":"Cross-Scale Prediction Model of Oxygen Diffusion in Concrete Under Dry Conditions","authors":"Chuanye Su,&nbsp;Jun Xu,&nbsp;Wei She,&nbsp;Chuanqing Fu","doi":"10.1007/s11242-024-02116-6","DOIUrl":"10.1007/s11242-024-02116-6","url":null,"abstract":"<div><p>The rate of oxygen diffusion directly affects the distribution of oxygen concentration within concrete, which in turn influences the corrosion performance of reinforcing steel within the concrete. However, research on cross-scale prediction models for oxygen diffusion in dry concrete is still lacking. In this study, the complex pore structure of concrete is simplified into a sponge model, and three types of diffusion are quantitatively characterized based on the pore size distribution density function. The influence of porosity, water–cement ratio, hydration degree, gel–space ratio and pore tortuosity on the oxygen diffusion coefficient is considered, and a cross-scale prediction model for oxygen diffusion in dry concrete is established. Secondly, an oxygen diffusion coefficient determination device developed independently is used to measure the oxygen diffusion coefficient of concrete specimens under dry conditions. The results show that the experimental values agree well with the calculated values, and the model is compared with other models proposed by scholars, verifying its superiority and accuracy. Finally, a parameter sensitivity analysis is conducted on five microscale parameters and their influence on the behavior of oxygen transmission into concrete is discussed. The establishment of the cross-scale prediction model for oxygen diffusion in dry concrete will first provide a positive role in the theoretical research on reinforcement expansion and cracking, and secondly, it will be able to better explain the mechanism of oxygen diffusion in concrete.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 12","pages":"2357 - 2385"},"PeriodicalIF":2.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Transport in Porous Media
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1