Pub Date : 2024-01-18DOI: 10.3390/applmicrobiol4010014
L. Owen, Caroline Cayrou, Georgina Page, Martin Grootveld, Katie Laird
This research aims to develop a standardised protocol for monitoring the disinfection efficacy of healthcare laundry processes in view of numerous differential methodologies currently being employed within the healthcare laundry sector, including agitation and surface sampling for post-laundering decontamination assessment and swatch and bioindicator testing for in-wash-process efficacy. Enterococcus faecium as an indicator species within industrial wash systems is preferable due to its high thermal and disinfectant tolerance. Methods for measuring laundry disinfection were compared; commercially available E. faecium bioindicators and contaminated cotton swatches (loose, in cloth bags or within nylon membranes) were laundered industrially at ambient temperature and microbial recovery determined. E. faecium was lost from cotton during laundering but retained by the bioindicator membrane, which allows disinfection efficacy to be measured without loss of microorganisms from the test swatch. Commercially available bioindicators were only permeable to disinfectants and detergents at ≥60 °C. Subsequently, polyethersulphone membranes for enclosing contaminated swatches were developed for low-temperature laundering, with permeability to industrial laundry chemistries at below ≤60 °C. This study demonstrates that bioindicators are the recommended methodology for laundry disinfection validation. The use of a universal healthcare laundry disinfection methodology will lead to standardised microbiological testing across the industry and improvements in infection control.
鉴于目前在医疗洗衣行业中采用了许多不同的方法,包括用于洗衣后去污评估的搅拌和表面取样,以及用于洗涤过程中消毒效果的色块和生物指示剂测试,本研究旨在为监测医疗洗衣过程的消毒效果制定标准化方案。由于粪肠球菌对热和消毒剂的耐受性较强,因此最好将其作为工业洗涤系统中的指示菌。比较了洗衣消毒的测量方法;在环境温度下对市售的粪肠球菌生物指示剂和受污染的棉布(散装、装在布袋中或尼龙膜内)进行工业洗涤,并测定微生物的回收率。在洗涤过程中,棉花中的粪肠球菌会流失,但生物指示剂膜会保留,这样就可以在不损失测试棉样中微生物的情况下测量消毒效果。市售的生物指示剂只能在温度≥60 °C时透过消毒剂和洗涤剂。随后,开发出了用于封闭受污染棉样的聚醚砜膜,可用于低温洗涤,在温度低于 ≤60 °C 时对工业洗衣化学剂具有渗透性。这项研究表明,生物指标是洗衣房消毒验证的推荐方法。使用通用的医疗洗衣房消毒方法将使整个行业的微生物检测标准化,并改善感染控制。
{"title":"Development of a Standardised International Protocol for Evaluation of the Disinfection Efficacy of Healthcare Laundry Wash Processes","authors":"L. Owen, Caroline Cayrou, Georgina Page, Martin Grootveld, Katie Laird","doi":"10.3390/applmicrobiol4010014","DOIUrl":"https://doi.org/10.3390/applmicrobiol4010014","url":null,"abstract":"This research aims to develop a standardised protocol for monitoring the disinfection efficacy of healthcare laundry processes in view of numerous differential methodologies currently being employed within the healthcare laundry sector, including agitation and surface sampling for post-laundering decontamination assessment and swatch and bioindicator testing for in-wash-process efficacy. Enterococcus faecium as an indicator species within industrial wash systems is preferable due to its high thermal and disinfectant tolerance. Methods for measuring laundry disinfection were compared; commercially available E. faecium bioindicators and contaminated cotton swatches (loose, in cloth bags or within nylon membranes) were laundered industrially at ambient temperature and microbial recovery determined. E. faecium was lost from cotton during laundering but retained by the bioindicator membrane, which allows disinfection efficacy to be measured without loss of microorganisms from the test swatch. Commercially available bioindicators were only permeable to disinfectants and detergents at ≥60 °C. Subsequently, polyethersulphone membranes for enclosing contaminated swatches were developed for low-temperature laundering, with permeability to industrial laundry chemistries at below ≤60 °C. This study demonstrates that bioindicators are the recommended methodology for laundry disinfection validation. The use of a universal healthcare laundry disinfection methodology will lead to standardised microbiological testing across the industry and improvements in infection control.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":"108 37","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139614447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-17DOI: 10.3390/applmicrobiol4010012
Yorick Minnebo, K. De Paepe, R. Props, T. Lacoere, Nico Boon, Tom Van de Wiele
Methane-producing Archaea can be found in a variety of habitats, including the gastrointestinal tract, where they are linked to various diseases. The majority of current monitoring methods can be slow and laborious. To facilitate gut methanogenic Archaea detection, we investigated flow cytometry for rapid quantification based on the autofluorescent F420 cofactor, an essential coenzyme in methanogenesis. The methanogenic population was distinguishable from the SYBR green (SG) and SYBR green/propidium iodide (SGPI) stained background microbiome based on elevated 452 nm emission in Methanobrevibacter smithii spiked controls. As a proof-of-concept, elevated F420-autofluorescence was used to detect and quantify methanogens in 10 faecal samples and 241 in vitro incubated faecal samples. The methanogenic population in faeces, determined through Archaea-specific 16S rRNA gene amplicon sequencing, consisted of Methanobrevibacter and Methanomassiliicoccus. F420-based methanogen quantification in SG and SGPI-stained faecal samples showed an accuracy of 90 and 100% against Archaea proportions determined with universal primers. When compared to methane and Archaea presence, methanogen categorisation in in vitro incubated faeces exhibited an accuracy of 71 and 75%, with a precision of 42 and 70%, respectively. To conclude, flow cytometry is a reproducible and fast method for the detection and quantification of gut methanogenic Archaea.
{"title":"Methanogenic Archaea Quantification in the Human Gut Microbiome with F420 Autofluorescence-Based Flow Cytometry","authors":"Yorick Minnebo, K. De Paepe, R. Props, T. Lacoere, Nico Boon, Tom Van de Wiele","doi":"10.3390/applmicrobiol4010012","DOIUrl":"https://doi.org/10.3390/applmicrobiol4010012","url":null,"abstract":"Methane-producing Archaea can be found in a variety of habitats, including the gastrointestinal tract, where they are linked to various diseases. The majority of current monitoring methods can be slow and laborious. To facilitate gut methanogenic Archaea detection, we investigated flow cytometry for rapid quantification based on the autofluorescent F420 cofactor, an essential coenzyme in methanogenesis. The methanogenic population was distinguishable from the SYBR green (SG) and SYBR green/propidium iodide (SGPI) stained background microbiome based on elevated 452 nm emission in Methanobrevibacter smithii spiked controls. As a proof-of-concept, elevated F420-autofluorescence was used to detect and quantify methanogens in 10 faecal samples and 241 in vitro incubated faecal samples. The methanogenic population in faeces, determined through Archaea-specific 16S rRNA gene amplicon sequencing, consisted of Methanobrevibacter and Methanomassiliicoccus. F420-based methanogen quantification in SG and SGPI-stained faecal samples showed an accuracy of 90 and 100% against Archaea proportions determined with universal primers. When compared to methane and Archaea presence, methanogen categorisation in in vitro incubated faeces exhibited an accuracy of 71 and 75%, with a precision of 42 and 70%, respectively. To conclude, flow cytometry is a reproducible and fast method for the detection and quantification of gut methanogenic Archaea.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":" April","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139618002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-15DOI: 10.3390/applmicrobiol4010011
Karin Kobayashi, Hiromi Nishida
The co-cultivation of sake yeast (AK25, K901, K1401, or K1801 strain) and the kuratsuki Bacillus A-10 and/or Priestia B-12 strains in koji solution was performed to demonstrate the effects of these two kuratsuki bacteria on sake taste. The results showed that the Brix and acidity patterns of sake preparations produced with and without these kuratsuki bacteria were very similar. This indicated that the addition of these kuratsuki bacteria did not inhibit ethanol fermentation or organic acid production by sake yeast. A taste recognition device showed that the effects of these kuratsuki bacteria on the saltiness and sourness of sake were greater than those on other taste properties. Astringency stimulation and saltiness of sake produced using the sake yeast K901 were increased by Bacillus A-10 and decreased by Priestia B-12. Except for these two cases, the taste intensities of sake preparations produced with the Bacillus A-10 and Priestia B-12 strains were very similar, but differed from those of sake produced with kuratsuki Kocuria. These results support our hypothesis that the flavor and taste of sake can be controlled by utilizing the interactions between kuratsuki bacteria and sake yeast. For crating the desired sake taste, a combination of kuratsuki bacteria and sake yeast should be considered.
{"title":"Effect of kuratsuki Bacillus and Priestia on Taste of Sake","authors":"Karin Kobayashi, Hiromi Nishida","doi":"10.3390/applmicrobiol4010011","DOIUrl":"https://doi.org/10.3390/applmicrobiol4010011","url":null,"abstract":"The co-cultivation of sake yeast (AK25, K901, K1401, or K1801 strain) and the kuratsuki Bacillus A-10 and/or Priestia B-12 strains in koji solution was performed to demonstrate the effects of these two kuratsuki bacteria on sake taste. The results showed that the Brix and acidity patterns of sake preparations produced with and without these kuratsuki bacteria were very similar. This indicated that the addition of these kuratsuki bacteria did not inhibit ethanol fermentation or organic acid production by sake yeast. A taste recognition device showed that the effects of these kuratsuki bacteria on the saltiness and sourness of sake were greater than those on other taste properties. Astringency stimulation and saltiness of sake produced using the sake yeast K901 were increased by Bacillus A-10 and decreased by Priestia B-12. Except for these two cases, the taste intensities of sake preparations produced with the Bacillus A-10 and Priestia B-12 strains were very similar, but differed from those of sake produced with kuratsuki Kocuria. These results support our hypothesis that the flavor and taste of sake can be controlled by utilizing the interactions between kuratsuki bacteria and sake yeast. For crating the desired sake taste, a combination of kuratsuki bacteria and sake yeast should be considered.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":"118 16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139530110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-15DOI: 10.3390/applmicrobiol4010010
Talib Banser, Z. Abduljaleel, Kamal H Y Alzabeedi, Adil A. Alzahrani, Asim Khogeer, Fadel Qabbani, Ahmed T. Almutairi, Sami Melebari, N. Shahzad
The ongoing global public health challenge posed by the COVID-19 pandemic necessitates continuous research and surveillance efforts. In this study, we comprehensively analyzed over 1000 COVID-19 RT-PCR tests conducted on a cohort of 1200 patients in Saudi Arabia. Our primary goal was to investigate mutations in specific genes RdRp, N, and E different infection and recovery stages in Saudi patients with SARS-CoV-2. We also extended our analysis to include patients of various nationalities residing in Saudi Arabia, with the overarching objective of assessing these genes as markers for COVID-19 presence and progression. To diagnose and investigate potential genetic variations in COVID-19, we engaged RT-PCR. Our study primarily focused on detecting mutations in the RdRp, N, and E genes in Saudi patients with SARS-CoV-2, as well as individuals from various national residing in Saudi Arabia. This molecular technique provided valuable insights into the virus’s genetic makeup during infection and recovery. In our analysis of 671 positive COVID-19 cases, diverse gene involvement patterns were observed. Specifically, 55.91% had mutations in all three genes (RdRp, N, and E), 62.33% in both N and E genes, and 67.16% in RdRp and N genes. Additionally, 30.75% exhibited mutations exclusively in the RdRp gene, and 51.58% had mutations in the N gene. The N gene, in particular, showed high sensitivity as a marker for identifying active viral circulation. Regarding the temporal dynamics of the disease, the median duration between a positive and a subsequent negative COVID-19 RT-PCR test result was approximately 33.86 days for 44% of cases, 14.31 days for 30%, and 22.67 days for 4%. The insights from this study hold significant implications for managing COVID-19 patients during the ongoing pandemic. The N gene shows promise as a marker for detecting active viral circulation, potentially improving patient care and containment strategies. Establishing a defined positive threshold for diagnostic methods and correlating it with a low risk of infection remains a challenge. Further research is needed to address these complexities and enhance our understanding of COVID-19 epidemiology and diagnostics.
COVID-19 大流行给全球公共卫生带来了持续挑战,因此有必要继续开展研究和监测工作。在本研究中,我们全面分析了对沙特阿拉伯 1200 名患者进行的 1000 多次 COVID-19 RT-PCR 检测。我们的主要目标是调查沙特 SARS-CoV-2 患者在不同感染和恢复阶段的特定基因 RdRp、N 和 E 的突变情况。我们还将分析范围扩大到居住在沙特阿拉伯的不同国籍的患者,主要目的是将这些基因作为 COVID-19 存在和发展的标志物进行评估。为了诊断和调查 COVID-19 的潜在基因变异,我们采用了 RT-PCR 技术。我们的研究主要集中在检测沙特 SARS-CoV-2 患者以及居住在沙特阿拉伯的不同民族的个体中 RdRp、N 和 E 基因的突变。这种分子技术为了解病毒在感染和恢复期间的基因构成提供了宝贵的信息。在我们对 671 例 COVID-19 阳性病例的分析中,观察到了不同的基因参与模式。具体来说,55.91%的病例所有三个基因(RdRp、N 和 E)都发生了突变,62.33%的病例 N 和 E 基因都发生了突变,67.16%的病例 RdRp 和 N 基因都发生了突变。此外,30.75%的人只表现出 RdRp 基因突变,51.58%的人 N 基因突变。特别是 N 基因,作为识别活跃病毒循环的标志物显示出较高的灵敏度。关于疾病的时间动态,COVID-19 RT-PCR 检测结果从阳性到阴性的中位时间分别为:44% 的病例约为 33.86 天,30% 的病例约为 14.31 天,4% 的病例约为 22.67 天。这项研究的启示对于在大流行期间管理 COVID-19 患者具有重要意义。N 基因有望成为检测活跃病毒循环的标志物,从而改善患者护理和遏制策略。为诊断方法确定一个明确的阳性阈值并将其与低感染风险联系起来仍然是一项挑战。要解决这些复杂的问题并加深我们对 COVID-19 流行病学和诊断学的了解,还需要进一步的研究。
{"title":"Genetic Analysis and Epidemiological Impact of SARS-CoV-2: A Multinational Study of 1000 Samples Using RT-PCR","authors":"Talib Banser, Z. Abduljaleel, Kamal H Y Alzabeedi, Adil A. Alzahrani, Asim Khogeer, Fadel Qabbani, Ahmed T. Almutairi, Sami Melebari, N. Shahzad","doi":"10.3390/applmicrobiol4010010","DOIUrl":"https://doi.org/10.3390/applmicrobiol4010010","url":null,"abstract":"The ongoing global public health challenge posed by the COVID-19 pandemic necessitates continuous research and surveillance efforts. In this study, we comprehensively analyzed over 1000 COVID-19 RT-PCR tests conducted on a cohort of 1200 patients in Saudi Arabia. Our primary goal was to investigate mutations in specific genes RdRp, N, and E different infection and recovery stages in Saudi patients with SARS-CoV-2. We also extended our analysis to include patients of various nationalities residing in Saudi Arabia, with the overarching objective of assessing these genes as markers for COVID-19 presence and progression. To diagnose and investigate potential genetic variations in COVID-19, we engaged RT-PCR. Our study primarily focused on detecting mutations in the RdRp, N, and E genes in Saudi patients with SARS-CoV-2, as well as individuals from various national residing in Saudi Arabia. This molecular technique provided valuable insights into the virus’s genetic makeup during infection and recovery. In our analysis of 671 positive COVID-19 cases, diverse gene involvement patterns were observed. Specifically, 55.91% had mutations in all three genes (RdRp, N, and E), 62.33% in both N and E genes, and 67.16% in RdRp and N genes. Additionally, 30.75% exhibited mutations exclusively in the RdRp gene, and 51.58% had mutations in the N gene. The N gene, in particular, showed high sensitivity as a marker for identifying active viral circulation. Regarding the temporal dynamics of the disease, the median duration between a positive and a subsequent negative COVID-19 RT-PCR test result was approximately 33.86 days for 44% of cases, 14.31 days for 30%, and 22.67 days for 4%. The insights from this study hold significant implications for managing COVID-19 patients during the ongoing pandemic. The N gene shows promise as a marker for detecting active viral circulation, potentially improving patient care and containment strategies. Establishing a defined positive threshold for diagnostic methods and correlating it with a low risk of infection remains a challenge. Further research is needed to address these complexities and enhance our understanding of COVID-19 epidemiology and diagnostics.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139529540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-10DOI: 10.3390/applmicrobiol4010009
L. Cornet, V. Lupo, Stéphane Declerck, D. Baurain
Genomic contamination remains a pervasive challenge in (meta)genomics, prompting the development of numerous detection tools. Despite the attention that this issue has attracted, a comprehensive comparison of the available tools is absent from the literature. Furthermore, the potential effect of horizontal gene transfer on the detection of genomic contamination has been little studied. In this study, we evaluated the efficiency of detection of six widely used contamination detection tools. To this end, we developed a simulation framework using orthologous group inference as a robust basis for the simulation of contamination. Additionally, we implemented a variable mutation rate to simulate horizontal transfer. Our simulations covered six distinct taxonomic ranks, ranging from phylum to species. The evaluation of contamination levels revealed the suboptimal precision of the tools, attributed to significant cases of both over-detection and under-detection, particularly at the genus and species levels. Notably, only so-called “redundant” contamination was reliably estimated. Our findings underscore the necessity of employing a combination of tools, including Kraken2, for accurate contamination level assessment. We also demonstrate that none of the assayed tools confused contamination and horizontal gene transfer. Finally, we release CRACOT, a freely accessible contamination simulation framework, which holds promise in evaluating the efficacy of future algorithms.
{"title":"Evaluation of Genomic Contamination Detection Tools and Influence of Horizontal Gene Transfer on Their Efficiency through Contamination Simulations at Various Taxonomic Ranks","authors":"L. Cornet, V. Lupo, Stéphane Declerck, D. Baurain","doi":"10.3390/applmicrobiol4010009","DOIUrl":"https://doi.org/10.3390/applmicrobiol4010009","url":null,"abstract":"Genomic contamination remains a pervasive challenge in (meta)genomics, prompting the development of numerous detection tools. Despite the attention that this issue has attracted, a comprehensive comparison of the available tools is absent from the literature. Furthermore, the potential effect of horizontal gene transfer on the detection of genomic contamination has been little studied. In this study, we evaluated the efficiency of detection of six widely used contamination detection tools. To this end, we developed a simulation framework using orthologous group inference as a robust basis for the simulation of contamination. Additionally, we implemented a variable mutation rate to simulate horizontal transfer. Our simulations covered six distinct taxonomic ranks, ranging from phylum to species. The evaluation of contamination levels revealed the suboptimal precision of the tools, attributed to significant cases of both over-detection and under-detection, particularly at the genus and species levels. Notably, only so-called “redundant” contamination was reliably estimated. Our findings underscore the necessity of employing a combination of tools, including Kraken2, for accurate contamination level assessment. We also demonstrate that none of the assayed tools confused contamination and horizontal gene transfer. Finally, we release CRACOT, a freely accessible contamination simulation framework, which holds promise in evaluating the efficacy of future algorithms.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":"49 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139441292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Livestock production in Afghanistan highly relies on grazing and clover feed, which is a key component of pastures and forage crops. This study elucidated the genetic diversity of clover-nodulating rhizobia in different ecological regions and their effects on clover growth. A total of 57 rhizobia were isolated and their genetic diversities were studied through 16S rRNA and nifD genes. The isolates were inoculated to clover (Afghan local variety), to investigate the potential of nitrogen fixation and influences of clover growth. The 16S rRNA gene analysis showed two distinct groups of Rhizobium (94.7%) and Ensifer (5.3%) species. The nifD phylogenetic relationship revealed a high similarity to Rhizobium and a novel lineage group close to Rhizobium leguminosarum species. In the plant test, different genotypes significantly (p < 0.01) exhibited an increase in plant biomass production, compared to the un-inoculated plants. Among genotypes, the highest plant biomass was recorded in PC8 (1769.0 mg/plant) and PC9 (1409.2 mg/plant) isolates as compared to un-inoculated plants (144.0 mg/plant). Moreover, these isolates showed maximum nitrogen fixation rates of 8.2 and 6.5 µM/plant, respectively. These isolates were identified as the most promising rhizobial strains for developing biofertilizers in the context of Afghanistan.
{"title":"Insights into Genetic and Physiological Characteristics of Clover Rhizobia in Afghanistan Soils","authors":"Safiullah Habibi, Michiko Yasuda, Shafiqullah Aryan, Tadashi Yokoyama, Kalimullah Saighani, Naoko Ohkama‐Ohtsu","doi":"10.3390/applmicrobiol4010008","DOIUrl":"https://doi.org/10.3390/applmicrobiol4010008","url":null,"abstract":"Livestock production in Afghanistan highly relies on grazing and clover feed, which is a key component of pastures and forage crops. This study elucidated the genetic diversity of clover-nodulating rhizobia in different ecological regions and their effects on clover growth. A total of 57 rhizobia were isolated and their genetic diversities were studied through 16S rRNA and nifD genes. The isolates were inoculated to clover (Afghan local variety), to investigate the potential of nitrogen fixation and influences of clover growth. The 16S rRNA gene analysis showed two distinct groups of Rhizobium (94.7%) and Ensifer (5.3%) species. The nifD phylogenetic relationship revealed a high similarity to Rhizobium and a novel lineage group close to Rhizobium leguminosarum species. In the plant test, different genotypes significantly (p < 0.01) exhibited an increase in plant biomass production, compared to the un-inoculated plants. Among genotypes, the highest plant biomass was recorded in PC8 (1769.0 mg/plant) and PC9 (1409.2 mg/plant) isolates as compared to un-inoculated plants (144.0 mg/plant). Moreover, these isolates showed maximum nitrogen fixation rates of 8.2 and 6.5 µM/plant, respectively. These isolates were identified as the most promising rhizobial strains for developing biofertilizers in the context of Afghanistan.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":"55 36","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139447023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-30DOI: 10.3390/applmicrobiol4010006
Jourdan E. Lakes, Jessica L. Ferrell, M. Flythe
Clostridioides difficile is a clinically and agriculturally important organism with diverse metabolic capabilities. Commercially available media types to cultivate C. difficile typically include multiple growth substrates and often selective agents. Under these conditions, it is difficult to determine what the bacteria utilized and which products are derived from which substrates. These experiments compared a commercial broth (Reinforced Clostridium Medium/RCM) to simpler, defined, carbonate-based media types influenced by Robert Hungate. Peptides (tryptone peptone), amino acids (casamino acids), and/or glucose were added to evaluate the growth of C. difficile strains 9689, BAA-1870, and 43597, and the metabolism of the type strain 9689. C. difficile grew to the greatest optical density in the rich RCM broth but produced less ammonia than the tryptone-containing media types. C. difficile utilized all glucose in RCM and T+G media in addition to performing amino acid fermentations, though the volatile fatty acids produced were not necessarily consistent across media type. When cultured in CAA-containing media, 9689 performed very little metabolism and did not grow regardless of supplementation with glucose. These data demonstrated that C. difficile could metabolize substrates and grow in defined, anaerobic, and carbonate-buffered media. Hungate-style media appear to be an acceptable choice for reliable culturing of C. difficile.
{"title":"Growth and Metabolism of Clostridioides difficile in Hungate-Style Media","authors":"Jourdan E. Lakes, Jessica L. Ferrell, M. Flythe","doi":"10.3390/applmicrobiol4010006","DOIUrl":"https://doi.org/10.3390/applmicrobiol4010006","url":null,"abstract":"Clostridioides difficile is a clinically and agriculturally important organism with diverse metabolic capabilities. Commercially available media types to cultivate C. difficile typically include multiple growth substrates and often selective agents. Under these conditions, it is difficult to determine what the bacteria utilized and which products are derived from which substrates. These experiments compared a commercial broth (Reinforced Clostridium Medium/RCM) to simpler, defined, carbonate-based media types influenced by Robert Hungate. Peptides (tryptone peptone), amino acids (casamino acids), and/or glucose were added to evaluate the growth of C. difficile strains 9689, BAA-1870, and 43597, and the metabolism of the type strain 9689. C. difficile grew to the greatest optical density in the rich RCM broth but produced less ammonia than the tryptone-containing media types. C. difficile utilized all glucose in RCM and T+G media in addition to performing amino acid fermentations, though the volatile fatty acids produced were not necessarily consistent across media type. When cultured in CAA-containing media, 9689 performed very little metabolism and did not grow regardless of supplementation with glucose. These data demonstrated that C. difficile could metabolize substrates and grow in defined, anaerobic, and carbonate-buffered media. Hungate-style media appear to be an acceptable choice for reliable culturing of C. difficile.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":" 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139138618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-28DOI: 10.3390/applmicrobiol4010005
Lisa Göpel, E. Prenger-Berninghoff, Silver A. Wolf, T. Semmler, R. Bauerfeind, Christa Ewers
In the European Union, gastrointestinal disease in pigs is the main indication for the use of colistin, but large-scale epidemiologic data concerning the frequency of mobile colistin resistance (mcr) genes in pig-associated pathotypes of Escherichia coli (E. coli) are lacking. Multiplex polymerase chain reactions were used to detect virulence-associated genes (VAGs) and mcr-1–mcr-10 genes in 10,573 porcine E. coli isolates collected in Germany from July 2000 to December 2021. Whole genome sequencing was performed on 220 representative mcr-positive E. coli strains. The total frequency of mcr genes was 10.2%, the most frequent being mcr-1 (8.4%) and mcr-4 (1.6%). All other mcr genes were rarely identified (mcr-2, mcr-3, mcr-5) or absent (mcr-6 to mcr-10). The highest frequencies of mcr genes were found in enterotoxigenic and shiga toxin-encoding E. coli (ETEC/STEC hybrid) and in edema disease E. coli (EDEC) strains (21.9% and 17.7%, respectively). We report three novel mcr variants, mcr-1.36, mcr-4.8, and mcr-5.5. In 39 attaching and effacing E. coli (AEEC) isolates analyzed in our study, the eae subtype β1 was the most prevalent (71.8%). Constant surveillance for the presence of mcr genes in various sectors should consider the different frequency of mcr-positive isolates in pathogenic E. coli.
{"title":"Occurrence of Mobile Colistin Resistance Genes mcr-1–mcr-10 including Novel mcr Gene Variants in Different Pathotypes of Porcine Escherichia coli Isolates Collected in Germany from 2000 to 2021","authors":"Lisa Göpel, E. Prenger-Berninghoff, Silver A. Wolf, T. Semmler, R. Bauerfeind, Christa Ewers","doi":"10.3390/applmicrobiol4010005","DOIUrl":"https://doi.org/10.3390/applmicrobiol4010005","url":null,"abstract":"In the European Union, gastrointestinal disease in pigs is the main indication for the use of colistin, but large-scale epidemiologic data concerning the frequency of mobile colistin resistance (mcr) genes in pig-associated pathotypes of Escherichia coli (E. coli) are lacking. Multiplex polymerase chain reactions were used to detect virulence-associated genes (VAGs) and mcr-1–mcr-10 genes in 10,573 porcine E. coli isolates collected in Germany from July 2000 to December 2021. Whole genome sequencing was performed on 220 representative mcr-positive E. coli strains. The total frequency of mcr genes was 10.2%, the most frequent being mcr-1 (8.4%) and mcr-4 (1.6%). All other mcr genes were rarely identified (mcr-2, mcr-3, mcr-5) or absent (mcr-6 to mcr-10). The highest frequencies of mcr genes were found in enterotoxigenic and shiga toxin-encoding E. coli (ETEC/STEC hybrid) and in edema disease E. coli (EDEC) strains (21.9% and 17.7%, respectively). We report three novel mcr variants, mcr-1.36, mcr-4.8, and mcr-5.5. In 39 attaching and effacing E. coli (AEEC) isolates analyzed in our study, the eae subtype β1 was the most prevalent (71.8%). Constant surveillance for the presence of mcr genes in various sectors should consider the different frequency of mcr-positive isolates in pathogenic E. coli.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":"4 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139149209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-23DOI: 10.3390/applmicrobiol4010003
Manju Kundu, Amin Omar, Brenton Buziak, N. Allan, Lyriam L. R. Marques, Merle Olson, Ronald Howard, Michael W. Harding
Food-borne pathogens are a serious challenge in food handling, processing, and packaging systems. The growth of microbial biofilms on food handling surfaces further complicates the management of the microbial contamination of food. Microorganisms within biofilms are difficult to eradicate with chemical disinfectants, with an increased likelihood of survival and the subsequent contamination of food. Therefore, a biofilm approach is needed in food safety and hygiene studies. Since many factors, such as strain, cell density, surface type and texture, environmental stress, and so forth, can affect biofilm formation and disinfectant efficacy, we evaluated the responses of biofilms formed by three food-borne bacterial pathogens on eight hard surfaces to seven chemical disinfectants. The three bacteria showed different capacities to colonize the surfaces. Similarly, chemical disinfectants also varied in efficacy, on surfaces and with pathogen species. One-, two-, and three-way interactions of strain, surface, and disinfectant were observed. The results generated demonstrate that the fine-tuning of sanitization strategies along the food production, processing, and packaging chain can be achieved in specific scenarios by accounting for two- and three-way interactions among bacteria, surface, and disinfectant.
{"title":"Customizing Sanitization Protocols for Food-Borne Pathogens Based on Biofilm Formation, Surfaces and Disinfectants—Their Two- and Three-Way Interactions","authors":"Manju Kundu, Amin Omar, Brenton Buziak, N. Allan, Lyriam L. R. Marques, Merle Olson, Ronald Howard, Michael W. Harding","doi":"10.3390/applmicrobiol4010003","DOIUrl":"https://doi.org/10.3390/applmicrobiol4010003","url":null,"abstract":"Food-borne pathogens are a serious challenge in food handling, processing, and packaging systems. The growth of microbial biofilms on food handling surfaces further complicates the management of the microbial contamination of food. Microorganisms within biofilms are difficult to eradicate with chemical disinfectants, with an increased likelihood of survival and the subsequent contamination of food. Therefore, a biofilm approach is needed in food safety and hygiene studies. Since many factors, such as strain, cell density, surface type and texture, environmental stress, and so forth, can affect biofilm formation and disinfectant efficacy, we evaluated the responses of biofilms formed by three food-borne bacterial pathogens on eight hard surfaces to seven chemical disinfectants. The three bacteria showed different capacities to colonize the surfaces. Similarly, chemical disinfectants also varied in efficacy, on surfaces and with pathogen species. One-, two-, and three-way interactions of strain, surface, and disinfectant were observed. The results generated demonstrate that the fine-tuning of sanitization strategies along the food production, processing, and packaging chain can be achieved in specific scenarios by accounting for two- and three-way interactions among bacteria, surface, and disinfectant.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":"33 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139162073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-20DOI: 10.3390/applmicrobiol4010002
Bárbara Guedes, Ofélia Godinho, Sandra Quinteira, O. Lage
Background: Planctomycetota isolation in pure culture is still challenging with most of the reported data coming from molecular-based methods. Here, we intended to isolate Planctomycetota from the filter-feeder Pacific oyster Magallana gigas, extending the search to a not yet explored natural reservoir and to characterize their antimicrobial resistance phenotype. Methods: Oyster samples from different supermarkets and from a farm producer were subject to isolation in selective medium. Inoculation was performed from the shell biofilm and after an enrichment of the edible content. Results: Planctomycetota isolates (n = 65) were only obtained from the shell biofilm with four different species identified: Rhodopirellula baltica (n = 62), Rhodopirellula rubra (n = 1), Rhodopirellula heiligendammensis (n = 1) and Gimesia chilikensis (n = 1). This study reports the first association of Planctomycetota members with oysters and the first description of R. heiligendammensis in Portugal. Moreover, R. rubra, originally identified in Portugal, was isolated from oysters of French origin. Antibiotic susceptibility testing, conducted in strains belonging to two species never assayed before revealed multidrug resistance phenotypes with bacteria showing resistance to several classes of clinically relevant antibiotics (e.g., β-lactams and aminoglycosides). Conclusion: The ecological role and impact of Planctomycetota on oyster holobiont and, ultimately, in public health, under the One Health concept, is discussed.
{"title":"Antimicrobial Resistance Profile of Planctomycetota Isolated from Oyster Shell Biofilm: Ecological Relevance within the One Health Concept","authors":"Bárbara Guedes, Ofélia Godinho, Sandra Quinteira, O. Lage","doi":"10.3390/applmicrobiol4010002","DOIUrl":"https://doi.org/10.3390/applmicrobiol4010002","url":null,"abstract":"Background: Planctomycetota isolation in pure culture is still challenging with most of the reported data coming from molecular-based methods. Here, we intended to isolate Planctomycetota from the filter-feeder Pacific oyster Magallana gigas, extending the search to a not yet explored natural reservoir and to characterize their antimicrobial resistance phenotype. Methods: Oyster samples from different supermarkets and from a farm producer were subject to isolation in selective medium. Inoculation was performed from the shell biofilm and after an enrichment of the edible content. Results: Planctomycetota isolates (n = 65) were only obtained from the shell biofilm with four different species identified: Rhodopirellula baltica (n = 62), Rhodopirellula rubra (n = 1), Rhodopirellula heiligendammensis (n = 1) and Gimesia chilikensis (n = 1). This study reports the first association of Planctomycetota members with oysters and the first description of R. heiligendammensis in Portugal. Moreover, R. rubra, originally identified in Portugal, was isolated from oysters of French origin. Antibiotic susceptibility testing, conducted in strains belonging to two species never assayed before revealed multidrug resistance phenotypes with bacteria showing resistance to several classes of clinically relevant antibiotics (e.g., β-lactams and aminoglycosides). Conclusion: The ecological role and impact of Planctomycetota on oyster holobiont and, ultimately, in public health, under the One Health concept, is discussed.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":"115 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138953811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}