Pub Date : 2024-12-07DOI: 10.1007/s11242-024-02143-3
Akshay Kumar, Pratyush Kumar, Sandip K. Saha
Packed beds with cylindrical particles of polymeric material are a better option for developing low-cost, durable thermal energy storage for higher temperature ranges and corrosive environments. In this work, the formulations for pressure drop and interfacial convective heat transfer coefficient in the packed bed system (PBS) filled with cylindrical particles are developed for a wide range of geometrical and operating parameters. Two experimental setups are developed to determine the effects of superficial velocity, porosity of PBS, and geometrical dimensions of cylindrical particles on pressure drop and interfacial convective heat transfer coefficient. A discrete element method-based numerical model of PBS is developed to obtain the effect of fluid properties. The machine learning regression is deployed on the experimental and numerical data set to obtain a pressure drop formulation. Further, an analytical expression based on the Ergun equation is developed to approximate the machine-learning-based pressure drop formulation. The interfacial heat transfer coefficient is estimated by solving the steady-state heat conduction equation using the experimentally measured particle surface and air temperatures. The developed pressure drop and interfacial heat transfer coefficient formulations show maximum mean absolute deviations of less than 10.1% and 5.5%, respectively, with the experimental results.
{"title":"Pressure Drop and Interfacial Heat Transfer Coefficient Formulation for Packed Bed Systems with Cylindrical Capsules","authors":"Akshay Kumar, Pratyush Kumar, Sandip K. Saha","doi":"10.1007/s11242-024-02143-3","DOIUrl":"10.1007/s11242-024-02143-3","url":null,"abstract":"<div><p>Packed beds with cylindrical particles of polymeric material are a better option for developing low-cost, durable thermal energy storage for higher temperature ranges and corrosive environments. In this work, the formulations for pressure drop and interfacial convective heat transfer coefficient in the packed bed system (PBS) filled with cylindrical particles are developed for a wide range of geometrical and operating parameters. Two experimental setups are developed to determine the effects of superficial velocity, porosity of PBS, and geometrical dimensions of cylindrical particles on pressure drop and interfacial convective heat transfer coefficient. A discrete element method-based numerical model of PBS is developed to obtain the effect of fluid properties. The machine learning regression is deployed on the experimental and numerical data set to obtain a pressure drop formulation. Further, an analytical expression based on the Ergun equation is developed to approximate the machine-learning-based pressure drop formulation. The interfacial heat transfer coefficient is estimated by solving the steady-state heat conduction equation using the experimentally measured particle surface and air temperatures. The developed pressure drop and interfacial heat transfer coefficient formulations show maximum mean absolute deviations of less than 10.1% and 5.5%, respectively, with the experimental results.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"152 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-07DOI: 10.1007/s11242-024-02138-0
Muhammad Andiva Pratama, Hasan Javed Khan
Capillary rise experiments are conducted in a set of calcareous and siliceous rocks with varying mineralogy and petrophysical properties to understand the coupled impact of reactivity and spontaneous imbibition. A capillary rise experiment is performed in each sample: first with deionized water, then with a dilute acidic solution, and finally again with deionized water, and the capillary rise profile for each is recorded. Pre- and post-acid petrophysical properties such as porosity, permeability, pore size distribution, and contact angle are measured for each sample. The mineral makeup of the rocks significantly influences how the acidic fluids penetrate the samples. The primary reactions are the dissolution of Ca- and Mg-rich minerals which alter the pore network. The higher acid strength results in higher capillary rise in calcareous rocks and results in an increase in the average pore size. The same pH acid results in lower capillary rise in the siliceous rocks, and a general decrease in the average pore size is observed. Changes in contact angle indicate increased water affinity in carbonate and reduced affinity in sandstone. The link between capillary interactions and fluid reactivity is often overlooked in fluid flow studies, and this research sheds light on the importance of reactivity during spontaneous imbibition, offering insights into dissolution and precipitation processes during capillary flow.
{"title":"The Impact of Acid Strength and Mineral Composition on Spontaneous Imbibition with Reactive Fluids","authors":"Muhammad Andiva Pratama, Hasan Javed Khan","doi":"10.1007/s11242-024-02138-0","DOIUrl":"10.1007/s11242-024-02138-0","url":null,"abstract":"<div><p>Capillary rise experiments are conducted in a set of calcareous and siliceous rocks with varying mineralogy and petrophysical properties to understand the coupled impact of reactivity and spontaneous imbibition. A capillary rise experiment is performed in each sample: first with deionized water, then with a dilute acidic solution, and finally again with deionized water, and the capillary rise profile for each is recorded. Pre- and post-acid petrophysical properties such as porosity, permeability, pore size distribution, and contact angle are measured for each sample. The mineral makeup of the rocks significantly influences how the acidic fluids penetrate the samples. The primary reactions are the dissolution of Ca- and Mg-rich minerals which alter the pore network. The higher acid strength results in higher capillary rise in calcareous rocks and results in an increase in the average pore size. The same pH acid results in lower capillary rise in the siliceous rocks, and a general decrease in the average pore size is observed. Changes in contact angle indicate increased water affinity in carbonate and reduced affinity in sandstone. The link between capillary interactions and fluid reactivity is often overlooked in fluid flow studies, and this research sheds light on the importance of reactivity during spontaneous imbibition, offering insights into dissolution and precipitation processes during capillary flow.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"152 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02138-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142789182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inertial permeability is a critical parameter that quantifies the pressure loss caused by inertia in fluid flow through rough-walled fractures, described by the Forchheimer equation. This study investigates the size effect on the inertial permeability of rough-walled fractures and establishes a characterization model for fractures of varying sizes. Numerical simulations are conducted on five large-scale fracture models (1 m × 1 m) by resolving the Navier–Stokes equations. Smaller models are extracted from these large-scale fracture models for detailed size-dependent analysis. The results show that the peak asperity height (ξ), asperity height variation coefficient (η), and the fitting coefficient of the aperture cumulative distribution curve (C) significantly affect inertial permeability. Specifically, as ξ increases, the fluid flow experiences greater resistance, resulting in a reduction of inertial permeability. Similarly, a larger η corresponds to more variable asperity heights, further decreasing permeability. In contrast, a higher C value, indicating a more uniform aperture distribution, increases inertial permeability by facilitating smoother fluid flow. Quantitatively, the relationship between inertial permeability and fracture size follows a power law, with the sensitivity to roughness parameters diminishing as fracture size increases. This characterization model provides a method for scaling from laboratory-scale to field-scale fractures, offering practical implications for hydraulic engineering and subsurface fluid flow management.
惯性渗透率是一个关键参数,用于量化流体在粗壁裂缝中流动时的惯性造成的压力损失,由Forchheimer方程描述。研究了粗壁裂缝尺寸对惯性渗透率的影响,建立了不同尺寸裂缝的表征模型。通过求解Navier-Stokes方程,对5种1 m × 1 m的大尺度裂缝模型进行了数值模拟。从这些大型裂缝模型中提取较小的模型进行详细的尺寸相关分析。结果表明,峰值凹凸高度(ξ)、凹凸高度变化系数(η)和孔径累积分布曲线拟合系数(C)对惯性渗透率有显著影响。具体地说,随着ξ值的增加,流体流动受到更大的阻力,导致惯性导率的降低。同样,较大的η对应于更可变的粗糙度高度,进一步降低渗透率。相反,C值越高,孔径分布越均匀,通过使流体流动更顺畅而增加惯性渗透率。在定量上,惯性渗透率与裂缝尺寸之间的关系遵循幂律,对粗糙度参数的敏感性随着裂缝尺寸的增加而降低。该表征模型提供了一种从实验室规模到现场规模的裂缝缩放方法,为水利工程和地下流体流动管理提供了实际意义。
{"title":"Characterization of Size-Dependent Inertial Permeability for Rough-Walled Fractures","authors":"Zihao Sun, Liangqing Wang, Liangchao Zou, Jia-Qing Zhou","doi":"10.1007/s11242-024-02139-z","DOIUrl":"10.1007/s11242-024-02139-z","url":null,"abstract":"<div><p>Inertial permeability is a critical parameter that quantifies the pressure loss caused by inertia in fluid flow through rough-walled fractures, described by the Forchheimer equation. This study investigates the size effect on the inertial permeability of rough-walled fractures and establishes a characterization model for fractures of varying sizes. Numerical simulations are conducted on five large-scale fracture models (1 m × 1 m) by resolving the Navier–Stokes equations. Smaller models are extracted from these large-scale fracture models for detailed size-dependent analysis. The results show that the peak asperity height (<i>ξ</i>), asperity height variation coefficient (<i>η</i>), and the fitting coefficient of the aperture cumulative distribution curve (<i>C</i>) significantly affect inertial permeability. Specifically, as <i>ξ</i> increases, the fluid flow experiences greater resistance, resulting in a reduction of inertial permeability. Similarly, a larger <i>η</i> corresponds to more variable asperity heights, further decreasing permeability. In contrast, a higher <i>C</i> value, indicating a more uniform aperture distribution, increases inertial permeability by facilitating smoother fluid flow. Quantitatively, the relationship between inertial permeability and fracture size follows a power law, with the sensitivity to roughness parameters diminishing as fracture size increases. This characterization model provides a method for scaling from laboratory-scale to field-scale fractures, offering practical implications for hydraulic engineering and subsurface fluid flow management.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"152 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1007/s11242-024-02144-2
Jingchun Feng, Qingrong Xiong, Diansen Yang
Four types of voids exist in shale, including inorganic pores, organic pores, natural fractures, and hydraulic fractures, where the gas flow within is affected by voids sizes, shapes, and the mineral composition surrounding them. It is still a challenge to build an effective multi-scale model for shale by now. A model classifying organic pores and inorganic pores with and without clay was proposed in our previous work by incorporating various testing methods. However, some improvements can be made, including wider the pore size of the model to full-scale and adding the fractures without being considered previously. Therefore, a new model is proposed by integrating an improved full-scale matrix pore network model (PNM) with fractures. That is, the effects of four types of voids, including organic pores, inorganic pores containing clay, inorganic pores without clay, and fractures, on gas flow are all considered in the model. Then, the factors affecting the permeability of the matrix (i.e., without fractures) and the whole model (i.e., with fractures) were analyzed. The results show that connectivity both in small- and large-scale PNM and total organic content facilitate the flow, while clay content and water film thickness hinder the flow, especially within small pores. Fractures along the pressure drop accelerate gas flow, and the fractures perpendicular to the pressure drop only channel the pressure when the fractures along the pressure drop both exist. The model can be applied to other mudstones and shales and studies the fluid migration within them through proper parameters adjustment.
{"title":"An Integrated Model with Reconstructed Full-Scale Shale Matrix and Fractures","authors":"Jingchun Feng, Qingrong Xiong, Diansen Yang","doi":"10.1007/s11242-024-02144-2","DOIUrl":"10.1007/s11242-024-02144-2","url":null,"abstract":"<div><p>Four types of voids exist in shale, including inorganic pores, organic pores, natural fractures, and hydraulic fractures, where the gas flow within is affected by voids sizes, shapes, and the mineral composition surrounding them. It is still a challenge to build an effective multi-scale model for shale by now. A model classifying organic pores and inorganic pores with and without clay was proposed in our previous work by incorporating various testing methods. However, some improvements can be made, including wider the pore size of the model to full-scale and adding the fractures without being considered previously. Therefore, a new model is proposed by integrating an improved full-scale matrix pore network model (PNM) with fractures. That is, the effects of four types of voids, including organic pores, inorganic pores containing clay, inorganic pores without clay, and fractures, on gas flow are all considered in the model. Then, the factors affecting the permeability of the matrix (i.e., without fractures) and the whole model (i.e., with fractures) were analyzed. The results show that connectivity both in small- and large-scale PNM and total organic content facilitate the flow, while clay content and water film thickness hinder the flow, especially within small pores. Fractures along the pressure drop accelerate gas flow, and the fractures perpendicular to the pressure drop only channel the pressure when the fractures along the pressure drop both exist. The model can be applied to other mudstones and shales and studies the fluid migration within them through proper parameters adjustment.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"152 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1007/s11242-024-02135-3
A. J. Castrillón Vásquez, P. Z. S. Paz, G. Chapiro
Foam flow in porous media increased the scientific community’s attention due to several potential industrial applications, including remediation of contaminated aquifers, soil remediation, acid diversion, and hydrocarbon recovery. Natural reservoirs typically have fractured and multi-layered structures. We investigate an immiscible incompressible two-phase foam flow in an internally homogeneous two-layered porous medium with different porosities and absolute permeabilities. For our analysis, we extended the previous result, evidencing that the presence of foam induces the existence of a single flow front in both layers. Using the traveling wave solution, we classify the foam flow depending on the absolute permeability and the porosity ratio between layers. We show that the mass crossflow between layers is connected to the relative position of the flow front in these layers and that the porosity difference between layers impacts the mass crossflow. All analytical estimates were supported by direct numerical simulations.
{"title":"On the Viscous Crossflow During the Foam Displacement in Two-Layered Porous Media","authors":"A. J. Castrillón Vásquez, P. Z. S. Paz, G. Chapiro","doi":"10.1007/s11242-024-02135-3","DOIUrl":"10.1007/s11242-024-02135-3","url":null,"abstract":"<div><p>Foam flow in porous media increased the scientific community’s attention due to several potential industrial applications, including remediation of contaminated aquifers, soil remediation, acid diversion, and hydrocarbon recovery. Natural reservoirs typically have fractured and multi-layered structures. We investigate an immiscible incompressible two-phase foam flow in an internally homogeneous two-layered porous medium with different porosities and absolute permeabilities. For our analysis, we extended the previous result, evidencing that the presence of foam induces the existence of a single flow front in both layers. Using the traveling wave solution, we classify the foam flow depending on the absolute permeability and the porosity ratio between layers. We show that the mass crossflow between layers is connected to the relative position of the flow front in these layers and that the porosity difference between layers impacts the mass crossflow. All analytical estimates were supported by direct numerical simulations.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 15","pages":"2835 - 2857"},"PeriodicalIF":2.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1007/s11242-024-02136-2
Catherine Spurin, Sharon Ellman, Dane Sherburn, Tom Bultreys, Hamdi A. Tchelepi
X-ray micro-computed tomography (X-ray micro-CT) is widely employed to investigate flow phenomena in porous media, providing a powerful alternative to core-scale experiments for estimating traditional petrophysical properties such as porosity, single-phase permeability or fluid connectivity. However, the segmentation process, critical for deriving these properties from greyscale images, varies significantly between studies due to the absence of a standardized workflow or any ground truth data. This introduces challenges in comparing results across different studies, especially for properties sensitive to segmentation. To address this, we present a fully open-source, automated workflow for the segmentation of a Bentheimer sandstone filled with nitrogen and brine. The workflow incorporates a traditional image processing pipeline, including non-local means filtering, image registration, watershed segmentation of grains, and a combination of differential imaging and thresholding for segmentation of the fluid phases. Our workflow enhances reproducibility by enabling other research groups to easily replicate and validate findings, fostering consistency in petrophysical property estimation. Moreover, its modular structure facilitates integration into modeling frameworks, allowing for forward-backward communication and parameter sensitivity analyses. We apply the workflow to exploring the sensitivity of the non-wetting phase volume, surface area, and connectivity to image processing. This adaptable tool paves the way for future advancements in X-ray micro-CT analysis of porous media.
X 射线显微计算机断层扫描(X-ray micro-CT)被广泛用于研究多孔介质中的流动现象,为估算孔隙度、单相渗透率或流体连通性等传统岩石物理特性提供了有力的岩心尺度实验替代方法。然而,由于缺乏标准化的工作流程或任何基本真实数据,对于从灰度图像中得出这些属性至关重要的分割过程在不同研究之间存在很大差异。这给比较不同研究的结果带来了挑战,尤其是对分割敏感的属性。为了解决这个问题,我们提出了一个完全开源的自动工作流程,用于分割充满氮气和盐水的本特海默砂岩。该工作流程结合了传统的图像处理流程,包括非局部均值滤波、图像配准、颗粒分水岭分割,以及差分成像和阈值分割流体相的组合。我们的工作流程使其他研究小组能够轻松复制和验证研究结果,从而提高了可重复性,促进了岩石物理特性估算的一致性。此外,它的模块化结构便于集成到建模框架中,允许进行前后向交流和参数敏感性分析。我们将工作流程应用于探索非润湿相体积、表面积和连通性对图像处理的敏感性。这种适应性强的工具为未来推进多孔介质的 X 射线显微 CT 分析铺平了道路。
{"title":"Python Workflow for Segmenting Multiphase Flow in Porous Rocks","authors":"Catherine Spurin, Sharon Ellman, Dane Sherburn, Tom Bultreys, Hamdi A. Tchelepi","doi":"10.1007/s11242-024-02136-2","DOIUrl":"10.1007/s11242-024-02136-2","url":null,"abstract":"<div><p>X-ray micro-computed tomography (X-ray micro-CT) is widely employed to investigate flow phenomena in porous media, providing a powerful alternative to core-scale experiments for estimating traditional petrophysical properties such as porosity, single-phase permeability or fluid connectivity. However, the segmentation process, critical for deriving these properties from greyscale images, varies significantly between studies due to the absence of a standardized workflow or any ground truth data. This introduces challenges in comparing results across different studies, especially for properties sensitive to segmentation. To address this, we present a fully open-source, automated workflow for the segmentation of a Bentheimer sandstone filled with nitrogen and brine. The workflow incorporates a traditional image processing pipeline, including non-local means filtering, image registration, watershed segmentation of grains, and a combination of differential imaging and thresholding for segmentation of the fluid phases. Our workflow enhances reproducibility by enabling other research groups to easily replicate and validate findings, fostering consistency in petrophysical property estimation. Moreover, its modular structure facilitates integration into modeling frameworks, allowing for forward-backward communication and parameter sensitivity analyses. We apply the workflow to exploring the sensitivity of the non-wetting phase volume, surface area, and connectivity to image processing. This adaptable tool paves the way for future advancements in X-ray micro-CT analysis of porous media.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 15","pages":"2819 - 2834"},"PeriodicalIF":2.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1007/s11242-024-02133-5
Jordi Petchamé-Guerrero, Jesus Carrera
Transport equations are widely used to describe the evolution of scalar quantities subject to advection, dispersion and, possibly, reactions. Numerical methods are required to solve these equations in applications, adopting either the advective or conservative formulations. Conservative formulations are usually preferred in practice because they conserve mass. Advective formulations do not, but have received more mathematical attention and are required for Lagrangian solution methods. To obtain an advective formulation that conserves mass, we subtract the discretized fluid flow equation, multiplied by concentration, from the conservative form of the transport equation. The resulting scheme not only conserves mass, but is also elegant in that it can be interpreted as averaging the advective term at cell interfaces, instead of approximating it at cell centers as in traditional centered schemes. The two schemes are identical when fluid velocity is constant, and both have second-order convergence, but the truncation errors are slightly different. We argue that the error terms appearing in the proposed scheme actually imply an improved representation of subgrid spreading/contraction and acceleration/deceleration caused by variable velocity. We compare the proposed and traditional schemes on several problems with variable velocity caused by recharge, discharge or evaporation, including two newly developed analytical solutions. The proposed method yields results that are slightly, but consistently, better than the traditional scheme, while always conserving mass (i.e., mass at the end equals mass at the beginning plus inputs minus outputs), which the traditional centered finite differences scheme does not. We conclude that this scheme should be preferred in finite difference solutions of transport.
{"title":"An Improved Scheme for the Finite Difference Approximation of the Advective Term in the Heat or Solute Transport Equations","authors":"Jordi Petchamé-Guerrero, Jesus Carrera","doi":"10.1007/s11242-024-02133-5","DOIUrl":"10.1007/s11242-024-02133-5","url":null,"abstract":"<div><p>Transport equations are widely used to describe the evolution of scalar quantities subject to advection, dispersion and, possibly, reactions. Numerical methods are required to solve these equations in applications, adopting either the advective or conservative formulations. Conservative formulations are usually preferred in practice because they conserve mass. Advective formulations do not, but have received more mathematical attention and are required for Lagrangian solution methods. To obtain an advective formulation that conserves mass, we subtract the discretized fluid flow equation, multiplied by concentration, from the conservative form of the transport equation. The resulting scheme not only conserves mass, but is also elegant in that it can be interpreted as averaging the advective term at cell interfaces, instead of approximating it at cell centers as in traditional centered schemes. The two schemes are identical when fluid velocity is constant, and both have second-order convergence, but the truncation errors are slightly different. We argue that the error terms appearing in the proposed scheme actually imply an improved representation of subgrid spreading/contraction and acceleration/deceleration caused by variable velocity. We compare the proposed and traditional schemes on several problems with variable velocity caused by recharge, discharge or evaporation, including two newly developed analytical solutions. The proposed method yields results that are slightly, but consistently, better than the traditional scheme, while always conserving mass (i.e., mass at the end equals mass at the beginning plus inputs minus outputs), which the traditional centered finite differences scheme does not. We conclude that this scheme should be preferred in finite difference solutions of transport.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 15","pages":"2795 - 2817"},"PeriodicalIF":2.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02133-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-19DOI: 10.1007/s11242-024-02130-8
Jan Březina, Pavel Burda
We derive an analytical solution to a Darcy flow problem in a discrete 1D fracture coupled to a 2D continuum matrix. Separate unknowns for the fracture and matrix domain are considered, coupled by a Robin-type condition. The solution, in the form of a Fourier series, applies to a wide range of problem parameters, covering both conductive and barrier fracture cases. The evaluation procedure and convergence properties are discussed. To validate the solution, we compare it against a numerical solution using second-order finite differences in a parametric study. Our results demonstrate the accuracy and effectiveness of the analytical solution, making it a valuable tool for testing numerical schemes for discrete fracture-matrix models.
{"title":"Analytical Solution for Darcy Flow in a Bounded Fracture-Matrix Domain","authors":"Jan Březina, Pavel Burda","doi":"10.1007/s11242-024-02130-8","DOIUrl":"10.1007/s11242-024-02130-8","url":null,"abstract":"<div><p>We derive an analytical solution to a Darcy flow problem in a discrete 1D fracture coupled to a 2D continuum matrix. Separate unknowns for the fracture and matrix domain are considered, coupled by a Robin-type condition. The solution, in the form of a Fourier series, applies to a wide range of problem parameters, covering both conductive and barrier fracture cases. The evaluation procedure and convergence properties are discussed. To validate the solution, we compare it against a numerical solution using second-order finite differences in a parametric study. Our results demonstrate the accuracy and effectiveness of the analytical solution, making it a valuable tool for testing numerical schemes for discrete fracture-matrix models.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 15","pages":"2777 - 2794"},"PeriodicalIF":2.7,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evaporation of droplets formed at the interface of a coupled free-flow–porous medium system enormously affects the exchange of mass, momentum, and energy between the two domains. In this work, we develop a model to describe multiple droplets’ evaporation at the interface, in which new sets of coupling conditions including the evaporating droplets are developed to describe the interactions between the free flow and the porous medium. Employing pore-network modeling to describe the porous medium, we take the exchanges occurring on the droplet–pore and droplet–free-flow interfaces into account. In this model, we describe the droplet evaporation as a diffusion-driven process, where vapor from the droplet surface diffuses into the surrounding free flow due to the concentration gradient. To validate the model, we compare the simulation results for the evaporation of a single droplet in a channel with experimental data, demonstrating that our model accurately describes the evaporation process. Then, we examine the impact of free-flow and porous medium properties on droplet evaporation. The results show that, among other factors, velocity and relative humidity in the free-flow domain, as well as pore temperature in the porous medium, play key roles in the droplet evaporation process.
{"title":"Modeling and Analysis of Droplet Evaporation at the Interface of a Coupled Free-Flow–Porous Medium System","authors":"Maziar Veyskarami, Carina Bringedal, Rainer Helmig","doi":"10.1007/s11242-024-02123-7","DOIUrl":"10.1007/s11242-024-02123-7","url":null,"abstract":"<div><p>Evaporation of droplets formed at the interface of a coupled free-flow–porous medium system enormously affects the exchange of mass, momentum, and energy between the two domains. In this work, we develop a model to describe multiple droplets’ evaporation at the interface, in which new sets of coupling conditions including the evaporating droplets are developed to describe the interactions between the free flow and the porous medium. Employing pore-network modeling to describe the porous medium, we take the exchanges occurring on the droplet–pore and droplet–free-flow interfaces into account. In this model, we describe the droplet evaporation as a diffusion-driven process, where vapor from the droplet surface diffuses into the surrounding free flow due to the concentration gradient. To validate the model, we compare the simulation results for the evaporation of a single droplet in a channel with experimental data, demonstrating that our model accurately describes the evaporation process. Then, we examine the impact of free-flow and porous medium properties on droplet evaporation. The results show that, among other factors, velocity and relative humidity in the free-flow domain, as well as pore temperature in the porous medium, play key roles in the droplet evaporation process.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 15","pages":"2745 - 2775"},"PeriodicalIF":2.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11242-024-02123-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-15DOI: 10.1007/s11242-024-02134-4
Liu Yang, Mingjun Li, Haitao Zhang, Yan Liu, Zhaoyang Liu, Zhengyan Zhang, Fei Gong, Suling Wang
Counter-current imbibition can improve the recovery efficiency of complex fractured reservoirs, but there are few studies on the pore-scale mechanism and the factors affecting the recovery efficiency. This paper attempts to track the microscopic oil–water imbibition process through phase field method simulation, revealing the distribution characteristics of oil and water phases at different stages, as well as the sudden change characteristics of pressure and velocity at the instant of oil film rupture. Then, the influence of fracture aperture, capillary number and viscosity ratio on oil recovery efficiency is discussed. Results indicate that the microscopic imbibition process can be divided into 4 stages: the oil film forms after oil–water contact, then the oil film ruptures to form oil droplets, then the oil–water line moves outward from the large pore, and finally the oil droplets gather to discharge from the fracture. It is also found that there will be sudden changes at the moment of oil film rupture, the pressure drops sharply and the velocity increases sharply. Moreover, there exists a critical fracture aperture which is approximately 10 times the average pore size, and if the fracture is smaller than the critical fracture aperture, a dead oil zone occurs, which affects recovery. Additionally, LogM-LogCa stability diagram is constructed which is mainly dominated by viscous forces, capillary forces. As the capillary number increases, the recovery efficiency shows an overall decreasing trend. When the viscosity ratio was greater than 10, there was no significant change in the recovery efficiency, influenced by the weakening of the dominant role of viscous forces. New findings are beneficial to enhancing the recovery efficiency of low permeability reservoirs.
{"title":"Phase-Field Simulation of Counter-Current Imbibition and Factors Influencing Recovery Efficiency","authors":"Liu Yang, Mingjun Li, Haitao Zhang, Yan Liu, Zhaoyang Liu, Zhengyan Zhang, Fei Gong, Suling Wang","doi":"10.1007/s11242-024-02134-4","DOIUrl":"10.1007/s11242-024-02134-4","url":null,"abstract":"<div><p>Counter-current imbibition can improve the recovery efficiency of complex fractured reservoirs, but there are few studies on the pore-scale mechanism and the factors affecting the recovery efficiency. This paper attempts to track the microscopic oil–water imbibition process through phase field method simulation, revealing the distribution characteristics of oil and water phases at different stages, as well as the sudden change characteristics of pressure and velocity at the instant of oil film rupture. Then, the influence of fracture aperture, capillary number and viscosity ratio on oil recovery efficiency is discussed. Results indicate that the microscopic imbibition process can be divided into 4 stages: the oil film forms after oil–water contact, then the oil film ruptures to form oil droplets, then the oil–water line moves outward from the large pore, and finally the oil droplets gather to discharge from the fracture. It is also found that there will be sudden changes at the moment of oil film rupture, the pressure drops sharply and the velocity increases sharply. Moreover, there exists a critical fracture aperture which is approximately 10 times the average pore size, and if the fracture is smaller than the critical fracture aperture, a dead oil zone occurs, which affects recovery. Additionally, Log<i>M</i>-LogCa stability diagram is constructed which is mainly dominated by viscous forces, capillary forces. As the capillary number increases, the recovery efficiency shows an overall decreasing trend. When the viscosity ratio was greater than 10, there was no significant change in the recovery efficiency, influenced by the weakening of the dominant role of viscous forces. New findings are beneficial to enhancing the recovery efficiency of low permeability reservoirs.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"151 15","pages":"2727 - 2743"},"PeriodicalIF":2.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}